Data Center Specific Thermal and Energy Saving Techniques

Tausif Muzaffar and Xiao Qin

Department of Computer Science and Software Engineering Auburn University

SAMUEL GINN College of Engineering

UNIVERSITY

Big Data Big Data is growing fast Structured and Annual growth rate unstructured data The digital universe will grow to In social media alone. every 60 seconds 2.7_{ZB} in 2012, up new blog posts are 5% published, and from 2011, toward nearly 8zb tweets are sent³ by 2015³

Data Centers

- In 2013, there are over 700 million square feet of data centers in united states
- Data centers account for 1.2% of all data power consumed in United States

Part 1 THERMAL MODEL

Data Center Power Usage

Thermal Recirculation

Thermal Recirculation Management

- Sensor Monitoring
- Therman Simulations

Prior Thermal Models

- Some are based on power rather than workload
- Ignore I/O heavy applications
- Requires some sensor support
- Not easily ported to different platforms

Research Goal

iTad: making a simple and practical way to <u>estimate the temperature</u> of a data node based on

- CPU Utilization
- I/O Utilization
- Average Conditions of a Data Center

Our Focus

- To focus on each server separately and find the outlet temperature
- To estimate inlet temperature based on that outlet temperature

Server Model

- Three factors affect the output temperature of a single node
 - Inlet Temperature
 - CPU Workload
 - I/O Workload

Server Model Equations

$$Q_i = pfc_p(T_{out_i} - T_{in})$$
$$T_{out_i} = \frac{Q_i}{pfc_p} + T_{in_i}$$

$$Q_i = h_r A \triangle T_i$$

(1) Convective Heat Transfer of Server

> (2) Radiant Heat Transfer of Server

 $\Delta T_{i} = \Delta T_{workload_{i}}$ $+ (T_{out_{idle}} - T_{in_{idle}})$

(3) Change in temperature

Server Model Equations

$$h_r A \triangle T_i = pfc_p (T_{out_i} - T_{in_i})$$
$$Z = \frac{h_r A}{pfc_p} = \frac{T_{out_i} - T_{in_i}}{\triangle T_i}$$
$$T_{out_i} = Z \triangle T_i + T_{in_i}$$

(4) Set Radiant and Convection equal to each other and solve for Tout

Workload Model

To assess how the CPU and I/O effect workload

Inlet Model

 After the first run we need to update the inlet temperature to do that we developed this model

Determining Parameters

- To implement this model we need to get the following constants
 - Maximum I/O and CPU can affect the outlet temperature
 - Z which is a collection of constants

Gathering Values

- We thermometers to gather inlet and outlet temperatures
- We used infrared thermometers to get the surface temperature

Test Machines

AUDUKN

Data Capture

• We gathered surface temperature and stored the values like so

29.9 CPU: 00002% 30.6 30.6 32.9 32.3 32 32.6 I/O: 0689% Avg: 35.2 30.1 31.8 35.1 34.1 31 34.2 26.9 40.4 49.7 40.2 39.4 57.8 36.7 36.1 33.8 30.1 29.2 30 29.2 30.1 29.4 35 29.8 29.8 30.4 31 31.2 31.4

29.9

Determining Constants

- We observed the rate in changed with CPU and I/O
- We used the values to calculate Z

$$T_{out_i} = Z \triangle T_i + T_{in_i}$$

Verification

 After getting the constants we ran a live test where we had a computer run tasks and we measured actual outlet temperatures vs. model outlet temperature

Implementations

MPI using iTad to decisions

```
if(iTad() < 29)
Ł
    if (mvid != 0)
       MPI Recv(&number, 1, MPI INT, myid-1, 0, MPI COMM WORLD, MPI STATUS IGNORE);
    } else {
        MPI Recv(&number, 1, MPI INT, world size, 0, MPI COMM WORLD, MPI STATUS IGNORE);
} else {
    while(iTad() > 29){
        sleep(10);
    if(myid != 0)
       MPI Recv(&number, 1, MPI INT, myid-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    } else {
        MPI Recv(&number, 1, MPI INT, world size, 0, MPI COMM WORLD, MPI STATUS IGNORE);
```

AUBURN

Implementations

We added iTad to Hadoop Heartbeat

SAMUEL GINN College of Engineering

HADOOP DISK ENERGY EFFICIENCY

Part 2

Disk Energy

- Disk drives varies in energy
- Disks can be a significant part of a server

Scaling Server Disk #

• With every added disk, hard drive energy plays a bigger role

SAMUEL GINN College of Engineering

Disk Dynamic Power

- Disks tend to have different consumption modes
 - Active
 - Idle
 - Standby

Hadoop Overview

- Parallel Processing
 - Map Reduce
- Distributed Data

Hadoop Benefits

- Industry Standard
- Large Research Community
- I/O Heavy

SAMUEL GINN College of Engineering

Hadoop Architecture

- Hadoop creates multiple replicas
- Metadata is managed on name node
- Nodes can have multiple disks

Research Goal

NAP – E(N)ergy (A)ware Disks for Hadoo(P)

- Built for high energy efficiency
- Designed for Hadoop clusters

Setup

- 3-node cluster
- Each node identical
 - 4 disks
 - -4gb RAM
- Cloudera Hadoop
- Power meter

Optimizations

- We group disks together
 I/O Limits
 - More time for disks to sleep

Naïve (Reactive) Algorithm

 Simply turn off all drive until needed

Comparing the Algorithms

Reactive

Predictive

- Reactive does worse than proactive
- Time increase low

Block Size

- Effects how HDFS stores files
- Effects how fast it processes

File Size

- Effects how blocks are made
- Effect data locality

Map vs. Reduce

- Map is more I/O intensive usually
- Reduce was usually shorter

Map Heavy vs. Reduce Heavy

- Map Heavy is more I/O intensive
- Map and Reduce Heavy gets no gain

PRE-BUD Model

 Prefetching Energy-Efficient Parallel I/O Systems with buffer Disk

 $E_S(\operatorname{block}(T_{ij})) = E_{WOP} - (E_{WPF} + E_{BUD}).$

$$E_{PF}(P, D) = E_{R,PF}(P, D) + E_{W,PF}(P, D)$$

= $\sum_{i=1}^{m} \sum_{k=1}^{q} \left(z_{k,i} \cdot P_{A,i} \cdot \left(t_{SK,k,i} + t_{RT,k,i} + \frac{s_{k,i}}{B_{R,i}} \right) \right)$
+ $\sum_{i=1}^{m} \sum_{k=1}^{q} \left(z_{k,i} \cdot P_{A,0} \cdot \left(t_{SK,k,0} + t_{RT,k,0} + \frac{s_{k,i}}{B_{W,0}} \right) \right)$

NAP Energy Model

- Find added energy by disks
- Group can either be standby or active
- Read and writes assumed same

$$E_{total} = E_{server} + E_{disks}$$

$$E_{disks} = \sum_{i=1}^{D/N} \frac{N}{D} E_{group} \sum_{i*\frac{D}{N}} + \sum_{i=1}^{D} \frac{D-N}{D} E_{standby_i} + E_{transitions_i}$$
$$E_{group_n} = \sum_{i=n}^{N+n} E_{active_i}$$
48

UNIVERSITY Samuel Ginn College of Engineering

Energy Saving Simulation

AUBURN

Summary

• iTad: a simple and practical way to estimate the temperature of a data node

 NAP: an energy-saving technique for disks in Hadoop clusters

