
 
 
 

J. Parallel Distrib. Comput. 67 (2007) 1067– 1081 
 

1 
 
 
 

Performance Evaluation of a New Scheduling Algorithm for  
Distributed Systems with Security Heterogeneity  

 
Tao Xiea      Xiao Qinb     

 
aDepartment of Computer Science, San Diego State University, San Diego, CA 92182, USA 

bDepartment of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA 
 

Abstract 

High quality of security is increasingly critical for applications running on heterogeneous 

distributed systems. However, existing scheduling algorithms for heterogeneous distributed systems 

disregard security requirements of applications. To address this issue, in this paper, we introduce 

security heterogeneity concept for our scheduling model in the context of distributed systems. Based 

on the concept, we propose a novel heuristic scheduling algorithm, or SATS, which strives to 

maximize the probability that all tasks are executed without any risk of being attacked. Extensive 

experimental studies using real world traces indicate that the scheduling performance is affected by 

heterogeneities of security and computational power. Additionally, empirical results demonstrate that 

with respect to security and performance, the proposed scheduling algorithm outperforms existing 

approaches under a wide spectrum of workload conditions. 

1. Introduction 

A heterogenous distributed system consists of a collection of loosely coupled diverse computers, 

called sites, which are geographically distributed and connected by a communications network. Prime 

examples of distributed systems include web services [9][20] and peer-to-peer systems [7][12]. Over 

the last decade, heterogenous distributed systems have been emerging as popular computing 

platforms for computationally intensive applications with diverse computing needs [7]. To date they 

have been applied to security sensitive applications, such as banking systems and digital government, 

which require new approaches to security. Inherently, distributed systems are more vulnerable to 

threats than centralized systems, since it is difficult to control processing activities of the distributed 

systems and information can be accessed over networks. A variety of techniques like authentication 

[11] and access control [19] are widely used to secure distributed systems. Although these techniques 

can be applied to distributed systems, the conventional security techniques lack the ability to express 

heterogeneity in security services. Our study is intended to introduce a concept of security 

heterogeneity, which provides a means of measuring overhead incurred by security services in the 

context of heterogeneous distributed systems. 

Scheduling algorithms play a key role in obtaining high performance in parallel and distributed 
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systems [15][26]. Scheduling algorithms have been extensively studied in the past. Scheduling 

algorithms fall into two camps: static [7][10][16][21][22] and dynamic [2][17][21][27][28]. The 

objective of scheduling algorithms is to map tasks onto sites and order their execution in a way to 

optimize overall performance. In this work we consider the issue of dynamic task scheduling. 

Nowadays, a wide variety of scheduling algorithms for distributed systems have been reported in 

the literature [1][4]. Peng and Shin proposed a new scheduling algorithm for tasks with precedence 

constraints in distributed systems [14].  Arpaci-Dusseau introduced two key mechanisms in implicit 

coscheduling for distributed systems [1].  Lo studied the problem of static task assignment in 

distributed systems [13]. The above algorithms were designed for homogeneous distributed systems.  

In recent years, the issue of scheduling on heterogeneous distributed systems has been addressed 

and reported in the literature [6][25]. Ranaweera and Agrawal developed a scalable scheduling scheme 

called STDP for heterogeneous systems [18]. Srinivasan and Jha incorporated reliability cost, defined 

to be the product of processor failure rate and task execution time, into scheduling algorithms for 

tasks with precedence constraints [24]. A. Dogan and F. Özgüner studied reliable matching and scheduling 

for tasks with precedence constraints in heterogeneous distributed systems. Due to the lack of security 

awareness, these algorithms are not suitable for security-sensitive distributed computing applications.  

Very recently, Song et al. proposed security-driven scheduling algorithms for grids [23]. This study 

is by far the closest to the proposed algorithm found in the literature. The main difference between 

our study and theirs are four-fold. (1) Their algorithms did not explicitly support multiple security 

services; rather, it was assumed in their algorithms each grid site could only offer one conceptual 

security level. Unlike theirs, our scheduling algorithm factors in practical security services with   

security levels that capture the essence of quality of security. (2) Our algorithm takes into account of 

heterogeneities in security and computation while theirs only considered homogeneous computing 

resources. (3) Their algorithms made use of a failure model that did not take execution times into 

consideration when scheduling tasks. Conversely, we propose a risk-free model integrating execution 

times with security levels and, therefore, our model can be leveraged to quantitatively measure 

quality of security. (4) We develop a practical security overhead model to estimate the computational 

overhead of commonly used security services like authentication and integrity. 

In our previous work, we proposed a family of dynamic security-aware scheduling algorithms for a 

single machine [28], a cluster [26] and a Grid [27]. We conducted simulations to show that the 

proposed algorithms can consistently improve overall system performance in terms of quality of 
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security and system schedulability. Unfortunately, these scheduling algorithms only support 

homogeneous computing applications, thus limiting their applicability to heterogeneous distributed 

systems. Hence, we are motivated in this study to formalize the security heterogeneity concept, and to 

propose a scheduling algorithm to improve security of heterogeneous distributed systems while 

minimizing computational overhead. 

2. Modeling Tasks and Their Security Requirements 
2.1 System model 

In this study, we consider a queuing architecture of an n-site distributed system in which n 

heterogeneous sites are connected via a network to process independent tasks submitted by m users. 

Let M = {M1, M2, …, Mn} denote the set of heterogeneous sites. The system model, depicted in Figure 

1, is composed of a task schedule queue, STAS task scheduler, and n local task queues. The function 

of STAS is intended to make a good task allocation decision for each arrival task to satisfy its security 

requirements and maintain an ideal performance in conventional performance metrics such as average 

response time. 

A schedule queue is used to accommodate incoming tasks. SATS scheduler then processes all 

arrival tasks in a First-Come First-Served (FCFS) manner. After being handled by SATS, the tasks are 

dispatched to one of the designated site Mi ∈ M for execution. The sites, each of which maintains a 

local queue, can execute tasks in parallel. The main component of the system model above is SATS, 

which is composed of five modules: (1) Execution time manager; (2) Security overhead manager; (3) 

Degree of security deficiency (DSD) calculator; (4) Security-adaptive window controller; and (5) 

Task allocation decision maker. Since execution time of each task can be estimated by code profiling 

and statistical prediction [3], we assume that the execution time of each arrival task for each site is a 

Figure 1. System model of the SATS strategy. 
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prior and this information is managed in the execution time manager module. Similarly, we assume 

that the security overhead for each arrival task on each site is a prior, and this information is 

maintained in the security overhead manager module. The DSD calculator is used to calculate 

discrepancies between an arrival task’s security level requirements and the security levels that each 

site offers. The function of security-adaptive window controller is to vary size of the window to 

discover a suitable site for the current arrived task so that (1) its security demands can be well met; 

(2) the total execution time can be as small as possible. To illustrate how security-adaptive window 

controller works, we give an example as below. 

 

In Figure 2 we assume that there are 8 sites in the system. The first row shows the total execution 

time for an arrival task on the 8 sites in seconds. The second row displays the security levels that the 8 

sites can offer for three security services, namely, authentication, encryption, and integrity. The third 

row is a site list sorted by the task’s total execution time in a non-decreasing order. The size of 

security-adaptive window is 4, which means SATS will select a site that can deliver the best security 

within the first four candidate sites. If security-adaptive window controller cannot find an idea site in 

terms of security, it will automatically enlarge the window to expand the search range. However, large 

window size will result in a long total execution time for the task in a high probability because the 

total execution time increases when the size of the window enlarges. 

After retrieving information like execution time on each site, security overhead on each site, 

degree of security deficiency on each site and the size of security-adaptive window for the current 

task from the corresponding modules, the task allocation decision maker will decide which site will 

be assigned to the task.  

Each site in the system model above is inherently heterogeneous in both computation and security. 

Computational heterogeneity means that for each task the execution time on different sites is 

distinctive. While each task has an array of security service requests, each site offers the security 

services with different levels. The level of a security service provided by a site is normalized in the 
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J. Parallel Distrib. Comput. 67 (2007) 1067– 1081 
 

5 
 
 
 

range from 0.1 to 1.0. Suppose site Mj, offers q security services, Pj = ( 1
jp , 2

jp , …, q
jp ), a vector of 

security levels, characterizes the security levels  provided by the site. k
jp  is the security level of the 

kth security service provided by Mj. To meet security requirement, security overhead of the task will 

be considered. Security heterogeneity suggests that the security overhead of a task varies on each site. 

2.2 Modeling tasks with security requirements 

We consider a class of heterogeneous distributed systems where an application is comprised of a 

collection of tasks performed to accomplish an overall mission. It is assumed that tasks are 

independent of one another. Each task requires a set of security services with various security levels 

specified by a user. Values of security levels are normalized in the range from 0.1 to 1.0 as well. For 

example, a task specifies in its request security level 0.7 for the authentication service, 0.3 for the 

integrity service, and 0.8 for the encryption service. Note that the same security level value in 

different security services may have various meanings. 

Suppose there is a task Ti submitted by a user, Ti is modeled as a set of rational parameters, e.g., Ti 

= (ai, Ei, fi,  li, Si), where ai and fi are the arrival and finish times, and li denotes the amount of data 

(measured in MB) to be protected. Ei is a vector of execution times for task Ti on each site in M, and    

Ei = ( 1
ie , 2

ie , …, n
ie ). Suppose Ti requires q security services, Si = ( 1

is , 2
is ,…, q

is ), a vector of security 

levels, characterizes the security requirements of the task. k
is  is the security level of the kth security 

service required by Ti. 

A security-aware scheduler has to make use of a function to measure the security benefits gained 

by each arrival task. In particular, the security benefit of task Ti is quantitatively modeled as a 

function of the discrepancy between security levels requested and the security levels offered. The 

security benefit function for task Ti on site Mj is denoted by DSD: (Si, Pj) → ℜ, where ℜ is the set of 

non-negative real numbers: 
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Note that k
iw  is the weight of the kth security service for task iT . Users specify in their requests the 

weights to reflect relative priorities given to the required security services. Degree of Security 

Deficiency, or DSD, is defined to be a weighted sum of q discrepancy values between security levels 

requested by a task and the security levels offered by a site. For each task, a small DSD value means a 

high satisfaction degree. Zero DSD value implies that a task’s security requirements can be perfectly 
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met. That is, there exists at least one site Mj in M that can satisfy the following condition: 

                                                                     [ ] j
j

k
i psqk ≤∈∀ ,,1                                                               

Let iX be all possible schedule for task Ti, ii Xx ∈  be a scheduling decision of Ti. Given a task iT , 

the degree of security deficiency value (DSDV) of iT  is expected to be minimized: 
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where k
ji

k pxp =)(  if the task is allocated to site j. A security-aware scheduler strives to minimize the 

system’s overall DSDV value defined as the sum of the degree of security deficiency of submitted 

tasks (See Equation 1). Thus, the following DSDV function needs to be minimized: 
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where T is a set of submitted tasks. Substituting Equation (2) into (3) yields the following security 

objective function. Thus, our proposed SATS scheduling algorithm makes an effort to schedule tasks 

in a way to minimize Equation (4):                                                .                                       
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Since the degree of security deficiency for task Ti merely reflects the security service satisfaction 

degree experienced by the task, it is inadequate to measure quality of security for Ti during its 

execution. Therefore, we derive in this section the probability ),( jirf MTP that Ti remains risk-free 

during the course of its execution. 

The quality of security of a task Ti with respect to the kth security service is calculated as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− ∑

=

q

l

l
i

l
ij

j
i

k
i sce

1

)(exp λ  where k
iλ  is the task's risk rate of the kth security service, and )( l

i
l
ij sc  is 

the security overhead experienced by the task on site j. The risk rate is expressed as: 

                                                        ( ).)1(exp1 k
i

k
i s−−−= αλ                                                          (5) 

Note that this model assumes that risk rate is a function of security levels, and the distribution of 

risk-free for any fixed time interval is approximated using a Poisson probability distribution. The risk 

rate model is just for illustration purpose only. Thus, the model can be replaced by any risk rate model 

with a reasonable parameter α.  

The quality of security of task Ti on site Mj can be obtained below by considering all security 
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services provided to the task. Consequently, we have:  
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Using equation (6), we obtain the overall quality of security of task Ti in the system as follows, 
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where pij is the probability that Ti is allocated to site Mj. Given a task set T, the probability that all 

tasks are free from being attacked during their executions is computed based on Equation (7). Thus,    

                                                          ( ).)( ∏
∈
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By substituting the risk rate model into Equation (8), we finally obtain Prf(T) as shown below: 
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In summary, DSD values show us security service satisfaction degrees experienced by tasks, while 

risk-free probability measured by Equation (9) defines quality of security provided by a heterogenous 

distributed system. In Section 5 these two metrics are used to evaluate security of distributed systems.  

2.3 Heterogeneity model 

The computational weight of task Ti on site Mj (e.g., j
iw ) is defined as a ratio between its execution 

time on Mj and that on the fastest site in the system. That is, we have ( )k
i

n
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j
i

j
i eew

1
min

=
= . The 

computational heterogeneity level of task Ti, referred to as C
iH , can be quantitatively measured by the 

standard deviation of the computational weights. Formally, C
iH  is expressed as: 
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The computational heterogeneity of a task set T can be computed by ∑
∈

=
TT

C
i

C

i

H
T

H
||

1
.  

There are three types of security heterogeneities. (i) Security heterogeneity of a particular task Ti 

indicates the difference of security requirements in the q security services requested by the task (see 

Equation 11). (ii) Security heterogeneity of a given security service provided by each site in a 

distributed system reflects the discrepancy of the offered security levels of the service in the system 

(see Equation 12). (iii) Security heterogeneity of a particular site Mj shows the deviation of the q 
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security levels provided by the site (see Equation 13).  

Given a task Ti and its security requirement Si = ( 1
is , 2

is ,…, q
is ), the heterogeneity of security 

requirement for Ti is measured by the standard deviation of the security levels in the vector. Thus,  
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The security requirement heterogeneity of a task set T can be computed by ∑
∈

=
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H
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.  

The heterogeneity level of the kth security service in a distributed system is defined as:  
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Using Equation (12), the heterogeneity of security services can be written as ∑
=
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Finally, the heterogeneity level of security services in site Mj is defined to be: 
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2.4 Security overhead model 

Now we consider security overhead incurred by security services. The following security overhead 

model includes three services, namely, encryption, integrity, and authentication [26]. The security 

overhead model can be easily extended to incorporated more security services.  

Suppose task Ti requires q security services, which are provided in sequential order. Let k
is  and 

)( k
i

k
ij sc  be the security level and overhead of the kth security service, the security overhead ijc  

experienced by Ti on site Mj can be computed using Equation (14). In particular, the security overhead 

of Ti with security requirements for the three services above is modelled by Equation (15). 
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where )( e
i

e
ij sc , )( g

i
g
ij sc , and )( a

i
a
ij sc  are overheads caused by the authentication, encryption, and 

integrity services [26]. The authentication overhead can be obtained using the following table. 

Table 1. Authentication Overhead 

Authentication Methods a
is : Security Level )( a

i
a
i sc : Computation Time (ms) 

HMAC-MD5 0.3 90 
HMAC-SHA-1 0.6 148 

CBC-MAC-AES 0.9 163 
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Our security level assignment is reasonable because a security mechanism providing higher quality 

of security imposes higher overhead than mechanisms offering lower security. Please note that the 

security level assignments in Table 1 ( a
is =0.3, 0.6, 0.9) are only for illustration purpose. The security 

level of a security mechanism can be quantitatively measured by the amount of cost needed to 

successfully break the mechanism. However, quantitatively measuring the security level of a security 

mechanism is a nontrivial research issue, and it is out of the scope of this work.  

The encryption overhead e
ic  of Ti on Mj is computed using Equation (16), where e

iπ  is the CPU 

time spent in encrypting security sensitive data. 

                                                    e
i

e
ij

e
i

e
ij ssc π=)( , where i

e
i Ss ∈                                                   (16) 

The integrity overhead can be calculated using the following equation, where li is the amount of 

security sensitive data, and )( g
i

g sµ  is a function mapping a security level into its corresponding 

integrity service performance.  

                                                    )()( g
i

g
i

g
i

g
ij slsc µ= , where i

g
i Ss ∈ .                                          (17) 

3. The SATS Algorithm 

In Section 3 we proposed the SATS algorithm, which integrates security requirements into 

scheduling for heterogeneous distributed systems. For task Ti, the earliest start time on site Mj is 

)(es ij T , which can be computed by Equation (18). 
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where jr  represents the remaining overall execution time of a task currently running on the jth site, 

and ∑
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+
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j
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1

)( is the overall execution time (security overhead is factored in) of waiting task lT  

assigned to site Mj prior to the arrival of Ti. Thus, the earliest start time of iT is a sum of the remaining 

overall execution time of the running task and the overall execution times of the tasks with earlier 

arrival on site Mj.  Therefore, the earliest completion time for task iT on site Mj can be calculated as:  
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The SATS algorithm is outlined in Figure 3. The goal of the algorithm is to deliver optimal quality 

of security while maintaining high performance for tasks running on heterogeneous systems. To 
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achieve the goal, SATS manages to minimize degree of security deficiency (see Equation 1) of each 

task (see Step 10 in Fig. 3) without performance deterioration. 

Before optimizing the degree of security deficiency of task Ti, SATS sorts all the sites in a non-

decreasing order in Ti’s total execution time based on the information retrieved from the execution 

time manager and the security overhead manager (see Figure 1). Step 7 computes the degree of 

security deficiencies for the task on each site in the light of the security deficiency calculator. 

Combining the input from the security-adaptive window controller, the task allocation decision maker 

decides a site to which the task is allocated. 

We have the following theorem for the time complexity of the proposed SATS algorithm. 

Theorem 1. The time complexity of SATS is O(nmlgm), where n is the number of tasks, m is the 

number of sites, and k is the number of possible security level ranks for a particular security service 

lv  )31},,,{( ≤≤∈ lgeavl .  

Proof. The time complexity of computing the earliest start time and the earliest completion time for 

task Ti on a site is O(m) (Steps 3 and 4). Sorting the earliest completion time a non-decreasing order 

(Step 6) will take O(mlgm) since we only have m sites. To compute the risk-free probability, the time 

complexity is O(3k) (Step 12). For other steps, they only consume O(1). Thus, the time complexity of 

the SATS algorithm is express as follows: O(n)(O(m) + O(mlgm)+ O(3k)) = O(nmlgm).  

4. Simulations 

In Section 3 we proposed the SATS strategy, which integrates security requirements into 

1.for each task Ti submitted to the schedule queue do 
2.      for each site Mj in the system do 

3.   Use Equation (18) to compute )(es ij T , the earliest start time of Ti on site Mj; 

4.           Use Equation (19) to compute )(e ij Tc , the earliest completion time of Ti on site Mj 

5.      end for 

6.     Sort all sites in earliest completion time in a non-decreaseing order 
7.     for each site in the security-adaptive window do 
8.  Use Equation (1) to compute )( isDSD  /* Compute degree of security deficiency for each site*/ 

9.     end for 
10.    Select the site Mr that can offer the smallest DSD value and assign Ti on it 

11.    Update site Mr’s earliest available time jes    

12.    Use Equation (6) to compute   risk-free probability for task Ti 
13.    Record start time and completion time for task Ti 
14.end for 

Figure 3. The SATS algorithm. 
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scheduling for dynamic tasks running on distributed systems. Now we are in a position to evaluate the 

effectiveness of SATS by comparing its performance with two well-known scheduling heuristics in 

both security-related and conventional metrics. 

Using extensive simulation experiments based on San Diego Supercomputer Center (SDSC) SP2 

log, we evaluate in this section the potential benefits of the SATS algorithm. The real trace was 

sampled on a 128-node (66MHz) IBM SP2 from May 1998 through April 2000. To simplify our 

experiments, we utilized the first three months data with 6400 parallel tasks in simulation. Since the 

trace was sampled from a homogenous environment, to reflect the heterogeneity of the simulated 

distributed system, we translated the “execution time” of each task from a single value to a vector 

with n (number of sites) elements based on the heterogeneity model described in Section 2.3. In 

purpose of revealing the strength of SATS, we compared it with two well-known scheduling 

algorithms, namely, Min-Min and Sufferage [23]. Min-Min and Sufferage are non-preemptive task 

scheduling algorithms, which schedule a stream of independent tasks onto a heterogeneous distributed 

computing system. They are representative dynamic scheduling algorithms for distributed systems 

and were successfully applied in real world distributed resources management systems such as 

SmartNet. The two algorithms are briefly described below. 

(1) MINMIN:  For each submitted task, the site that offers the earliest completion time is tagged. 

Among all the mapped tasks, the one that has the minimal earliest completion time is chosen and then 

allocate to the tagged site.  

(2) SUFFERAGE: Allocating a site to a submitted task that would “suffer” most in terms of 

completion time if that site is not allocated to it.  

The purpose of comparing SATS with MINMIN and SUFFERAGE is to show the performance 

improvements over existing task scheduling algorithms in a distributed computing environment. 

Section 4.1 describes performance metrics that we used and important parameters that will be 

examined in this section. Section 4.2 is to examine the performance improvements of SATS over the 

two heuristics. We will investigate in Section 4.3 the performance impacts of heterogeneity of both 

computation and security in a simulated 16-site distributed system. Section 4.4 studies the 

performance sensitivity of the SATS algorithm to the size of data to be secured. We evaluate the 

scalability of the proposed SATS algorithm in terms of the size of a distributed system.  

A competitive advantage of conducting simulation experiments is that performance evaluation on a 

distributed system can be accomplished without additional hardware cost. The distributed system 
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simulator was designed and implemented based on the model and the algorithm described in the 

previous sections. Table 2 summarizes the key configuration parameters of the simulated distributed 

system used in our experiments. 

Table 2. Characteristics of System Parameters 
             Parameter           Value (Fixed) - (Varied) 
Number of tasks (6400) – The first three month trace data from SDSC SP2 log 
Number of sites (16) – (8, 16, 32,64,128) 
Task arrival rate Decided by the trace  

Size of security-adaptive window (8) – (1, 2, 4, 8, 16) 

Data to be secured (uniform dist.) (1–100) – (0.01–1,1 – 100, 10 – 1000, 100 – 10000, 1000 –100000) MB 

Site security level (uniform dist.) (0.1 – 1.0) 

Task security level (uniform dist.) 
 

(0.1 – 1.0) 

Required security services Encryption, Integrity and Authentication  

Weights security services Authentication weight=0.2, Encryption weight=0.5, Integrity weight=0.3 
Computational heterogeneity (1.08) – (0, 0.43, 1.08, 1.68, 2.27) 

Security heterogeneity (0.22) – (0, 0.14, 0.22, 0.34, 0.56) 

4.1 Simulator and Simulation Parameters 
Before presenting the empirical results in detail, we present the simulation model as follows. The 

parameters of sites in the simulated distributed system are chosen to resemble real-world workstations 

like IBM SP2 nodes. 

We modified the trace by adding a block of data to be secured for each task in the trace. The size 

of the security-required data assigned to each task is controlled by a uniform distribution (see Table 

2). Although “task number”, “submit time”, and “execution time” of tasks submitted to the system are 

taken directly from the trace, “size of data to be secured”, “number of sites”, “computational 

heterogeneity”, and “security heterogeneity” are synthetically generated in accordance with the above 

model since they are not available in the trace. The performance metrics we used include: risk-free 

probability (see Equation 9), degree of security deficiency (see Equation 1), site utilization (defined as 

the percentage of total task running time out of total available time of a given site), makespan (the 

latest task completion time in the task set), average response time (the response time of a task is the 

time period between the task’s arrival and its completion and the average response time is the average 

value of all tasks’ response time),  slowdown ratio (the slowdown of a task is the ratio of the task’s 

response time to its service time and the slowdown ratio is the average value of all tasks’ slowdowns).  

4.2 Overall Performance Comparisons 

The goal of this experiment is two fold: (1) to compare the proposed SATS algorithm against the 

two heuristics, and (2) to understand the sensitivity of SATS to the size of security-adaptive window. 
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Note that tasks arrived in the system require the three security services.        

Figure 4 shows the simulation results for the three algorithms on a distributed system with 16 sites. 

Since MINMIN and SUFFERAGE do not have a security-adaptive window, their performance in all 

six metrics keeps constant. We observe from Figure 4 (a) that SATS significantly outperforms the two 

heuristics in terms of risk-free probability, whereas MINMIN and SUFFERAGE algorithms exhibit 

similar performance. We attribute the performance improvement of SATS over MINMIN and 

SUFFERAGE to the fact that SATS is a security-adaptive scheduler and judiciously assigns a task to 

a site not only considering its computational time but also its security demands. When the size of 

security-adaptive window (saw) increases, the value of risk-free probability goes up. This is because 

SATS can select a more appropriate site in terms of meeting the task’s security demands when saw, 

which is the number of candidate sites to be chosen, becomes larger.  

We notice in Figure 4 (b) that SATS performs poorly in terms of degree of security deficiency 

(DSD) when saw is small, while it still outperforms the two baseline algorithms with respect to risk-

free probability. This interesting result can be explained by the fact that the value of risk-free 

probability is derived from both DSD and total execution time including security overhead (see 

Equation 9). Although the values of DSD are greater than the two heuristics, SATS results in a much 

shorter total execution time when saw is slim. This is because a candidate site in the small saw 

provides a task with a shorter total execution time. When saw becomes large, SATS significantly 

 (d) Makespan in seconds    (e) Average response time in seconds     (f) Slowdown ratio                          
                            Figure 4. Performance impact of size of security-adaptive window. 

      (a) Risk-free probability       (b) Degree of security deficiency           (c) Site utilization                         
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outperforms the two alternatives in DSD for SATS can dispatch tasks to sites that guarantee the tasks’ 

security requirements. From site utilization standpoint, Figure 4 (c) shows that SATS will eventually 

outperforms the two heuristics when saw increases. This is because when SATS tries to allocate a task 

in case where saw is large, SATS gives higher priority to security requirements. Consequently, SATS 

assigns the tasks to sites that meet the security constraints at the cost of long total execution times. 

Figures 4d-4f plot the performance results of the three algorithms in terms of classical performance 

metrics, including makespan, average response time, and slowdown ratio. As we can see from the 

figures, SATS is superior to the other heuristics when the saw is not in its maximal size. This happens 

because SATS only selects sites with shorter total execution time when saw is small. When the value 

of saw is 16, however, SATS exhibits long makespan and response times (see Figure 4d and Figure 

4e). The rationale behind this is that SATS compares all of the 16 sites to identify one that can best 

meet an arrival task’s security demands regardless of the total execution time on this site. On the 

contrary, when saw is small, SATS simply assign an arrival task to a site that is able to fulfil the task’s 

security needs. In addition, SATS chooses a site providing a relatively short total execution time.  

One important implication derived from this experiment is that SATS is a security-aware and 

adaptive task scheduler, which dynamically adjusts its saw to consistently make good balancing 

between security and performance. 

4.3 Impact of heterogeneity of computation and security  
As we mentioned in Section 2, in a heterogeneous distributed system, the computational times of a 

particular task on different sites are distinctive, which is referred to as computational heterogeneity. 

Besides, the security overheads incurred by the task on different sites are diverse. We name this 

security heterogeneity. We believe that both computational and security heterogeneities are essential 

characteristics of security-sensitive heterogeneous distributed systems. To differentiate execution time 

from security overhead, we use the term computational time to refer execution time without security 

overhead, and the total execution time of a task consists of both computational time and security 

overhead. In this experiment we investigate the impact of these two heterogeneities on system 

performance. Specifically, we evaluate the performance of the three algorithms in cases where (1) 

security heterogeneity keeps constant while computational heterogeneity varies (see Figure 5); (2) 

computational heterogeneity is fixed but security heterogeneity is increased (see Figure 6); and (3) 

both heterogeneities varies (see Figure 7).  
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In Figure 5, Config1-Config5 represents 5 different computational heterogeneity values listed in 

Table 2. Figure 5b reveals that SATS consistently delivers better performance in DSD than the other 

two heuristics. This is because SATS is a security-adaptive scheduler, meaning that it makes an effort 

to adjust the value of saw that yields the optimized quality of security. Unlike SATS, MINMIN and 

SUFFERAGE are unaware of tasks’ security needs, thereby allocating tasks to sites based on 

computational times. Therefore, there is a strong likelihood to assign tasks to sites that lead to a large 

value of DSD. The result shown in Figure 5a can be explained by the result in Figure 5b because a 

small value of DSD results in a high risk-free probability provided that total execution time is a 

constant. Figures 5d and 5e show the downside of SATS. Since within the saw range SATS picks a 

site that can best serve a task’s security demands and, therefore, SATS is likely to select a site where 

the total execution time is not minimal. Thus, the makespan and the average response time of SATS 

are longer than the other two heuristics. This can be explained by the following two reasons. First, 

MINMIN and SUFFERAGE tend to select a site with a small computational time without considering 

a task’s security overhead. Second, the security overhead of the task remains the same on all sites. 

Hence, small computational times imply small total execution times. Figure 5 suggests that SATS can 

achieve a high performance in two security-related metrics while performing poorly in conventional 

metrics. This result demonstrates that SATS is not suitable for distributed systems with low level of 

security heterogeneity.  

 (d) Makespan in seconds    (e) Average response time in seconds     (f) Slowdown ratio                          
Figure 5 Performance impact of computational heterogeneity. 

      (a) Risk-free probability       (b) Degree of security deficiency          (c) Site utilization                          
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Now we evaluate impact of security heterogeneity in Figure 6, which shows that SATS is superior 

to the other two heuristics in both the security-related metrics in all cases and the conventional 

metrics in most cases when security overhead varies among different sites. The reason is that 

MINMIN and SUFFERAGE do not factor in the security overhead of a task and therefore possibly 

assign the task to a site that only result in a small computational time but with a large total execution 

time, while SATS considers computational time, security overhead, and the security demands of the 

task when scheduling it, and thus, SATS can achieve a good performance in both metric camps. The 

implication of this experiment tells us that SATS can show its strength in a distributed system where 

its security heterogeneity varies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

When both computational heterogeneity and security heterogeneity vary at the same time, SATS 

fully exhibits its power as shown in Figure 7. The average performance improvement in risk-free 

probability compared with MINMIN and S UFFERAGE is 120.8%. In terms of degree of security 

deficiency, on average SATS outperforms MINMIN and SUFFERAGE over 96.66% and 94.98, 

respectively. Still, SATS has noticeable performance improvement in terms of makespan, average 

response time, and slowdown ratio. The implication derived from Figure 7 convinces us that SATS is 

more appropriate than the other two heuristics in a security-critical distributed system where both 

computational time and security overhead are heterogeneous in nature.  

 

 (d) Makespan in seconds   (e) Average response time in seconds     (f) Slowdown ratio                           
Figure 6. Performance impact of security heterogeneity. 

   (a) Risk-free probability     (b) Degree of security deficiency           (c) Site utilization                              
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In summary, the strength of SATS can be fully demonstrated when a distributed system is 

heterogenous in both computation and security. When the system is only heterogeneous in 

computational time, SATS cannot deliver a comparable performance in conventional metrics but 

achieves a much higher result in security-related metrics. This fact hints us that SATS can 

significantly improve performance in almost all six metrics without increasing hardware cost when a 

distributed system is heterogeneous in both computation and security, which is the case in reality. 

This is the beauty of SATS. The results suggest that SATS can be successfully applied in an existing 

security-critical heterogeneous distributed system.  

4.4 Sensitivities to size of data to be secured 

In this experiment we evaluate the performance impact of size of data to be secured. As we 

described in previous sections, each task was synthetically assigned a block of data that needs to be 

protected from being disclosed or being tampered. The size of data to be secured will influence the 

task completion time because the larger the data, the longer time is needed to protect it. To discover 

the performance impact of data size, we tested five configurations (see Table 2). 

The experimental results are shown in Figure 8. There are several important observations based on 

Figure 8. Firstly, when the size of date to be secured increases, the degree of security deficiency of 

SATS also increases, while MINMIN and SUFFERAGE maintains the same (see Figure 8b). For 

SATS this is because sites with lower security levels are more likely to be chosen. The rationale 

 (d) Makespan in seconds       (e) Average response time in seconds     (f) Slowdown ratio                       
                  Figure 7. Performance impact of computational and security heterogeneity. 

      (a) Risk-free probability       (b) Degree of security deficiency          (c) Site utilization                          
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behind is that security overhead becomes moderately dominant when the size of data to be secured 

exceeds a threshold. Therefore, the sites with short total execution time, which sit in the saw 

(remember that SATS sorts all sites in a non-decreasing order in terms of total execution times of a 

task before scheduling it), have smaller security overhead, which means security levels are lower in 

these sites. Thus, the discrepancy between the security levels offered by the selected site and the 

security levels demanded by the task enlarges. 

 

 

 

 

 

 

 

 

 

 

 

 

  

As for MINMIN and SUFFERAGE, their values of degree of security deficiency keep constant. 

This is because they are not aware of the security overhead change and therefore still select a site with 

a small computation time. Unlike the candidate sites in the saw in SATS scenario, these selected sites 

still have a randomly distributed security levels. Hence, the values of DSD for MINMIN and 

SUFFERAGE do not change even when the size of data to be secured becomes large. Secondly, 

Figure 8a shows that SATS degrades its performance in risk-free probability when size of data to be 

secured enlarges. There are two reasons that are responsible for this result. One is that the value of 

DSD increases, and the other is that the total execution time increases. Thirdly, it is very interesting to 

see that there exits a big jump between Config4 and Config5 in terms of makespan and average 

response time for all three algorithms (see Figures 8d and 8e). This is because when the data size is in 

the range [1, 100] GB, a task’s security overhead is comparable with its computation time. Thus, the 

total execution time substantially increases, resulting in a huge makespan and average response time.  

      (a) Risk-free probability       (b) Degree of security deficiency           (c) Site utilization                         

 (d) Makespan in seconds       (e) Average response time in seconds      (f) Slowdown ratio                      
                              Figure 8. Performance impact of size of data to be secured. 
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4.5 Scalability 

This experiment is intended to investigate the scalability of the SATS algorithm. We scale the 

number of sites in a heterogeneous distributed system from 8 to 128. Figure 9 plots the performances 

as functions of the number of sites in the simulated distributed system. The results show that the 

SATS approach exhibits good scalability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 9a and 9b show the improvement of SATS in risk-free probability and DSD over the other 

two heuristics. It is observed from Figure 9a that the amount of improvement becomes more 

prominent with the increasing value of site number. This result can be explained by the non-security-

awareness nature of MINMIN and SUFFERAGE, which merely select a site for a task without 

considering the task’s security demands.  Conversely, SATS can achieve a much higher performance 

when there are more sites available in the system. This is because with a high probability SATS can 

find a site that meets a task’s security demands well when there are more sites to be chosen. For all 

the three algorithms, their performances improve in terms of makespan, average response time, and 

slowdown ratio. This can be readily understood because more sites result in a low value for 

makespan, average response time, and slowdown ratio.  

5. Summary and Future Work 

 In this paper, we considered the security requirements of applications in the context of task 

scheduling in heterogeneous distributed systems. This is important because increasing number of 

 (d) Makespan in seconds    (e) Average response time in seconds     (f) Slowdown ratio                          
Figure 9. Performance impact of number of sites. 

      (a) Risk-free probability       (b) Degree of security deficiency          (c) Site utilization                          
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applications running on heterogeneous distributed systems requires not only descent scheduling 

performance but also high quality of security. To solve this problem, we proposed a security-adaptive 

scheduling heuristic that is based on the concept of security heterogeneity. Experimental results 

demonstrate that our strategy outperforms existing approaches in both security and performance on a 

simulated heterogeneous distributed system. 

In future research, the heuristic will be extended to schedule parallel applications. This work can 

be accomplished by factoring in precedence constraints among tasks and communication security. 

Further research will be needed to address the issue of securing other resources.  
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