
13-1

13.1  �Introduction

Since the development of EBP—error backpropagation—algorithm for training neural networks, many
attempts were made to improve the learning process. There are some well-known methods like momen-
tum or variable learning rate and there are less known methods which significantly accelerate learning
rate [WT93,AW95,WCM99,W09,WH10]. The recently developed NBN (neuron-by-neuron) algorithm
[WCHK07,WCKD08,YW09] is very efficient for neural network training. Comparing with the well-
known Levenberg–Marquardt algorithm (introduced in Chapter 12) [L44,M63], the NBN algorithm
has several advantages: (1) the ability to handle arbitrarily connected neural networks; (2) forward-only
computation (without backpropagation process); and (3) direct computation of quasi-Hessian matrix
(no need to compute and store Jacobian matrix). This chapter is organized around the three advantages
of the NBN algorithm.

13.2  �Computational Fundamentals

Before the derivation, let us introduce some commonly used indices in this chapter:

•	 p is the index of patterns, from 1 to np, where np is the number of patterns.
•	 m is the index of outputs, from 1 to no, where no is the number of outputs.

13
NBN Algorithm

13.1	 Introduction... 13-1
13.2	 Computational Fundamentals... 13-1

Definition of Basic Concepts in Neural Network Training  • 
Jacobian Matrix Computation

13.3	 Training Arbitrarily Connected Neural Networks....................13-5
Importance of Training Arbitrarily Connected Neural
Networks  •  Creation of Jacobian Matrix for Arbitrarily Connected
Neural Networks  •  Solve Problems with Arbitrarily Connected
Neural Networks

13.4	 Forward-Only Computation..13-9
Derivation  •  Calculation of δ Matrix for FCC
Architectures  •  Training Arbitrarily Connected Neural
Networks  •  Experimental Results

13.5	 Direct Computation of Quasi-Hessian Matrix
and Gradient Vector.. 13-17
Memory Limitation in Levenberg–Marquardt
Algorithm  •  Review of Matrix Algebra  •  Quasi-Hessian Matrix
Computation  •  Gradient Vector Computation  •  Jacobian Row
Computation  •  Comparison on Memory and Time Consumption

13.6	 Conclusion..13-22
References...13-23

Bogdan M.
Wilamoswki
Auburn University

Hao Yu
Auburn University

Nicholas Cotton
Auburn University

K10149_C013.indd 1 9/3/2010 3:01:01 PM

13-2	 Intelligent Systems

•	 j and k are the indices of neurons, from 1 to nn, where nn is the number of neurons.
•	 i is the index of neuron inputs, from 1 to ni, where ni is the number of inputs and it may vary

for different neurons.

Other indices will be explained in related places.
Sum square error (SSE) E is defined to evaluate the training process. For all patterns and outputs, it

is calculated by

	

E
m

no

p

np

=
==

∑∑12 2ep m,
11 	

(13.1)

where ep,m is the error at output m defined as

	 e o dp m p m p m, , ,= − 	 (13.2)

where dp,m and op,m are desired output and actual output, respectively, at network output m for training
pattern p.

In all algorithms, besides the NBN algorithm, the same computations are being repeated for one
pattern at a time. Therefore, in order to simplify notations, the index p for patterns will be skipped in
following derivations, unless it is essential.

13.2.1  �Definition of Basic Concepts in Neural Network Training

Let us consider neuron j with ni inputs, as shown in Figure 13.1. If neuron j is in the first layer, all its
inputs would be connected to the inputs of the network; otherwise, its inputs can be connected to out-
puts of other neurons or to network inputs if connections across layers are allowed.

Node y is an important and flexible concept. It can be yj,i, meaning the ith input of neuron j. It also
can be used as yj to define the output of neuron j. In this chapter, if node y has one index (neuron),
then it is used as a neuron output node; while if it has two indices (neuron and input), it is a neuron
input node.

Fm, j(yj)
omyj

fj(netj)

...

...

yj,1

yj,2 w
j,2

w
j,1

wj,iyj,i

w j,ni–1

yj,ni–1

w j,n
i

w j,0

yj,ni

+1

Figure 13.1  Connection of a neuron j with the rest of the network. Nodes yj,i could represent network inputs or
outputs of other neurons. Fm,j(yj) is the nonlinear relationship between the neuron output node yj and the network
output om.

K10149_C013.indd 2 9/3/2010 3:01:06 PM

NBN Algorithm	 13-3

Output node of neuron j is calculated using

	 y f netj j j= () 	 (13.3)

where
fj is the activation function of neuron j
net value netj is the sum of weighted input nodes of neuron j:

	
net w yj j i j i

i

ni

= +
=

∑ , ,

1

wj,0

	
(13.4)

where
yj,i is the ith input node of neuron j
weighted by wj,i, and wj,0 is the bias weight of neuron j

Using (13.4) one may notice that derivative of netj is

	

∂
∂

=net
w

yj

j i
j i

,
,

	
(13.5)

and slope sj of activation function fj is

	
s

y
net

f net
netj

j

j

j j

j
=

∂
∂

=
∂

∂
()

	
(13.6)

Between the output node yj of a hidden neuron j and network output om, there is a complex nonlinear
relationship (Figure 13.1):

	 o F ym m j j= , () 	 (13.7)

where om is the mth output of the network.
The complexity of this nonlinear function Fm,j(yj) depends on how many other neurons are between

neuron j and network output m. If neuron j is at network output m, then om = yj and ′ =F ym j j, () 1, where
′Fm j, is the derivative of nonlinear relationship between neuron j and output m.

13.2.2  �Jacobian Matrix Computation

The update rule of Levenberg–Marquardt algorithm is [TM94]

	
w w J J I J en n+

−
= − +()1

1
n
T

n n nµ
	 (13.8)

where
n is the index of iterations
μ is the combination coefficient
I is the identity matrix
J is the Jacobian matrix (Figure 13.2)

From Figure 13.2, one may notice that, for every pattern p, there are no rows of Jacobian matrix where no
is the number of network outputs. The number of columns is equal to number of weights in the networks
and the number of rows is equal to np × no.

K10149_C013.indd 3 9/3/2010 3:01:21 PM

13-4	 Intelligent Systems

The elements of Jacobian matrix can be calculated by

	

∂
∂

= ∂
∂

∂
∂

∂
∂

e
w

e
y

y
net

net
w

m

j i

m

j

j

j

j

j i, , 	
(13.9)

By combining with (13.2), (13.5), (13.6), and (13.7), (13.9) can be written as

	

∂
∂

= ′e
w

y s Fm

j i
j i j m j

,
, ,

	
(13.10)

In second-order algorithms, the parameter δ [N89,TM94] is defined to measure the EBP process, as

	 δm j j m js F, ,= ′ 	 (13.11)

By combining (13.10) and (13.11), elements of Jacobian matrix can be calculated by

	

∂
∂

=e
w

ym

j i
j i m j

,
, ,δ

	
(13.12)

Using (13.12), in backpropagation process, the error can be replaced by a unit value “1.”

∂w1,2

∂enp,no ∂enp,no ∂enp,no
∂w1,1

∂enp,no

∂w1,2

∂enp,2 ∂enp,2 ∂enp,2
∂w1,1

∂enp,1

∂w1,2

∂enp,1 ∂enp,1 ∂enp,1
∂w1,1

∂enp,1

∂w1,2

∂ep,m ∂ep,m ∂ep,m
∂w1,1

∂ep,m

∂w1,2

∂ep,1
∂w1,1

∂ep,1

∂w1,2

∂e1,no
∂w1,1

∂e1,no

∂e1,2 ∂e1,2
∂w1,2

∂e1,2
∂w1,1

∂e1,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂wj,1 ∂wj,2

∂ep,1 ∂ep,1

∂e1,no ∂e1,no

∂e1,1 ∂e1,1

∂w1,2

∂e1,1

∂w1,1

∂e1,1

J =

......

..................

......

......

..................

......

..................

......

..................

......

..................

......

......

m=m

m= 2

m=1

m= 1

m= 2

m=1

m=no

p= 1

p=p

p=np

m=no

neuron 1 neuron j

Figure 13.2  Structure of the Jacobian matrix: (1) the number of columns is equal to the number of weights and
(2) each row corresponds to a specified training pattern p and output m.

K10149_C013.indd 4 9/3/2010 3:01:29 PM

NBN Algorithm	 13-5

13.3  �Training Arbitrarily Connected Neural Networks

The NBN algorithm introduced in this chapter is developed for training arbitrarily connected neural
networks using Levenberg–Marquardt update rule. Instead of layer-by-layer computation (introduced
in Chapter 12), the NBN algorithm does the forward and backward computation based on NBN rout-
ings [WCHK07], which makes it suitable for arbitrarily connected neural networks.

13.3.1  �Importance of Training Arbitrarily Connected Neural Networks

The traditional implementation of Levenberg–Marquardt algorithm [TM94], like MATLAB• neural
network toolbox (MNNT), was adopted only for standard MLP (multilayer perceptron) networks, it
turns out that the MLP networks are not efficient.

Figure 13.3 shows the smallest structures to solve parity-7 problem. The standard MLP network with
one hidden layer (Figure 13.3a) needs at least eight neurons to find the solution. The BMLP (bridged
multiplayer perceptron) network (Figure 13.3b) can solve the problem with four neurons. The FCC (fully
connected cascade) network (Figure 13.3c) is the most powerful one, and it only requires three neurons
to get the solutions. One may notice that the last two types of networks are better choices for efficient
training, but they also require more challenging computation.

AQ1

+1 +1

Output

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7

Output

+1 +1
(a) (b)

+1

Output

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7

(c)

Figure 13.3  Smallest structures for solving parity-7 problem: (a) standard MLP network (64 weights), (b) BMLP
network (35 weights), and (c) FCC network (27 weights).

K10149_C013.indd 5 9/3/2010 3:01:30 PM

13-6	 Intelligent Systems

13.3.2  �Creation of Jacobian Matrix for Arbitrarily Connected
Neural Networks

In this section, the NBN algorithm for calculating the Jacobian matrix for arbitrarily connected feed-
forward neural networks is presented. The rest of the computations for weight updating follow the LM
algorithm, as shown in Equation 13.9.

In the forward computation, neurons are organized according to the direction of signal propagation,
while in the backward computation, the analysis will follow the backpropagation procedures.

Let us consider the arbitrarily connected network with one output, as shown in Figure 13.4.
For the network in Figure 13.4, using the NBN algorithm, the network topology can be described

similarly in SPICE program:

n1 [model] 3 1 2
n2 [model] 4 1 2
n3 [model] 5 3 4
n4 [model] 6 1 2 4 5
n5 [model] 7 3 5 6

Notice that each line corresponds to one neuron. The first part (n1–n5) is the neuron name (Figure
13.4). The second part “[model]” is the neuron models, such as bipolar, unipolar, and linear. Models
are declared in separate lines where the types of activation functions and the neuron gains are specified.
The first digit in each line after the neuron model indicates the network nodes starting with the output
node of the neuron, followed with its input nodes.

Please notice that neurons must be ordered from inputs to neuron outputs. It is important that, for
each given neuron, the neuron inputs must have smaller indices than its output.

The row elements of the Jacobian matrix for a given pattern are being computed in the following three
steps [WCKD08]:

	 1.	 Forward computation
	 2.	 Backward computation
	 3.	 Jacobian element computation

13.3.2.1  �Forward Computation

In the forward computation, the neurons connected to the network inputs are first processed so that
their outputs can be used as inputs to the subsequent neurons. The following neurons are then processed
as their input values become available. In other words, the selected computing sequence has to follow
the concept of feedforward signal propagation. If a signal reaches the inputs of several neurons at the
same time, then these neurons can be processed in any sequence. In the example in Figure 13.4, there are

1

2 4

+1 +1 +1+1

x2

x1

3
1

2

3

4

5

5

6

7

Figure 13.4  Five neurons in arbitrarily connected network.

K10149_C013.indd 6 9/3/2010 3:01:30 PM

NBN Algorithm	 13-7

two possible ways in which neurons can be processed in the forward direction: n1n2n3n4n5 or n2n1n3n4n5.
The two procedures will lead to different computing processes but with exactly the same results. When
the forward pass is concluded, the following two temporary vectors are stored: the first vector y with the
values of the signals on the neuron output nodes and the second vector s with the values of the slopes of
the neuron activation functions, which are signal dependent.

13.3.2.2  �Backward Computation

The sequence of the backward computation is opposite to the forward computation sequence. The pro-
cess starts with the last neuron and continues toward the input. In the case of the network in Figure 13.4,
the following are two possible sequences (backpropagation paths): n5n4n3n2n1 or n5n4n3n1n2, and also
they will have the same results. To demonstrate the case, let us use the n5n4n3n2n1 sequence. The vector
δ represents signal propagation from a network output to the inputs of all other neurons. The size of this
vector is equal to the number of neurons.

For the output neuron n5, its sensitivity is initialed using its slope δ1,5 = s5. For neuron n4, the delta at n5 will
be propagated by w45—the weight between n4 and n5, then by the slope of neuron n4. So the delta parameter
of n4 is presented as δ1,4 = δ1,5w45s4. For neuron n3, the delta parameters of n4 and n5 will be propagated to the
output of neuron n3 and summed, then multiplied by the slope of neuron n3, as δ1,3 = (δ1,5w35 + δ1,4w34)s3.
For the same procedure, it could be obtained that δ1,2 = (δ1,3w23 + δ1,4w24)s2 and δ1,1 = (δ1,3w13 + δ1,5w15)s1.
After the backpropagation process is done at neuron N1, all the elements of array δ are obtained.

13.3.2.3  �Jacobian Element Computation

After the forward and backward computation, all the neuron outputs y and vector δ are calculated. Then
using Equation 13.12, the Jacobian row for a given pattern can be obtained.

By applying all training patterns, the whole Jacobian matrix can be calculated and stored.
For arbitrarily connected neural networks, the NBN algorithm for Jacobian matrix computation can

be organized as shown in Figure 13.5.

for all patterns (np)
% Forward computation
 for all neurons (nn)
 for all weights of the neuron (nx)
 calculate net; % Eq. (4)
 end;
 calculate neuron output; % Eq. (3)
 calculate neuron slope; % Eq. (6)
 end;
 for all outputs (no)
 calculate error; % Eq. (2)
%Backward computation
 initial delta as slope;
 for all neurons starting from output neurons (nn)
 for the weights connected to other neurons (ny)
 multiply delta through weights
 sum the backpropagated delta at proper nodes
 end;
 multiply delta by slope (for hidden neurons);
 end;
 related Jacobian row computation; %Eq. (12)
 end;
end;

Figure 13.5  Pseudo code using NBN algorithm for Jacobian matrix computation

K10149_C013.indd 7 9/3/2010 3:01:31 PM

13-8	 Intelligent Systems

13.3.3  �Solve Problems with Arbitrarily Connected Neural Networks

13.3.3.1  �Function Approximation Problem

Function approximation is usually used in nonlinear control realm of neural networks, for control sur-
face prediction. In order to approximate the function shown below, 25 points are selected from 0 to 4 as
the training patterns. With only four neurons in FCC networks (as shown in Figure 13.6), the training
result is presented in Figure 13.7.

	
z exp x y= − − − −() + −4 0 15 4 0 5 3 102 2 9. () . ()

	
(13.13)

13.3.3.2  �Two-Spiral Problem

Two-spiral problem is considered as a good evaluation of both training algorithms and training architec-
tures [AS99]. Depending on the neural network architecture, different numbers of neurons are required
for successful training. For example, using standard MLP networks with one hidden layer, 34 neurons
are required for two-spiral problem [PLI08]; while with the FCC architecture, it can be solved with only
eight neurons using the NBN algorithm. NBN algorithms are not only much faster but also can train
reduced size networks which cannot be handled by the traditional EBP algorithm (see Table 13.1).

For EBP algorithm, learning constant is 0.005 (largest possible to avoid oscillation) and momentum
is 0.5; maximum iteration is 1,000,000 for EBP algorithm and 1,000 for LM algorithm; desired error =
0.01; all neurons are in FCC networks; there are 100 trials for each case.

AQ2

x

y
z

+1

Figure 13.6  Network used for training the function approximation problem; notice the output neuron is a
linear neuron with gain =1.

(a)

4
3

2

1
0
4 4

3
2

1
0 0

1
2

3

4
3

2

1
0
4 4

3
2

1
0 0

1
2

3

(b)

Figure 13.7  Averaged SSE between desired surface (a) and neural prediction (b) is 0.0025.

K10149_C013.indd 8 9/3/2010 3:01:34 PM

NBN Algorithm	 13-9

13.4  �Forward-Only Computation

The NBN procedure introduced in Section 3 requires both forward and backward computation.
Especially, as shown in Figure 13.5, one may notice that for networks with multiple outputs, the back-
propagation process has to be repeated for each output.

In this section, an improved NBN computation is introduced to overcome the problem, by removing
backpropagation process in the computation of Jacobian matrix.

13.4.1  �Derivation

The concept of δm,j was described in Section 13.2. One may notice that δm,j can be interpreted also as a
signal gain between net input of neuron j and the network output m. Let us extend this concept to gain
coefficients between all neurons in the network (Figures 13.8 and 13.10). The notation of δk,j is an exten-
sion of Equation 13.11 and can be interpreted as signal gain between neurons j and k, and it is given by

	
δk j

k j j

j

k j j

j

j

j
k j j

F y
net

F y
y

y
net

F s,
, ,

,=
∂ ()

∂
=

∂ ()
∂

∂
∂

= ′
	

(13.14)

where
k and j are indices of neurons
Fk,j(yj) is the nonlinear relationship between the output node of neuron k and the output node of

neuron j

Table 13.1  Training Results of Two-Spiral Problem

Neurons

Success
Rate (%)

Average Number
of Iterations

Average
Time (s)

EBP NBN EBP NBN EBP NBN

8 0 13 Failing 287.7 Failing 0.88
9 0 24 Failing 261.4 Failing 0.98

10 0 40 Failing 243.9 Failing 1.57
11 0 69 Failing 231.8 Failing 1.62
12 63 80 410,254 175.1 633.91 1.70
13 85 89 335,531 159.7 620.30 2.09
14 92 92 266,237 137.3 605.32 2.40

N
et

w
or

k
in

pu
ts

N
et

w
or

k
ou

tp
ut

s

netj

netk

δk,j=Fk,j sj

Fk,j

δm,j
δm,k

yj
sj

sk

0l

0m
yk

΄

΄

Figure 13.8  Interpretation of δk,j as a signal gain, where in feedforward network neuron j must be located before
neuron k.

K10149_C013.indd 9 9/3/2010 3:01:36 PM

13-10	 Intelligent Systems

Naturally in feedforward networks, k ≥ j. If k = j, then δk,k = sk, where sk is the slope of activation func-
tion calculated by Equation 13.6. Figure 13.8 illustrates this extended concept of δk,j parameter as a
signal gain.

The matrix 𝛅 has a triangular shape and its elements can be calculated in the forward-only process.
Later, elements of Jacobian can be obtained using Equation 13.12, where only last rows of matrix 𝛅
associated with network outputs are used. The key issue of the proposed algorithm is the method of
calculating of δk,j parameters in the forward calculation process, and it will be described in the next part
of this section.

13.4.2 � Calculation of 𝛅 Matrix for FCC Architectures

Let us start our analysis with fully connected neural networks (Figure 13.9). Any other architecture
could be considered as a simplification of fully connected neural networks by eliminating connections
(setting weights to zero). If feedforward principle is enforced (no feedback), fully connected neural net-
works must have cascade architectures.

Slopes of neuron activation functions sj can be also written in the form of δ parameter as δj,j = sj. By
inspecting Figure 13.10, δ parameters can be written as

For the first neuron, there is only one δ parameter

	 δ1 1 1, = s 	 (13.15)

w1,2

w2,3

w3,4

w1,3
w1,4

w2,4

1

2

3

4

+1

In
pu

ts

Figure 13.9  Four neurons in fully connected neural network, with five inputs and three outputs.

w1,2

S1

S2

S3

S4

w2,3

w3,4

w1,3
w1,4

w2,4
δ2,1

δ3,2
δ3,1

δ4,1 δ4,2 δ4,1

Figure 13.10  The δk,j parameters for the neural network of Figure 13.9. Input and bias weights are not used in
the calculation of gain parameters.

K10149_C013.indd 10 9/3/2010 3:01:39 PM

NBN Algorithm	 13-11

For the second neuron, there are two δ parameters

	

δ

δ

2 2 2

2 1 2 1 2 1

,

, ,

=

=

s

s w s 	
(13.16)

For the third neuron, there are three δ parameters

	

δ

δ

δ

3 3 3

3 2 3 2 3 2

3 1 3 1 3 1 3 2 3 2 1 2 1

,

, ,

, , , ,

=

=

= +

s

s w s

s w s s w s w s 	

(13.17)

One may notice that all δ parameters for the third neuron can be also expressed as a function of
δ parameters calculated for previous neurons. Equations 13.17 can be rewritten as

	

δ

δ δ δ

δ δ δ δ δ

3 3 3

3 2 3 3 2 3 2 2

3 1 3 3 1 3 1 1 3 3 2 3 2 1

,

, , , ,

, , , , , , ,

=

=

= +

s

w

w w 	

(13.18)

For the fourth neuron, there are four δ parameters

	

δ

δ δ δ

δ δ δ δ δ

δ

4 4 4

4 3 4 4 3 4 3 3

4 2 4 4 2 4 2 2 4 4 3 4 3 2

4 1

,

, , , ,

, , , , , , ,

,

=

=

= +

s

w

w w

== + +δ δ δ δ δ δ4 4 1 4 1 1 4 4 2 4 2 1 4 4 3 4 3 1, , , , , , , , ,w w w 	

(13.19)

The last parameter δ4,1 can be also expressed in a compacted form by summing all terms connected to
other neurons (from 1 to 3)

	
δ δ δ4 1 4 4 4 1

1

3

, , , ,=
=

∑wi i
i 	

(13.20)

The universal formula to calculate δk,j parameters using already calculated data for previous neurons is

	
δ δ δk j k k i k i j

i j

k

w, , , ,=
=

−

∑
1

	
(13.21)

where in feedforward network, neuron j must be located before neuron k, so k ≥ j; δk,k = sk is the slope of
activation function of neuron k; wj,k is the weight between neuron j and neuron k; and δk,j is a signal gain
through weight wj,k and through other part of network connected to wj,k.

In order to organize the process, the nn × nn computation table is for calculating signal gains between
neurons, where nn is the number of neurons (Figure 13.11). Natural indices (from 1 to nn) are given for
each neuron according to the direction of signal propagation. For signal gain computation, only con-
nections between neurons need to be concerned, while the weights connected to network inputs and
biasing weights of all neurons will be used only at the end of the process. For a given pattern, a sample
of the nn × nn computation table is shown in Figure 13.11. One may notice that the indices of rows and
columns are the same as the indices of neurons. In the following derivation, let us use k and j used as

K10149_C013.indd 11 9/3/2010 3:01:51 PM

13-12	 Intelligent Systems

neuron indices to specify the rows and columns in the computation table. In feedforward network, k ≥ j
and matrix 𝛅 has a triangular shape.

The computation table consists of three parts: weights between neurons in upper triangle, vector of
slopes of activation functions in main diagonal, and signal gain matrix 𝛅 in lower triangle. Only main
diagonal and lower triangular elements are computed for each pattern. Initially, elements on main diag-
onal δk,k = sk are known as slopes of activation functions and values of signal gains δk,j are being com-
puted subsequently using Equation 13.21.

The computation is being processed NBN starting with the neuron closest to network inputs. At first,
the row number one is calculated and then elements of subsequent rows. Calculation on row below is
done using elements from above rows using Equation 13.21. After completion of forward computation
process, all elements of 𝛅 matrix in the form of the lower triangle are obtained.

In the next step, elements of Jacobian matrix are calculated using Equation 13.12. In the case of neural
networks with one output, only the last row of 𝛅 matrix is needed for gradient vector and Jacobian matrix
computation. If networks have more outputs no, then last no rows of 𝛅 matrix are used. For example, if
the network shown in Figure 13.9 has three outputs, the following elements of 𝛅 matrix are used

	

δ δ δ δ
δ δ δ δ
δ δ δ δ

2 1 2 2 2 2 3 2 4

3 1 3 2 3 3 3 3 4

4 1 4 2 4 3 4

0 0
0

, , , ,

, , , ,

, , ,

= = =
= =

s
s

,,4 4=















s

	

(13.22)

and then for each pattern, the three rows of Jacobian matrix, corresponding to three outputs, are calcu-
lated in one step using Equation 13.12 without additional propagation of δ

	

δ
δ δ
2 1 1 2 2 3 4

3 1 1 3 2 2 3 3 4

0 0
0

,

, ,

s
s

× { } × { } × { } × { }
× { } × { } × { } × {

y y y y
y y y y }}

× { } × { }δ δ δ4 1 1 4 2 2 4 3

1 2
, , ,y y

neuron neuron
� ���� ���� � ����� �����

×× { } × { }


















y y3 4 4

3 4neuron neuron
� ����� ����� � ���� ����

s







	

(13.23)

where neurons’ input vectors y1 through y4 have 6, 7, 8, and 9 elements respectively (Figure 13.9), corre-
sponding to number of weights connected. Therefore, each row of Jacobian matrix has 6 + 7 + 8 + 9 = 30
elements. If the network has three outputs, then from six elements of 𝛅 matrix and 3 slopes, 90 elements

w1,2 w1,j

w2,j

w1,k

w2,k

w1,nn

w2,nn

wj,nnwj,k

wk,nn

δ1,1

1

1

2

j

k

nn

Neuron
Index 2 j k nn

δ2,1 δ2,2

δj,1 δj,2 δj,j

δk,j δk,kδk,1 δk,2

δnn,1 δnn,2 δnn,j δnn,k δnn,nn

Figure 13.11  The nn × nn computation table; gain matrix 𝛅 contains all the signal gains between neurons;
weight array w presents only the connections between neurons, while network input weights and biasing weights
are not included.

K10149_C013.indd 12 9/3/2010 3:01:56 PM

NBN Algorithm	 13-13

of Jacobian matrix are calculated. One may notice that the size of newly introduced 𝛅 matrix is relatively
small, and it is negligible in comparison with other matrices used in calculation.

The improved NBN procedure gives all the information needed to calculate Jacobian matrix (13.12),
without backpropagation process; instead, δ parameters are obtained in relatively simple forward com-
putation (see Equation 13.21).

13.4.3  �Training Arbitrarily Connected Neural Networks

The proposed computation above was derived for fully connected neural networks. If network is not
fully connected, then some elements of the computation table are zero. Figure 13.12 shows computation

s1 w1,2 w1,3 w1,4 w1,5 w1,6

w2,6w2,5w2,4w2,3

w3,6w3,5w3,4

w4,6w4,5

w5,6

(a)

δ2,1

δ3,1

δ4,1

δ5,1

δ6,1

s2

δ3,2

δ4,2

δ5,2

δ6,2

s3

s4

s5

s6

δ4,3

δ5,3

δ6,3

δ5,4

δ6,4 δ6,5

Index

1

1 2 3 4 5 6
1

2

3

4

5

6

2

3

4

5

6

(c)

s1 w1,3 w1,6

w2,5w2,4

w3,6w3,5

w4,5

δ3,1

δ5,1

δ6,1

s2

δ4,2

δ5,2

s3

s4

s5

s6

δ5,3

δ6,3

δ5,4

1

2

3

4

5

6

Index 1 2 3 4 5 6

1

2

3

4

5

6

0 0 0

0

0

0

000

00

0 0

0 0

w1,5 w1,6

(b)

s2

s3

w1,5

w2,5

w3,5

w4,5

s5

w1,6

w2,6

w3,6

w4,6

s6

δ5,1

δ6,1

δ5,2

δ6,2

δ5,3

δ6,3

s4

δ5,4

δ6,4

1

2

3

4

5

6

Index

1

1 2 3 4 5 6

2

3

4

5

6

s1 0

0

0

0 0 0

0

0

00

0 0

00

Figure 13.12  Three different architectures with six neurons: (a) FCC network, (b) MLP network, and (c) arbi-
trarily connected neural network.

K10149_C013.indd 13 9/3/2010 3:01:57 PM

13-14	 Intelligent Systems

tables for different neural network topologies with six neurons each. Please notice zero elements are
for not connected neurons (in the same layers). This can further simplify the computation process for
popular MLP topologies (Figure 13.12b).

Most of used neural networks have many zero elements in the computation table (Figure 13.12). In
order to reduce the storage requirements (do not store weights with zero values) and to reduce computa-
tion process (do not perform operations on zero elements), a part of the NBN algorithm in Section 13.3
was adopted for forward computation.

In order to further simplify the computation process, Equation 13.21 is completed in two steps

	

x wk j i k i j
i j

k

, , ,=
=

−

∑ δ
1

	
(13.24)

and

	 δ δk j k k k j k k jx s x, , , ,= = 	 (13.25)

The complete algorithm with forward-only computation is shown in Figure 13.13. By adding two addi-
tional steps using Equations 13.24 and 13.25 (highlighted in bold in Figure 13.13), all computation can
be completed in the forward-only computing process.

13.4.4  �Experimental Results

Several problems are presented to test the computing speed of two different NBN algorithms—with and
without backpropagation process.

The testing of time costs for both the backpropagation computation and the forward-only computa-
tion are divided into forward part and backward part separately.

13.4.4.1  �ASCII Codes to Image Conversion

This problem is to associate 256 ASCII codes with 256 character images, each of which is made up
of 7 × 8 pixels (Figure 13.14). So there are 8 bit inputs (inputs of parity-8 problem), 256 patterns, and

for all patterns (np)
% Forward computation
 for all neurons (nn)
 for all weights of the neuron (nx)
 calculate net; % Eq. (4)
 end;
 calculate neuron output; % Eq. (3)
 calculate neuron slope; % Eq. (6)
 set current slope as delta;
 for weights connected to previous neurons (ny)
 for previous neurons (nz)
 multiply delta through weights then sum; % Eq. (24)
 end;
 multiply the sum by the slope; % Eq. (25)
 end;
 related Jacobian elements computation; % Eq. (12)
 end;
 for all outputs (no)
 calculate error; % Eq. (2)
 end;
end;

Figure 13.13  Pseudo code of the forward-only computation, in second-order algorithms.

K10149_C013.indd 14 9/3/2010 3:02:01 PM

NBN Algorithm	 13-15

56 outputs. In order to solve the problem, the structure, 112 neurons in 8-56-56 MLP network, is used to
train those patterns using NBN algorithms. The computation time is presented in Table 13.2.

13.4.4.2  �Parity-7 Problem

Parity-N problems are aimed to associate n-bit binary input data with their parity bits. It is also con-
sidered to be one of the most difficult problems in neural network training, although it has been solved
analytically [03BDA].

Parity-7 problem is trained with NBN algorithms, using both the forward-only computation and
traditional computation separately. Two different network structures are used for training: eight neu-
rons in 7-7-1 MLP network (64 weights) and three neurons in FCC network (27 weights). Time cost
comparison is shown in Table 13.3.

13.4.4.3  �Error Correction Problems

Error correction is an extension of parity-N problems for multiple parity bits. In Figure 13.15, the left
side is the input data, made up of signal bits and their parity bits, while the right side is the related cor-
rected signal bits and parity bits as outputs, so number of inputs is equal to the number of outputs.

Figure 13.14  The first 90 images of ASCII characters.

Table 13.2  Comparison for ASCII Character
Recognition Problem

Computation
Methods

Time Cost (ms/Iteration)
Relative

Time (%)Forward Backward

Backpropagation 8.24 1,028.74 100
Forward-only 61.13 0.00 5.9

K10149_C013.indd 15 9/3/2010 3:02:01 PM

13-16	 Intelligent Systems

Two error correction experiments are presented, one has 4 bit signal with its 3 bit parity bits as inputs,
7 outputs, and 128 patterns (16 correct patterns and 112 patterns with errors), using 23 neurons in 7-16-7
MLP network (247 weights); the other has 8 bit signal with its 4 bit parity bits as inputs, 12 outputs, and
3328 patterns (256 correct patterns and 3072 patterns with errors), using 42 neurons in 12-30-12 MLP
network (762 weights). Error patterns with one incorrect bit must be corrected. Both backpropagation
computation and the forward-only computation were performed with the NBN algorithms. The testing
results are presented in Table 13.4.

13.4.4.4  �Encoders and Decoders

Experiment results on 3-to-8 decoder, 8-to-3 encoder, 4-to-16 decoder, and 16-to-4 encoder, using NBN
algorithms, are presented in Table 13.5. For 3-to-8 decoder and 8-to-3 encoder, 11 neurons are used in
3-3-8 MLP network (44 weights) and 8-83 MLP network (99 weights) respectively; while for 4-to-16
decoder and 16-to-4 encoder, 20 neurons are used in 4-4-16 MLP network (100 weights) and 16-16-4
MLP network (340 weights) separately.

In the encoder and decoder problems, one may notice that for the same number of neurons, the more
outputs the networks have, the more efficiently the forward-only computation works.

From the presented experimental results, one may notice that, for networks with multiple outputs,
the forward-only computation is more efficient than the backpropagation computation; while for single
output situation, the forward-only computation is slightly worse.

Table 13.3  Comparison for Parity-7 Problem

Networks
Computation

Methods

Time Cost (μs/Iteration)
Relative

Time (%)Forward Backward

MLP Backpropagation 158.57 67.82 100
Forward-only 229.13 0.00 101.2

FCC Backpropagation 54.14 31.94 100
Forward-only 86.30 0.00 100.3

Signal
bits

Parity
bits

Corrected
signal
bits

Corrected
parity
bits

Neural

Networks

Figure 13.15  Using neural networks to solve error correction problem; errors in input data can be corrected by
well-trained neural networks.

Table 13.4  Comparison for Error Correction Problem

Problems
Computation

Methods

Time Cost (ms/Iteration)
Relative

Time (%)Forward Backward

4 bit signal Backpropagation 0.43 2.82 100
Forward-only 1.82 0.00 56

8 bit signal Backpropagation 40.59 468.14 100
Forward-only 175.72 0.00 34.5

K10149_C013.indd 16 9/3/2010 3:02:02 PM

NBN Algorithm	 13-17

13.5  �Direct Computation of Quasi-Hessian Matrix
and Gradient Vector

Using Equation 13.8 for weight updating, one may notice that the matrix multiplication JTJ and JTe have
to be calculated

	 H Q J J≈ = T
	 (13.26)

	 g J e= T
	 (13.27)

where
matrix Q is the quasi-Hessian matrix
g is the gradient vector [09YW]

Traditionally, the whole Jacobian matrix J is calculated and stored [TM94] for further multiplication
operation using Equations 13.26 and 13.27. The memory limitation may be caused by Jacobian matrix
storage, as described below.

In the NBN algorithm, quasi-Hessian matrix Q and gradient vector g are calculated directly, without
Jacobian matrix computation and storage. Therefore, the NBN algorithm can be used in training the
problems with unlimited number of training patterns.

13.5.1  �Memory Limitation in Levenberg–Marquardt Algorithm

In the Levenberg–Marquardt algorithm, Jacobian matrix J has to be calculated and stored for Hessian
matrix computation [TM94]. In this procedure, as shown in Figure 13.2, at least np × no × nn elements
(Jacobian matrix) have to be stored. For small and median size pattern training, this method may work
smoothly. However, it would be a huge memory cost for training large-sized patterns, since the number
of elements of Jacobian matrix J is proportional to the number of patterns.

For example, the pattern recognition problem in MNIST handwritten digit database [CKOZ06] con-
sists of 60,000 training patterns, 784 inputs, and 10 outputs. Using only the simplest possible neural
network with 10 neurons (one neuron per each output), the memory cost for the entire Jacobian matrix
storage is nearly 35 Gb. This huge memory requirement cannot be satisfied by any Windows compliers,
where there is a 3 Gb limitation for single-array storage. Therefore, Levenberg–Marquardt algorithm
cannot be used for problems with large number of patterns.

Table 13.5  Comparison for Encoders and Decoders

Problems
Computation

Methods

Time Cost (μs/Iteration)
Relative

Time (%)Forward Backward

3-to-8 Traditional 10.14 55.37 100
decoder Forward-only 27.86 0.00 42.5

8-to-3 Traditional 7.19 26.97 100
encoder Forward-only 29.76 0.00 87.1

4-to-16 Traditional 40.03 557.51 100
decoder Forward-only 177.65 0.00 29.7

16-to-4 Traditional 83.24 244.20 100
encoder Forward-only 211.28 0.00 62.5

K10149_C013.indd 17 9/3/2010 3:02:06 PM

13-18	 Intelligent Systems

13.5.2  �Review of Matrix Algebra

There are two ways to multiply rows and columns of two matrices. If the row of the first matrix is multi-
plied by the column of the second matrix, then we obtain a scalar, as shown in Figure 13.16a. When the
column of the first matrix is multiplied by the row of the second matrix then the result is a partial matrix q
(Figure 13.16b) [L05]. The number of scalars is nn × nn, while the number of partial matrices q, which
later have to be summed, is np × no.

When JT is multiplied by J using routine shown in Figure 13.16b, at first, partial matrices q (size:
nn × nn) need to be calculated np × no times, then all of np × no matrices q must be summed together.
The routine of Figure 13.16b seems complicated; therefore almost all matrix multiplication processes
use the routine of Figure 13.16a, where only one element of resulted matrix is calculated and stored
each time.

Even the routine of Figure 13.16b seems to be more complicated; after detailed analysis (see Table 13.6),
one may conclude that the computation time for matrix multiplication of the two ways is basically the
same.

In a specific case of neural network training, only one row of Jacobian matrix J (column of JT) is
known for each training pattern, so if routine from Figure 13.16b is used then the process of creation
of quasi-Hessian matrix can start sooner without the necessity of computing and storing the entire
Jacobian matrix for all patterns and all outputs.

Table 13.7 roughly estimates the memory cost in two multiplication methods separately.
The analytical results in Table 13.7 show that the column-row multiplication (Figure 13.16b) can save

a lot of memory.

Table 13.6  Computation Analysis

Multiplication Methods Addition Multiplication

Row–column (np × no) × nn × nn (np × no) × nn × nn
Column–row nn × nn × (np × no) nn × nn × (np × no)

np is the number of training patterns, no is the number of outputs,
and nn is the number of weights.

JT
× =

nn

nn

nn

nn J
q

(b)

× =JT J Q

(a)

nn

nn

np×no
np×no

Figure 13.16  Two ways of multiplying matrices: (a) row–column multiplication results in a scalar and (b) col-
umn–row multiplication results in a partial matrix q.

K10149_C013.indd 18 9/3/2010 3:02:06 PM

NBN Algorithm	 13-19

13.5.3  �Quasi-Hessian Matrix Computation

Let us introduce quasi-Hessian submatrix qp,m (size: nn × nn)

	

q p,m =

∂
∂







∂
∂

∂
∂

∂
∂

∂
∂

∂

e
w

e
w

e
w

e
w

e
w

e

p m p m p m p m p m

nn

p

, , , , ,

,

1

2

1 2 1
�

mm p m p m p m p m

nn

p m

n

w
e
w

e
w

e
w

e
w

e
w

∂
∂
∂

∂
∂







∂
∂

∂
∂

∂
∂

2 1 2

2

2

, , , ,

,

�

� � � �

nn

p m p m

nn

p m p m

nn

e
w

e
w

e
w

e
w

∂
∂

∂
∂

∂
∂

∂
∂

























, , , ,

1 2

2

�












	

(13.28)

Using the procedure in Figure 13.5b, the nn × nn quasi-Hessian matrix Q can be calculated as the sum
of submatrices qp,m

	

Q q=
==

∑∑ p m
m

no

p

np

,

11 	
(13.29)

By introducing 1 × nn vector jp,m

	
jp,m =

∂
∂

∂
∂

∂
∂











e
w

e
w

e
w

p m p m p m

nn

, , ,

1 2
�

	
(13.30)

submatrices qp,m in Equation 13.13 can be also written in the vector form (Figure 13.5b)

	 q j jp m p m
T

p m, , ,= 	
(13.31)

One may notice that for the computation of submatrices qp,m, only N elements of vector jp,m need to be
calculated and stored. All the submatrices can be calculated for each pattern p and output m separately,
and summed together, so as to obtain quasi-Hessian matrix Q.

Considering the independence among all patterns and outputs, there is no need to store all the
quasi-Hessian submatrices qp,m. Each submatrix can be summed to a temporary matrix after its com-
putation. Therefore, during the direct computation of quasi-Hessian matrix Q using (13.29), only
memory for nn elements is required, instead of that for the whole Jacobian matrix with (np × no) × nn
elements (Table 13.7).

From (13.13), one may notice that all the submatrices qp,m are symmetrical. With this property, only
upper (or lower) triangular elements of those submatrices need to be calculated. Therefore, during the
improved quasi-Hessian matrix Q computation, multiplication operations in (13.31) and sum opera-
tions in (13.29) can be both reduced by half approximately.

Table 13.7  Memory Cost Analysis

Multiplication Methods Elements for Storage

Row–column (np × no) × nn + nn × nn + nn
Column–row nn × nn + nn
Difference (np × no) × nn

K10149_C013.indd 19 9/3/2010 3:02:17 PM

13-20	 Intelligent Systems

13.5.4  �Gradient Vector Computation

Gradient subvector 𝛈p,m (size: nn × 1) is

	

hp m

p m
p m

p m
p m

p m

nn
p m

e
w

e

e
w

e

e
w

e

,

,
,

,
,

,
,

=

∂
∂

∂
∂

∂
∂




















1

2

�









=

∂
∂

∂
∂

∂
∂





























×

e
w
e
w

e
w

p m

p m

p m

nn

,

,

,

1

2

�
eep m,

	

(13.32)

With the procedure in Figure 13.16b, gradient vector g can be calculated as the sum of gradient sub-
vector 𝛈p,m

	

g =
==

∑∑ hp m
m

nonp

,

11p 	
(13.33)

Using the same vector jp,m defined in (13.30), gradient subvector can be calculated using

	 hp m p m p me, , ,= j 	 (13.34)

Similarly, gradient subvector 𝛈p,m can be calculated for each pattern and output separately, and summed
to a temporary vector. Since the same vector jp,m is calculated during quasi-Hessian matrix computation
above, there is only an extra scalar ep,m need to be stored.

With the improved computation, both quasi-Hessian matrix Q and gradient vector g can be com-
puted directly, without Jacobian matrix storage and multiplication. During the process, only a tempo-
rary vector jp,m with nn elements needs to be stored; in other words, the memory cost for Jacobian matrix
storage is reduced by (np × no) times. In the MINST problem mentioned in part one of this section, the
memory cost for the storage of Jacobian elements could be reduced from more than 35 GB to nearly
30.7 kB.

13.5.5  �Jacobian Row Computation

The key point of the improved computation above for quasi-Hessian matrix Q and gradient vector g is
to calculate vector jp,m defined in (13.30) for each pattern and output. This vector is equivalent of one
row of Jacobian matrix J.

By combining Equations 13.12 and 13.30, the elements of vector jp,m can be calculated by

	
jp m p m p p i p m j p j p j iy y y y, , , , , , , , , , , , ,=  

   δ δ1 1 1 1 1� � � � � � 	
(13.35)

where yp,j,i is the ith input of neuron j, when training pattern p.
Using the NBN procedure introduced in Section 13.3, all elements yp,j,i in Equation 13.35 can

be calculated in the forward computation, while vector 𝛅 is obtained in the backward computation;
or, using the improved NBN procedure in Section 13.4, both vectors y and δ can be obtained in the
improved forward computation. Again, since only one vector jp,m needs to be stored for each pattern

AQ3

K10149_C013.indd 20 9/3/2010 3:02:26 PM

NBN Algorithm	 13-21

and output in the improved computation, the memory cost for all those temporary parameters can be
reduced by (np × no) times. All matrix operations are simplified to vector operations.

Generally, for the problem with np patterns and no outputs, the NBN algorithm without Jacobian
matrix storage can be organized as the pseudo code shown in Figure 13.17.

13.5.6  �Comparison on Memory and Time Consumption

Several experiments are designed to test the memory and time efficiencies of the NBN algorithm, com-
paring with traditional LM algorithm. They are divided into two parts: (1) memory comparison and
(2) time comparison.

13.5.6.1  �Memory Comparison

Three problems, each of which has huge number of patterns, are selected to test the memory cost of both
the traditional computation and the improved computation. LM algorithm and NBN algorithm are
used for training, and the test results are shown in Tables 13.8 and 13.9. In order to make more precise
comparison, memory cost for program code and input files were not used in the comparison.

% Initialization
Q=0;
g=0
% Improved computation
for p=1:np % Number of patterns
 % Forward computation
 …
 for m=1:no % Number of outputs
 % Backward computation
 …
 calculate vector jp,m; % Eq. (35)
 calculate sub matrix qp,m; % Eq. (31)
 calculate sub vector ηp,m; % Eq. (34)
 Q=Q+qp,m; % Eq. (29)
 g=g+ηp,m; % Eq. (33)
 end;
end;

Figure 13.17  Pseudo code of the improved computation for quasi-Hessian matrix and gradient vector in NBN
algorithm.

Table 13.8  Memory Comparison for Parity
Problems

Parity-N problems N = 14 N = 16

Patterns 16,384 65,536
Structuresa 15 neurons 17 neurons
Jacobian matrix sizes 5,406,720 27,852,800
Weight vector sizes 330 425
Average iteration 99.2 166.4
Success rate (%) 13 9

Algorithms Actual Memory Cost (Mb)

LM algorithm 79.21 385.22
NBN algorithm 3.41 4.3

a	All neurons are in FCC networks.

K10149_C013.indd 21 9/3/2010 3:02:27 PM

13-22	 Intelligent Systems

From the test results in Tables 13.8 and 13.9, it is clear that memory cost for training is significantly
reduced in the improved computation.

13.5.6.2  �Time Comparison

Parity-N problems are presented to test the training time for both traditional computation and the
improved computation using LM algorithm. The structures used for testing are all FCC networks. For
each problem, the initial weights and training parameters are the same.

From Table 13.10, one may notice that the NBN computation cannot only handle much larger prob-
lems, but also computes much faster than LM algorithm, especially for large-sized pattern training. The
larger the pattern size is, the more time efficient the improved computation will be.

13.6  �Conclusion

In this chapter, the NBN algorithm is introduced to solve the structure and memory limitation in
Levenberg–Marquardt algorithm. Based on the specially designed NBN routings, the NBN algo-
rithm can be used not only for traditional MLP networks, but also other arbitrarily connected neural
networks.

The NBN algorithm can be organized in two procedures—with backpropagation process and without
backpropagation process. Experimental results show that the former one is suitable for networks with
single output, while the latter one is more efficient for networks with multiple outputs.

The NBN algorithm does not require to store and to multiply large Jacobian matrix. As a consequence,
memory requirement for quasi-Hessian matrix and gradient vector computation is decreased by

Table 13.9  Memory Comparison for MINST
Problem

Problem MINST

Patterns 60,000
Structures 784 = 1 single layer networka

Jacobian matrix sizes 47,100,000
Weight vector sizes 785

Algorithms Actual Memory Cost (Mb)

LM algorithm 385.68
NBN algorithm 15.67

a	 In order to perform efficient matrix inversion during
training, only one of ten digits is classified each time.

Table 13.10  Time Comparison for Parity Problems

Parity-N Problems N = 9 N = 11 N = 13 N = 15

Patterns 512 2,048 8,192 32,768
Neurons 10 12 14 16
Weights 145 210 287 376
Average iterations 38.51 59.02 68.08 126.08
Success rate (%) 58 37 24 12

Algorithms Averaged Training Time (s)

Traditional LM 0.78 68.01 1508.46 43,417.06
Improved LM 0.33 22.09 173.79 2,797.93

K10149_C013.indd 22 9/3/2010 3:02:27 PM

NBN Algorithm	 13-23

(P × M) times, where P is the number of patterns and M is the number of outputs. An additional benefit
of memory reduction is also a significant reduction in computation time. Therefore, the training speed
of the NBN algorithm becomes much faster than the traditional Levenberg–Marquardt algorithm.

In the NBN algorithm, quasi-Hessian matrix can be computed on fly when training patterns are
applied. Moreover, it has the special advantage for applications which require dynamically changing
the number of training patterns. There is no need to repeat the entire multiplication of JTJ, but only add
to or subtract from quasi-Hessian matrix. The quasi-Hessian matrix can be modified as patterns are
applied or removed.

There are two implementations of the NBN algorithm on the website: http://www.eng.auburn.
edu/∼wilambm/nnt/index.htm. MATLAB version can handle arbitrarily connected networks, but
Jacobian matrix is computed and stored [07WCHK]. In the C++ version [09YW], all new features of the
NBN algorithm mentioned in this chapter are implemented.

References

[AS99] J. R Alvarez-Sanchez, Injecting knowledge into the solution of the two-spiral problem. Neural
Compute and Applications, 8, 265–272, 1999.

[AW95] T. J. Andersen and B.M. Wilamowski, A modified regression algorithm for fast one layer neural
network training, World Congress of Neural Networks, Washington DC, July 17–21, 1995, Vol. 1,
687–690.

[BDA03] B. M. Wilamowski, D. Hunter, and A. Malinowski, Solving parity-N problems with feedforward
neural networks. Proceedings of the 2003 IEEE IJCNN, pp. 2546–2551, IEEE Press, 2003.

[CKOZ06] L. J. Cao, S. S. Keerthi, Chong-Jin Ong, J. Q. Zhang, U. Periyathamby, Xiu Ju Fu, and
H. P. Lee, Parallel sequential minimal optimization for the training of support vector machines,
IEEE Transactions on Neural Networks, 17(4), 1039–1049, April 2006.

[L05] David C. Lay, Linear Algebra and its Applications, Addison-Wesley Publishing Company, 3rd ver-
sion, pp. 124, July, 2005.

[L44] K. Levenberg, A method for the solution of certain problems in least squares. Quarterly of Applied
Mathematics, 5, 164–168, 1944.

[M63] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl.
Math., 11(2), 431–441, June 1963.

[N89] Robert Hecht Nielsen, Theory of the back propagation neural network. Proceedings of the 1989 IEEE
IJCNN, pp. 1593–1605, IEEE Press, New York, 1989.

[PLI08] Jian-Xun Peng, Kang Li, and G. W. Irwin, A new Jacobian matrix for optimal learning of single-
layer neural networks, IEEE Transactions on Neural Networks, 19(1), 119–129, January 2008.

[TM94] Hagan M. T., M. Menhaj, Training feedforward networks with the Marquardt algorithm. IEEE
Transactions on Neural Networks, 5(6), 989–993, 1994.

[W09] B. M. Wilamowski, Neural network architectures and learning algorithms, IEEE Industrial
Electronics Magazine, 3(4), 56–63.

[WB01] B. M. Wilamowski and J. Binfet, Microprocessor implementation of fuzzy systems and neural
networks, International Joint Conference on Neural Networks (IJCNN’01), Washington DC, July
15–19, 2001, pp. 234–239.

[WCHK07] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, Neural network trainer with sec-
ond order learning algorithms, Proceedings of the International Conference on Intelligent Engineering
Systems, June 29, 2007–July 1, 2007, pp. 127–132.

[WCKD08] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, Computing gradient vector
and Jacobian matrix in arbitrarily connected neural networks, IEEE Trans. on Industrial Electronics,
55(10), 3784–3790, October 2008.

AQ4

K10149_C013.indd 23 9/3/2010 3:02:27 PM

13-24	 Intelligent Systems

[WCM99] B. M. Wilamowski, Y. Chen, and A. Malinowski, Efficient algorithm for training neural net-
works with one hidden layer, presented at 1999 International Joint Conference on Neural Networks
(IJCNN’99), Washington, DC, July 10–16, 1999, pp. 1725–1728.

[WH10] B. M. Wilamowski and H. Yu, Improved computation for Levenberg Marquardt training, IEEE
Transactions on Neural Networks, 21, 2010.

[WT93] B. M. Wilamowski and L. Torvik, Modification of gradient computation in the back-propagation
algorithm, presented at Artificial Neural Networks in Engineering (ANNIE’93), St. Louis, MI,
November 14–17, 1993.

[YW09] Hao Yu and B. M. Wilamowski, C++ implementation of neural networks trainer, 13th International
Conference on Intelligent Engineering Systems (INES-09), Barbados, April 16–18, 2009.

K10149_C013.indd 24 9/3/2010 3:02:27 PM

