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Abstract 

Load balancing techniques play a critically important role in developing high-performance 

cluster computing platforms. Existing load balancing approaches are concerned with the 

effective usage of CPU and memory resources. Due to imbalance in disk I/O resources under 

I/O-intensive workloads, the previous CPU- or memory-aware load balancing schemes suffer 

significant performance drop. To remedy this deficiency, in this paper we propose a novel load-

balancing algorithm (hereinafter referred to as IOLB) for clusters, which aims at maintaining 

high resource utilization under a wide range of workload conditions. Specifically, IOLB is 

conducive to reducing the average slowdown of all parallel jobs submitted to a cluster by 

balancing load in disk resources. This can, in turn, not only achieve the effective usage of global 

disk resources but also reduce response times of I/O-intensive parallel jobs. To theoretically 

study the optimization of the IOLB algorithm, we qualitatively comparing IOLB with two 

conventional CPU- and memory-aware load-balancing schemes. We prove that when the 

workloads become CPU-intensive or memory-intensive in nature, IOLB gracefully degrades 

towards the existing load-balancing schemes. Experimental results based on trace-driven 

simulations demonstratively show that the IOLB algorithm significantly improves the resource 

utilization of a cluster under I/O-intensive workloads. Furthermore, our results confirm that 

IOLB is able to maintain the same level of performance as the two existing approaches, because 

IOLB improves CPU and memory utilization under CPU- and memory-intensive workloads. 
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1. Introduction 

Load balancing techniques play an important role in the design and development of high-

performance clusters. A variety of load balancing schemes [1][3][12][17] can be used to improve 

performance of parallel and distributed systems clusters by assigning work, at run time, to 

computational nodes with under-utilized resources. Dynamic load-balancing schemes have been 

extensively investigated, primarily focusing on CPU [12][14], memory [1][28], network 

[3][8][24], or a combination of CPU and memory [32] resources. Although the existing load-

balancing schemes are effective in maintaining high utilization of resources, the previous 

approaches suffer significant performance drop under I/O-intensive workloads due to imbalance 

in disk I/O resources. It is worth noting that disk I/O resources become a performance bottleneck 

under I/O-intensive workloads, since the performance gap between CPU and disk I/O is 

widening. It is believed that a way of solving the disk I/O bottleneck problem is to leverage load-

balancing techniques to achieve effective usage of global disk resources in clusters.  

In this paper we propose a novel load-balancing algorithm (hereinafter referred to as IOLB) 

for parallel jobs running on clusters. The IOLB algorithm aims at improving utilization of disk 

I/O, CPU, and memory resources in a cluster under a wide spectrum of workload. Specifically, 

IOLB is conducive to balancing load in a variety of resources, thereby reducing slowdowns of all 

parallel jobs submitted to a cluster. After qualitatively comparing IOLB with two conventional 

CPU- and memory-aware load-balancing schemes, we prove that IOLB gracefully degrades 

towards the existing load-balancing schemes if workloads become CPU- and memory-intensive, 

respectively. We conducted trace-driven simulations to show that the IOLB algorithm 

significantly improves the resource utilization of clusters under I/O-intensive workloads. 



 
 
Journal of Network and Computer Applications, vol. 31, no. 1, pp. 32-46, January 2008. 

 

                       

                                                                                                      3 
 
 
 

Moreover, our results confirm that IOLB improves CPU and memory utilization under CPU- and 

memory-intensive workloads and, therefore, IOLB can maintain the same level of performance 

as the two existing approaches. 

The rest of the paper is organized as follows. Related work in the literature is briefly reviewed 

in the following section. Section 3 describes a generic model and the IOLB load-balancing 

algorithm for parallel jobs. Section 4 presents a qualitative comparison between IOLB and the 

two existing load-balancing schemes. To confirm the analytical comparison, in Section 5 we 

made use of trace-driven simulations to quantitatively evaluate performance of the IOLB 

algorithm and the alternative solutions. Finally, Section 6 summarizes the main contributions of 

this paper and comments on future research directions. 

2. Related Work 

In the past decade, load balancing techniques in the context of CPU and memory resources 

has been extensively studied in recent years. For example, Harchol-Balter and Downey studied a 

preemptive migration policy that is more effective than non-preemptive migration policies under 

CPU-intensive workloads [12]. Zhang et al. [32] proposed new load sharing policies that are 

concerned with effective usage of both CPU and memory resources. The above load-balancing 

schemes are able to achieve high system performance under CPU- and memory-intensive 

workload conditions, respectively.  

A number of approaches to balancing load in disk I/O resources can be found in the literature 

[16][33]. Lee et al. studied two file assignments algorithms to balance load across all disks, 

thereby making it possible to improve overall system performance by fully utilizing available 

hard drives [16]. Zhang et al. proposed three I/O-aware scheduling schemes that are aware of the 
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job’s spatial preferences [33].  

In recent years, the issue of leveraging I/O cache and buffer to boost performance of storage 

systems has been reported in the literature. Choi et al. proposed a buffer replacement scheme for 

effective caching of disk blocks[7]. Forney et al. investigated storage-aware caching algorithms 

in heterogeneous clusters [11]. Ma et al. developed an active buffering mechanism to alleviate 

the disk I/O bottleneck problem using local idle memory and overlapping I/O with computation 

[18]. We proposed a feedback control mechanism to improve the performance of a cluster by 

adaptively manipulating the I/O buffer size [23]. Our IOLB load-balancing algorithm is 

complementary to the aforementioned caching and buffering techniques, meaning that IOLB can 

provides additional performance improvement when the existing caching and buffering 

mechanisms.  

3. An I/O-aware Load-Balancing Algorithm 

3.1 A generic model 

A cluster computing platform considered in this study consists of a set N = {N1, N2, …, Nn} of 

n homogeneous nodes connected by a high-speed interconnection network like Myrinet. Note 

that the terms node and machine are used interchangeably throughout this paper. Throughout this 

paper, Ni represents a set of tasks running on the ith node. Each node in a cluster is composed of 

a combination of various resources, including processors, memory, network connectivity, and 

disks. A load manager residing in each node is responsible for load balancing and monitoring 

available resources of the node. Each job is associated to a home machine, through which the job 

is submitted to the cluster. A node becomes the home machine of a job either because the job is 

initially created on the node or because data to be accessed by the job is stored in the node. A 
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similar home model was proposed by Lavi and Barak in context of load balancing [15]. In the 

case that a job is submitted through its home node, the corresponding load manager for the home 

node is invoked to allocate the job to a node or a group of nodes with the least load. At any time, 

a node is either having its load manager performed or executing a task. When the load manager 

is carried out, the underlying computation may be concurrently performed or suspended. It is 

feasible to make the load manager and other tasks executed in parallel, since the load manager 

can be running in the background by an inexpensive coprocessor [31]. In addition, it is 

reasonable to assume that all load managers in a cluster is capable of keeping track of global load 

information by monitoring local resources and sharing load information through a direct 

communication network [22]. 

In this study we are concerned with a class of embarrassing parallel applications, each of 

which is represented in form of a set T = {τ1, τ2, ..., τm} of tasks (also referred to as processes) 

that are independent of one another. Some real-world examples of embarrassing parallel 

applications can be found in [29]. It is worth noting that the proposed load-balancing algorithm 

can be readily integrated with a communication load balancer to deal with parallel applications 

with dependent tasks. A task τi in T is modeled as a tuple (ci, si, λi, di), where ci is the 

computational time, si is the requested memory space measured by MBytes, λi is the arrival rate 

of disk requests measured by number of disk accesses per ms (No./ms), and di is the disk 

request’s data size in KBytes. Note that the parameters ci and si are used to describe task τi’s 

requirements for CPU and memory, whereas the I/O requirement of τi is characterized by the 

other two parameters - λi and di.  

3.2 Problem Formulation 
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Given a task τi, we denote ded
it  as the time to execute the task on a dedicated computing 

cluster, and ti as the time to execute the task on the same cluster in a time-sharing setting. In our 

model, we consider three resources: CPU, memory, and disk I/O. Let ,, ,, pageded
i

CPUded
i tt  and IOded

it
,  

be the times of a task spent on CPU, page fault handling, and disk I/O processing in a dedicated 

mode. The values of ,, ,, pageded
i

CPUded
i tt  and IOded

it
, can be respectively derived from τi’s 

requirement parameters, including ci, si, λi, and di. Let ,, page
i

CPU
i tt  and IO

it  denote the times spent 

on the three resources in a time-shared mode. Since tasks running on computational nodes may 

be delayed by contention for resources, the slowdown imposed on task τi is expressed as the ratio 

between the task’s execution time in the time-shared mode and its execution time on the same 

cluster in the dedicated mode. Thus, the slowdown of τi is written as 

                                            .
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Given a parallel application with task set Ti = {τ1, τ2, ..., τmi}, the slowdown of the application 

is calculated as the average slowdown of all the independent tasks in T. Thus, the slowdown of 

the parallel application is written as 
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For a special case where all the independent tasks in the set Ti are identical, (i.e., 

,:1 ,, CPUdedCPUded
ji ttmj =≤≤∀ IOdedIOded
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pagededpageded

j tttt ,,,, , == ), Eq. (2) can be rewritten as 

follows 
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The goal of the proposed load-balancing algorithm is to reduce the average slowdown of all 

parallel applications submitted to a cluster. This can, in turn, minimize the average response time 

of the running applications. Specifically, our algorithm aims at optimizing the following average 

slowdown of a sequence of parallel applications (e.g., T1, T2, …, Tq) executed on a cluster 

                 minimize ( )∑ ∑ ∑
= = =

⎟
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⎠

⎞
⎜
⎜
⎝

⎛

++
++

==
q

i

q

i

m

j
IOded

j
pageded

j
CPUded

j

IO
j

page
j

CPU
j

i
i

i

ttt

ttt

mq
Tsd

q
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1 1 1
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111
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3.3 A load-balancing algorithm for I/O-intensive workloads 

Now we present a load-balancing algorithm (hereinafter referred to as IOLB) for a wide 

variety of workload conditions including I/O-intensive, CPU-intensive, and memory-intensive, 

workloads. The objective of the proposed IOLB algorithm is to balance the load of three types of 

resources across all nodes in a cluster such that the average slowdown of submitted parallel jobs 

is minimized. Since the goal of this study is to analytically evaluate the performance of the IOLB 

algorithm, we are focused on a remote execution mechanism in which a task can be running on a 

remote node where it started execution. Thus, preemptive migrations of tasks are not supported 

in the IOLB algorithm. Nevertheless, the IOLB load-balancing algorithm can be readily 

integrated with a preemptive migration mechanism, thereby providing further performance 

improvement. Recently, we studied a load-balancing algorithm with preemptive migration, and 

details of this algorithm can be found in [22]. 

To facilitate the description of the IOLB algorithm, we first introduce the following three load 

indices with respect to CPU, memory, and I/O resources. The CPU load index CPU
iL of node i is 

defined as the sum of remaining CPU lifetimes of tasks running on the node. Thus, CPU
iL  is 

expressed as ∑
∈

=
ij N

j
CPU
i rL

τ
, where rj is the expected remaining CPU lifetime of task τi. The 
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memory load index page
iL of node i is defined as the sum of page fault processing times page

jt of 

tasks on node i. Hence, we have ∑
∈

=
ij N

page
j

page
i tL

τ
. Similarly, the I/O load index IO

iL of node i is 

the sum of I/O processing times of tasks on the node. Therefore, the I/O load index can be 

written as 

                                                   ( ),,∑
∈

⋅⋅=
ij N

IOjjj
IO
i trL

τ
λ                                                            (5) 

where tj,IO is task τj’s the I/O processing time of each disk request. The value of tj,IO in Eq. (5) is 

computed by 

                                                         ,,
disk

i
rotseekIOi B

d
ttt ++=                                                        (6) 

where tseek and trot are the seek time and rotational latency, and 
disk

i

B

d
is the data transfer time 

depending on data size di and disk bandwidth Bdisk. 

In light of the three load indices described above, we propose a new concept of load 

imbalance factor to quantify the amount of imbalance in a cluster. The load imbalance factor of a 

resource is a product of the fraction of time spent on using the resource in a cluster and the 

discrepancy between the maximum and the minimum loads of the resource among all nodes in 

the cluster. More specifically, the load imbalance factors for CPU, memory, and I/O resources 

can be written as Eq. (7)-(9). 
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where ∑
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1
. On the right-hand sides of Eqs. 

(7)-(9), the first terms, which reflect the importance of the three types of resources, are the 

fractions of times spent on computing, page fault handling, and disk I/O processing, respectively. 

The second terms on the right-hand side of Eqs. (7)-(9) are used to measure the amount of 

imbalance in the three resources. 

The load imbalance factor LIF of a cluster can be derived from Eqs. (7)-(9) as the sum of the 

load imbalance factors of the three resource types. Thus, we have 

                                                 IOpageCPU LIFLIFLIFLIF ++= .                                                 (10) 

Now we are positioned to delineate the IOLB load-balancing algorithm, of which the 

pseudocode is shown in Fig. 1. Given an embarrassing parallel application with a set T of 

independent tasks submitted to a local node Ni of a cluster, the IOLB algorithm make an effort to 

balance workload of the cluster’s resources by allocating each task in T to a computational node 

such that the task’s expected response time (also known as turn around time) is minimized. In 

other words, IOLB aims to redistribute load among all the node in a cluster, thereby allowing the 

submitted parallel application to efficiently run on the cluster.  

For each task jτ  in set T, the IOLB algorithm repeatedly performs Steps 2-12 described as 
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follows. First, the response time i
jR  of jτ  on the local node iN  is approximated by Step 2. The 

estimation of i
jR  is important because it will be used to justify whether a remote execution of jτ  

is worthwhile (see Steps 6, 11, and 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: IO-Aware Load Balancing (IOLB) 
Input: A local node Ni, a job with task set T submitted to Ni. 
1. for (each task Tj ∈τ ) do 

2.     calculate the response time i
jR  of jτ  on node iN ; 

3.     if 0, >⋅⋅ IOjjj tc λ  and ( )IOpageCPUIO LIFLIFLIFLIF ,,max=  and ( )IO
a

n

a

IO
i LL

1
max

=
=  then 

4.         choose node Nk such that ( )IO
a

n

a

IO
k LL

1
min

=
= ; 

5.         calculate the response time k
jR  of jτ  on node kN ;         

6.         if  ( ) 2,,
IO
k

IO
iIOjjjIOjjj LLtctc −+⋅⋅<⋅⋅ λλ  and eRR k

j
i
j +>  then 

7.             dispatch task jτ  to node kN  and remotely execute jτ  on kN ; 

8.         else locally execute jτ  on iN ; 

9.     else if 0>page
jt  and CPUpage LIFLIF >  and ( )page

a

n

a

page
i LL

1
max

=
=  then 

10.               choose node Nk such that ( )page
a

n

a

page
k LL

1
min

=
= ; 

11.               calculate the response time k
jR  of jτ  on node kN ;         

12.               if  ( ) 2page
k

page
i

page
j

page
j LLtt −+<  and eRR k

j
i
j +>  then 

13.                   dispatch task jτ  to node kN  and remotely execute jτ  on kN ; 

14.               else locally execute jτ  on iN ; 

15.           else if ( )CPU
a

n

a

CPU
i LL

1
max

=
=  then 

16.                      choose node Nk such that ( )CPU
a

n

a

CPU
k LL

1
min

=
= ; 

17.                      calculate the response time k
jR  of jτ  on node kN ;         

18.                      if  ( ) 2CPU
k

CPU
ijj LLrr −+<  and eRR k

j
i
j +>  then 

19.                          dispatch task jτ  to node kN  and remotely execute jτ  on kN ; 

20.                      else locally execute jτ  on iN ; 

21.   Update the load status; 
22.end for 

    Fig. 1. Pseudocode of the IOLB load-balancing algorithm. 
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Second, Step 3 is responsible for initiating the process of balancing workload of disk I/O 

resources. Specifically, Steps 4-7 are invoked to balance the load of I/O resources in the case that 

all the following three conditions hold in Step 3. Condition 1 (i.e., 0, >⋅⋅ IOjjj tc λ ) states that 

the I/O load of jτ  must be greater than zero (see Theorems 2 and 3). Condition 2 (i.e., 

( )IOpageCPUIO LIFLIFLIFLIF ,,max= ) says that the load imbalance factor of disk I/O must be 

higher than those CPU and memory resources. Condition 3 (i.e., ( )IO
a

n

a

IO
i LL

1
max

=
= ) means that the 

I/O load of the local node is the highest among those of all the nodes.  

Third, if it becomes a necessity to balance I/O load, then Step 4 chooses the most 

approximate remote node kN  with the lightest load with respect to disk I/O, followed by 

estimating the response time k
jR  of jτ  on the candidate node kN . Step 6 is of critical importance 

to ensure performance improvement achieved by having jτ  executed remotely. More 

specifically, before Step 7 dispatches jτ  and has it remotely executed on kN , Step 6 must make 

sure that the following two conditions are satisfied. Condition 1 (i.e., <⋅⋅ IOjjj tc ,λ  

( ) 2,
IO
k

IO
iIOjjj LLtc −+⋅⋅ λ ) guarantees that the load discrepancy between IO

iL  and IO
kL  is 

reduced. Condition 2 (i.e., eRR k
j

i
j +> , where e is the remote execution overhead) ensures that 

the expected response time of jτ  on the selected remote node kN  is less than the response time 

of jτ  on the local node iN . In the case that the remote execution of jτ  is not beneficial, Step 8 

has jτ  locally executed on iN . 

Fourth, Step 9 decides if the following three conditions are satisfied before a meaningful 
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remote execution is performed. Condition 1 (i.e., 0>page
jt ) says that jτ  must exhibit page fault 

behavior (see Theorems 5 and 6). Page fault behaviors occur when the memory space required 

by running tasks exceeds the amount of available memory space. Condition 2 (i.e., 

CPUpage LIFLIF > ) indicates that the load imbalance factor of memory resources must be higher 

than that CPU resources. Condition 3 (i.e., ( )page
a

n

a

page
i LL

1
max

=
= ) states that the load of page-fault 

processing in the local node is the highest among those of all the nodes. If the above conditions 

hold, Steps 10-14 aim to balance the load of memory resources by transferring task jτ  from the 

overloaded node to a remote node that are lightly loaded with respect to memory. Step 12 is 

carried out to guarantee that the remote execution of jτ  leads to performance improvement.  

 Fifth, if there is no way of balancing the disk I/O and memory resources in the cluster, Steps 

15-20 attempt to evenly distribute the CPU load. When the local node is overloaded with respect 

to CPU resource (See Step 15), task jτ  is dispatched to and executed by a remote node with the 

lightest CPU load. Step 19 makes the remote execution possible if such a remote execution is 

beneficial (see Step 18).  

Last, Step 21 maintains updated load information that is broadcasted to the local node and 

other nodes in the cluster. 

The following theorem proves the time complexity of the IOLB load-balancing algorithm.  

Theorem 1. Given a cluster and a parallel application submitted to the cluster, the time 

complexity of the IOLB algorithm is O(nm), where n is the number of nodes in the cluster, m is 

the number of tasks in the application, and the values of n and m are much larger than 2. 

Proof. It takes O(1) time to compute the response time of a task on a node. The time complexity 
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of determining that a local node is overly loaded is O(n), since there are n nodes in the cluster 

(see Step 3). Step 4 takes O(n) time to choose the most appropriate node with the minimal load. 

Steps 6 and 7 take O(1) time. Hence, the time complexity of balancing disk I/O resources is 

O(2+2n) (see Steps 7-12). Similarly, the time complexities of balancing memory and CPU 

resources are both O(2+2n). Since there are m tasks in the parallel application, the time 

complexity of the IOLB algorithm is O(2+2n)O(m) = O(2(1+n)m). The values of n and m in 

most cases are much larger than 2 and, therefore, the time complexity becomes O(nm).               

4. An Analytical Comparison 

In this section, we first prove important properties of the IOLB algorithms (see Lemmas 1-2, 

Theorems 2-6). Next, we qualitatively compare IOLB with two existing load-balancing 

algorithms (see Theorems 7 and 9). 

4.1 Properties 

Theorem 2. Let jc , jλ , and IOjt ,  be the execution time, I/O arrival rate of task jτ , and the I/O 

processing time of each disk request. If the value of IOjjj tc ,⋅⋅ λ  is zero, then the allocation of jτ  

has no impact on balancing disk I/O resources. 

Proof. Before the allocation of jτ , the amount of imbalance with respect to disk I/O resources 

can be measured by ∑
=

−
n

i

IO
i

IO
i LL

1

, where ∑
=

=
n

i

IO
i

IO
i L

n
L

1

1
. Without loss of generality, we assume 

jτ  is allocated to Nk, and prior to the arrival of jτ  the I/O load of Nk is ( )∑
∈

⋅⋅=
ij N

IOjjj
IO
i trL

τ
λ ,  

(see Eq. 5). The disk I/O load index after dispatching task jτ  to node Nk becomes 
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( )∑
∈

⋅⋅+⋅⋅=′
ij N

IOjjjIOjjj
IO

i trtcL
τ

λλ ,, . Since the value of IOjjj tc ,⋅⋅ λ  is zero, we have 

( ) ( ) .,,,
IO
i

N
IOjjj

N
IOjjjIOjjj

IO
i LtrtrtcL

ijij

=⋅⋅=⋅⋅+⋅⋅=′ ∑∑
∈∈ ττ

λλλ  Thus, the values of IO
iL  and IO

iL′  

are identical, meaning that the allocation of jτ  has no impact on balancing disk I/O resources.   

Corollary 1. If the I/O arrival rate jλ of task jτ  is zero, then the allocation of jτ  has no impact 

on balancing disk I/O resources. 

Proof. The value of IOjjj tc ,⋅⋅ λ  becomes zero if the I/O arrival rate jλ of task jτ  is zero. Then, 

the proof is immediate from Theorem 1.                                                                                          

Theorem 3. Suppose there is a task jτ  (initially submitted to node Ni) to be allocated in a cluster; 

the disk I/O processing time of jτ  is IOjjj tc ,⋅⋅ λ . Then 0, >⋅⋅ IOjjj tc λ  is a necessary condition 

for allocating task jτ  in a way to balance load with respect to disk I/O. 

Proof. To prove the correctness of Theorem 3, we have to show that allocating jτ  in a way to 

balance load in disk I/O that IOjjj tc ,⋅⋅ λ  is larger than 0. This can be proved by contradiction 

and, hence, let us assume that page
jt  equals to 0. Since 0, =⋅⋅ IOjjj tc λ , Theorem 2 shows that the 

allocation of jτ  has no impact on balancing disk I/O resources, meaning that there is no way of 

allocating jτ  such that the imbalance load in disk I/O is alleviated. Hence, we obtain the 

contradiction that completes the proof.                                                                                            

Theorem 4. Let page
jt  and memjL ,  be the page fault processing time and memory requirement of 

task jτ . Let mem
iL  denote the accumulation of the memory space allocated to tasks running on the 
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node Ni. Thus, we have ∑
∈

=
iNj

memj
mem
i LL , . The page fault processing time page

jt  is computed as,  

                              

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
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rotseekj

i

Nj
memj
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i
mem
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page
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B

d
ttr

M

L

p

ML

t
i

                           (11) 

where pi is the page fault rate, Mi is the total memory space available on node Ni, rj is the 

expected remaining CPU lifetime, tseek and trot are the seek time and rotational latency, paged  is 

the page size, and 
disk

page

B

d
is the data transfer time. 

Proof. First, we have to prove that page
jt  is zero if i

mem
i ML ≤ . When the total available memory 

space Mi can meet the memory demands of tasks running on the ith node (i.e., i
mem
i ML < ), no 

page fault occurs in the node. In this case jτ exhibits no page fault behavior, and the page fault 

processing time page
jt  is zero.  

Second, let us prove that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⋅⋅⋅=

∑
∈

disk

page
rotseekj

i

Nj
memj

i
page
j B

d
ttr

M

L

pt i

,

 if i
mem
i ML > .  If mem

iL  

is larger than iM , then the node encounters page faults. The number of page faults jπ  is 

proportional to (1) the page fault rate pi, (2) the accumulated memory space mem
iL  allocated to all 

the running tasks on Ni, and (3) the expected remaining CPU lifetime rj. Furthermore, jπ  is 

inversely proportional to the total available memory space Mi. Therefore, the number of page 

faults jπ  of task jτ  can be written as j
i

mem
i

jj r
M

L
p ⋅⋅=π . The I/O processing time µ of each page 

fault is the summation of the seek time tseek, the rotational latency trot, and the data transfer time 
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disk

page

B

d
. Thus, the I/O processing time µ is expressed by 

disk

page
rotseek B

d
tt ++=µ . Hence, the page 

fault processing time page
jt  is written as follows if i

mem
i ML >  

                                       

,        
,
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r
M

L
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µµπ

 

which completes the proof of the theorem 3.                                                                                   

Theorem 5. Let jτ  denote a task to be allocated in a cluster. For each node Ni in a cluster, if the 

total available memory space Mi is able to meet the memory demands of jτ  and tasks running on 

Ni (i.e., i
mem
imemj MLL ≤+, ), then the allocation of task jτ  has no impact on balancing memory 

resources. 

Proof. It is proved that i
mem
i ML ≤ , since we have i

mem
imemj MLL ≤+,  for each node Ni in the 

cluster. In light of Theorem 3, we can prove that before the allocation of jτ , it is true that 

.0: =∈∀ page
kik tNτ  Hence, we have .0:1 ∑

∈
==≤≤∀

ik N

page
k

page
i tLni

τ
 The amount of imbalance 

with respect to memory resources can be measured by ∑
=

−
n

i

page
i

page
i LL

1

, where 

∑
=

=
n

i

page
i

page
i L

n
L

1

1
. Prior to the allocation of jτ , we have .0

1

=−∑
=

n

i

page
i

page
i LL  Similarly, after 

the allocation of jτ , we have 0:1 ∑
∈

==≤≤∀
ik N

page
k

page
i tLni

τ
, because i

mem
imemj MLL ≤+, . 

Consequently, the value of ∑
=

−
n

i

page
i

page
i LL

1

is still zero after the allocation of jτ , meaning that 
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the allocation of jτ  has no impact on balancing memory resources.                                               

 Before proceed to the proof of a necessary condition for allocating tasks such that the global 

usage of memory resources in a cluster is improved, we first prove the following two lemmas. 

Lemma 1. Suppose there is a task jτ  (initially submitted to node Ni) to be allocated in a cluster; 

the page fault processing time of jτ  on iN  is page
jt . If the page fault processing time page

jt  of jτ  

on iN  equals to zero, then the page fault processing times of all tasks running on iN  equal to 

zero. More formally, we have .0:0 =∈∀→= page
kik

page
j tNt τ  

Proof. Let mem
iL  be the accumulative memory space allocated to tasks running on iN  prior to the 

allocation of jτ . Since page
jt  equals to zero, we show that the sum of memjL ,  and mem

iL  is smaller 

than the total available memory space in Ni (i.e., i
mem
imemj MLL ≤+, ). Hence, we have 

i
mem
i ML ≤ , meaning that the page fault processing time of each task running on iN  is zero (i.e., 

0: =∈∀ page
kik tNτ ). Hence, the proof.                                                                                           

Lemma 2. Suppose there is a task jτ  (initially submitted to node Ni) to be allocated in a cluster; 

the page fault processing time of jτ  on iN  is page
jt . If the page fault processing time page

jt  of jτ  

on iN  equals to zero, then the memory load index page
iL of node i equals to zero (i.e., page

iL  = 0). 

Proof. The memory load index page
iL  is measured by ∑

∈
=

ik N

page
k

page
i tL

τ
. As per Lemma 1, it is 

proved that the page fault processing time of all tasks running on iN  are zero (i.e., 

0: =∈∀ page
kik tNτ ). Therefore, we have 0== ∑

∈ ik N

page
k

page
i tL

τ
.                                                      
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Theorem 6. Suppose there is a task jτ  (initially submitted to node Ni) to be allocated in a cluster; 

the page fault processing time of jτ  on iN  is page
jt . Then 0>page

jt  is a necessary condition for 

allocating task jτ  in a way to balance load in terms of memory resources. 

Proof. The proof of Theorem 5 is immediate from Lemma 2. To prove the correctness of 

Theorem 5, we have to show that allocating jτ  in a way to balance load in memory resource 

implies that page
jt  is larger than 0. This can be proved by contradiction and, hence, let us assume 

that page
jt  equals to 0. Since 0=page

jt , Lemma 2 shows that the load index with respect to 

memory resource is 0, implying that there is no way of allocating jτ  such that load in memory 

resource is balanced. Hence, we obtain the contradiction that completes the proof.                       

4.2 A qualitative comparison 

Now we qualitatively compare the IOLB algorithm with two existing scheduling approaches: 

the CPU-based load-balancing algorithm (hereinafter referred to as CLB) [12] and the memory-

based load-balancing algorithm (hereinafter referred to as MLB) [32]. The CLB load-balancing 

policy strives to improve global usages of CPU resources by balancing CPU load across all 

nodes in a cluster. The MLB load-balancing policy is conducive to balancing workload with 

respect to memory resources in a cluster when the cluster experiences a large number of page 

faults due to insufficient memory space. Both CLB and MLB are respectively concerned with 

effective usages of global CPU and memory resources in clusters without addressing the issue of 

balancing disk I/O resources. Consequently, the existing load-balancing approaches become 

inadequate for mixed workloads with CPU-, memory-, and I/O-intensive applications. 

Theorem 7. Suppose there is a task jτ  (initially submitted to node i) to be allocated in a cluster; 
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node k has the lightest load in disk I/O (i.e., ( )IO
a

n

a

IO
k LL

1
min

=
= ). If the following five conditions are 

satisfied, then the IOLB algorithm outperforms the CLB and MLB algorithms. 

(1) 0, >⋅⋅ IOjjj tc λ , (2) ( )IOpageCPUIO LIFLIFLIFLIF ,,max= , (3) ( )IO
a

n

a

IO
i LL

1
max

=
= , (4) 

( ) 2,,
IO
k

IO
iIOjjjIOjjj LLtctc −+⋅⋅<⋅⋅ λλ , and (5) eRR k

j
i
j +> . 

Proof. First, theorem 3 shows that 0, >⋅⋅ IOjjj tc λ  is a necessary condition for balancing disk 

I/O load. Second, ( )IOpageCPUIO LIFLIFLIFLIF ,,max=  indicates that balancing disk I/O load can 

achieve more performance improvement than balancing memory or CPU resources. Third, 

( )IO
a

n

a

IO
i LL

1
max

=
=  means that the local node is overly loaded in terms of disk I/O. Since both the 

CLB and MLB algorithms do not take disk I/O load into account, leaving disk I/O resources 

severely imbalanced under conditions (1), (2), and (3).  the suffer significant performance drop 

under I/O-intensive workload due to the imbalance of I/O load. Furthermore, condition (4) 

guarantees that allocating task jτ to node k with the lightest disk I/O load can efficiently alleviate 

the imbalance problem, whereas condition (5) ensures that the expected response time of jτ  on 

the candidate remote node k is less than the response time of jτ  on the local node i. 

Consequently, if the above conditions hold, then the IOLB algorithm outperforms the CLB and 

MLB algorithms.                                                                                                                              

Theorem 8. If each task jτ  running on a cluster imposes no load on disk resources (i.e., 

IOjjj tc ,⋅⋅ λ  = 0), then the IOLB algorithm degrades to the MLB algorithm. 

Proof. If the value of IOjjj tc ,⋅⋅ λ  for each task jτ  is 0, the first condition in Step 3 in the IOLB 
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algorithm does not hold, then Steps 4-8 used to balance disk I/O load across disks in the cluster 

are not performed by IOLB. In this case the IOLB algorithm strives to balance load with respect 

to memory resources if the memory load exceeds the amount of available memory space. This 

means that the behavior of IOLB is the same as that of MLB if the value of IOjjj tc ,⋅⋅ λ  for each 

task jτ  is 0. Hence, in case that each task jτ  running on a cluster imposes no load on disk 

resources (i.e., IOjjj tc ,⋅⋅ λ  = 0), the performance of IOLB and MLB are identical. This 

completes the proof of Theorem 5.                                                                                                   

Theorem 9. If each task jτ  running on a cluster imposes no load on disk and memory resources 

(i.e., IOjjj tc ,⋅⋅ λ  = 0 and 0=page
jt ), then the IOLB algorithm degrades to the CLB algorithm. 

Proof. First, if the value of IOjjj tc ,⋅⋅ λ  for each task jτ  is 0, the first condition in Step 3 in the 

IOLB algorithm does not hold, then Steps 4-8 used to balance disk I/O load across disks in the 

cluster are not performed by IOLB. Second, if the page fault processing time page
jt  of jτ  is zero, 

Steps 9-14 are not invoked to improve the global usage of memory resources in the cluster. In 

this case the IOLB algorithm makes an effort to evenly distribute the CPU load. Therefore, the 

behavior of IOLB is the same as that of CLB. This completes the proof of Theorem 8.                 

5. Experimental Results 

In this section we quantitatively compare the IOLB algorithm with the two existing load-

balancing approaches (see Section 4.2): CLB and MLB. We conducted trace-driven simulations 

using a simulated cluster with 32 nodes providing a time-sharing environment. A similar 

simulation environment was delineated in [23]. The traces used in our experiments were 
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extrapolated from those traces reported in [12][32]. The number of tasks of each parallel job in 

traces is selected randomly with a uniform distribution between 2 to 32. CPU times and memory 

demands of jobs are specified in the traces. We assume that the disk request arrival rate of each 

job is generated randomly with a uniform distribution. This assumption is reasonable because the 

mean disk request arrival rate can be manipulated and examined as a system parameter. In our 

empirical studies, we varied the mean disk request arrival rate from 0.8 to 1.25 No./ms. The data 

size of disk requests in each job is selected randomly based on a Gamma distribution with the 

mean size of 256Kbyte. The performance metric by which we evaluate system performance is 

mean slowdown of all the jobs in a trace.  

         Table 1. Mean slowdowns of parallel jobs under the CLB, MLB, and IOLB schemes. 

   λ 0.80 0.85 0.90 0.95 1.0 1.05 1.10 1.15 1.20 1.25 
CLB 62 74 86 99 113 132 149 168 187 210 
MLB 62 75 87 100 114 132 149 171 192 218 
IOLB 47 61 73 80 94 101 117 130 151 172 

The number of nodes in the simulated cluster is 32; number of tasks in each job is 
selected randomly with a uniform distribution between 2 to 32; disk request arrival rate 
is varied from 0.8 to 1.25 No./ms; disk request size is chosen randomly with a Gamma 
distribution with mean size of 256Kbyte; the page fault rate is set to 0.5 No./ms; the page 
size is 4KByte. 

Table 1 shows impacts of the disk request arrival rate on the mean slowdowns of submitted 

parallel jobs under the three evaluated load-balancing schemes. It is intuitive that regardless of 

the load-balancing approaches, the slowdowns of the parallel jobs increase with the I/O load 

goes up. This is because high disk request arrival rates leads to high disk I/O loads, which in turn 

cause long I/O processing time and long waiting time on disk I/O resources. More importantly, 

the experimental results reveal that the IOLB algorithm is superior to the CLB and MLB load-

balancing schemes. These results indicate that the existing load-balancing policies are inadequate 

for I/O-intensive workloads. The performance improvements can be attributed to the fact that 
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CLB and MLB do not address the issue of balancing disk I/O load under I/O-intensive workload 

conditions.  

      Table 2. Mean slowdowns of parallel jobs under the CLB, MLB, and IOLB schemes.  

   page fault rate  2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 
    CLB 22 23 23 24 24 24 24 27 27 28 
    MLB 8.5 8.6 8.8 10.8 10.9 11.1 13 13.5 14.2 14.3 
    IOLB 8.5 8.5 8.7 10.8 10.9 11 13.1 13.5 14.2 14 

Disk request arrival rate is fixed to 0.01 No./ms; the page fault rate varies from 2.6 to 3.5 
No./ms; the page size is 4KByte. 

Recall that Theorem 8 proves that if all parallel jobs running on a cluster impose no load on 

disk I/O resources, then the performance of IOLB is identical to that of MLB. Now we 

experimentally validate the correctness of Theorem 8 using memory-intensive workloads. To 

achieve this goal, we varied the page fault rate from 2.6 to 3.5 No./ms with an increment of 0.1 

No./ms. The disk request arrival rate is fixed to a low value - 0.01 No./ms.  

Table 2 shows performance impacts of the page fault rate on the mean slowdowns of parallel 

jobs running on the simulated cluster. For all the three examined load-balancing schemes, results 

in Table 2 indicate that MLB and IOLB outperform CLB under memory-intensive workloads. 

These performance improvements are possible because MLB and IOLB are concerned with the 

global memory usage in the cluster by balancing memory resources. The improved memory 

usage in turn significantly reduces time spent in page fault processing. This trend becomes more 

pronounced when the page fault rate is increased.  

6. Conclusions 

Most existing load balancing approaches are inadequate for I/O-intensive workloads due to 

imbalance of I/O loads and low usage of global disk resources. To address this issue, in this 

paper we proposed a new load-balancing algorithm (referred to as IOLB) for clusters. The 
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proposed load-balancing algorithm aims to achieve the effective usage of global disk resources 

in a cluster. This can, in turn, minimize the average slowdown of all parallel jobs running on a 

cluster and reduce the average response time of the jobs. In addition to balancing loads in disk 

resources under I/O-intensive workloads, the IOLB algorithm improves the CPU and memory 

utilization under CPU- and memory-intensive workload conditions. Consequently, IOLB is able 

to maintain the same level of performance as two existing CPU- and memory-aware load-

balancing schemes. We conducted trace-driven simulations where traces are composed of 

parallel applications with a wide variety of I/O demands. Empirical results demonstratively show 

that compared with the two existing load-balancing approaches, the IOLB algorithm significantly 

improves the resource utilization of a cluster under I/O-intensive workloads. When the 

workloads become CPU-intensive or memory-intensive in nature, IOLB gracefully degrades 

towards the existing load-balancing schemes. 

Future studies can be performed in the following directions. First, we will evaluate the 

performance of IOLB on a large-scale cluster with more than 1000 nodes. Second, in this study 

we assume that network communication cost is negligible. Therefore, we intend to further extend 

our load-balancing algorithm in a way to balance load in network resources. Third, a 

heterogeneity-aware load-balancing algorithm will be investigated to deal with parallel jobs 

running on heterogeneous clusters, in which nodes have various processing capabilities. 
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