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12.1   Introduction

The Levenberg–Marquardt algorithm [L44,M63], which was independently developed by Kenneth 
Levenberg and Donald Marquardt, provides a numerical solution to the problem of minimizing a non-
linear function. It is fast and has stable convergence. In the artificial neural-networks field, this algo-
rithm is suitable for training small- and medium-sized problems.

Many other methods have already been developed for neural-networks training. The steep-
est descent algorithm, also known as the error backpropagation (EBP) algorithm [EHW86,J88], 
dispersed the dark clouds on the field of artificial neural networks and could be regarded as one 
of the most significant breakthroughs for training neural networks. Many improvements have 
been made to EBP [WT93,AW95,W96,WCM99], but these improvements are relatively minor 
[W02,WHM03,YW09,W09,WY10]. The EBP algorithm is still widely used today; however, it is also 
known as an inefficient algorithm because of its slow convergence. There are two main reasons for the 
slow convergence: the first reason is that its step sizes should be adequate to the gradients (Figure 12.1). 
Logically, small step sizes should be taken where the gradient is steep so as not to rattle out of the required 
minima (because of oscillation). So, if the step size is a constant, it needs to be chosen small. Then, in the 
place where the gradient is gentle, the training process would be very slow. The second reason is that the 
curvature of the error surface may not be the same in all directions, such as the Rosenbrock function, so 
the classic “error valley” problem [O92] may exist and may result in the slow convergence.

The slow convergence of the steepest descent method can be greatly improved by the Gauss–Newton 
algorithm [O92]. Using second-order derivatives of error function to “naturally” evaluate the curvature 
of error surface, The Gauss–Newton algorithm can find proper step sizes for each direction and con-
verge very fast; especially, if the error function has a quadratic surface, it can converge directly in the 
first iteration. But this improvement only happens when the quadratic approximation of error function 
is reasonable. Otherwise, the Gauss–Newton algorithm would be mostly divergent.
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12-2 Intelligent Systems

The Levenberg–Marquardt algorithm blends the steepest descent method and the Gauss–Newton 
algorithm. Fortunately, it inherits the speed advantage of the Gauss–Newton algorithm and the stability 
of the steepest descent method. It’s more robust than the Gauss–Newton algorithm, because in many 
cases it can converge well even if the error surface is much more complex than the quadratic situation. 
Although the Levenberg–Marquardt algorithm tends to be a bit slower than Gauss–Newton algorithm 
(in convergent situation), it converges much faster than the steepest descent method.

The basic idea of the Levenberg–Marquardt algorithm is that it performs a combined training process: 
around the area with complex curvature, the Levenberg–Marquardt algorithm switches to the steepest 
descent algorithm, until the local curvature is proper to make a quadratic approximation; then it approx-
imately becomes the Gauss–Newton algorithm, which can speed up the convergence significantly.

12.2   Algorithm Derivation

In this part, the derivation of the Levenberg–Marquardt algorithm will be presented in four parts: 
(1) steepest descent algorithm, (2) Newton’s method, (3) Gauss–Newton’s algorithm, and (4) Levenberg–
Marquardt algorithm.

Before the derivation, let us introduce some commonly used indices:

• p is the index of patterns, from 1 to P, where P is the number of patterns.
• m is the index of outputs, from 1 to M, where M is the number of outputs.
• i and j are the indices of weights, from 1 to N, where N is the number of weights.
• k is the index of iterations.

Other indices will be explained in related places.
Sum square error (SSE) is defined to evaluate the training process. For all training patterns and net-

work outputs, it is calculated by
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where
x is the input vector
w is the weight vector
ep,m is the training error at output m when applying pattern p and it is defined as

 e d op m p m p m, , ,= −  (12.2)

where
d is the desired output vector
o is the actual output vector

EBP algorithm with
small constant step

size

EBP algorithm with
large constant step

size

Figure 12.1 Searching process of the steepest descent method with different learning constants: yellow trajec-
tory is for small learning constant that leads to slow convergence; purple trajectory is for large learning constant 
that causes oscillation (divergence).
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Levenberg–Marquardt Training 12-3

12.2.1   Steepest Descent Algorithm

The steepest descent algorithm is a first-order algorithm. It uses the first-order derivative of total error 
function to find the minima in error space. Normally, gradient g is defined as the first-order derivative 
of total error function (12.1):
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With the definition of gradient g in (12.3), the update rule of the steepest descent algorithm could be 
written as

 w wk k+ = −1 αgk  (12.4)

where α is the learning constant (step size).
The training process of the steepest descent algorithm is asymptotic convergence. Around the solu-

tion, all the elements of gradient vector would be very small and there would be a very tiny weight 
change.

12.2.2   Newton’s Method

Newton’s method assumes that all the gradient components g1, g2, …, gN are functions of weights and all 
weights are linearly independent:
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where F1,F2, …, FN are nonlinear relationships between weights and related gradient components.
Unfold each gi (i = 1, 2,…, N) in Equations 12.5 by Taylor series and take the first-order approximation:
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By combining the definition of gradient vector g in (12.3), it could be determined that
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12-4 Intelligent Systems

By inserting Equation 12.7 to 12.6:
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Comparing with the steepest descent method, the second-order derivatives of the total error function 
need to be calculated for each component of gradient vector.

In order to get the minima of total error function E, each element of the gradient vector should be 
zero. Therefore, left sides of the Equations 12.8 are all zero, then
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By combining Equation 12.3 with 12.9

 

− ∂
∂

= − ≈ ∂
∂

+ ∂
∂ ∂

+ + ∂
∂ ∂

− ∂
∂

=

E
w

g E
w

w E
w w

w E
w w

w

E
w

N
N

1
1 0

2

1
2 1

2

1 2
2

2

1

2

, ∆ ∆ ∆�

−− ≈ ∂
∂ ∂

+ ∂
∂

+ + ∂
∂ ∂

− ∂
∂

= −

g E
w w

w E
w

w E
w w

w

E
w

g

N
N

N
N

2 0

2

2 1
1

2

2
2 2

2

2

0

,

,

∆ ∆ ∆�

�

≈≈ ∂
∂ ∂

+ ∂
∂ ∂

+ + ∂
∂

















2

1
1

2

2
2

2

2
E

w w
w E

w w
w E

w
w

N N N
N∆ ∆ ∆�

 (12.10)

There are N equations for N parameters so that all Δwi can be calculated. With the solutions, the weight 
space can be updated iteratively.

Equations 12.10 can be also written in matrix form
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Levenberg–Marquardt Training 12-5

where the square matrix is Hessian matrix:
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By combining Equations 12.3 and 12.12 with Equation 12.11

 − =g H w∆  (12.13)

So

 ∆w H g= − −1  (12.14)

Therefore, the update rule for Newton’s method is

 w w H gk k k k+
−= −1

1  (12.15)

As the second-order derivatives of total error function, Hessian matrix H gives the proper evaluation 
on the change of gradient vector. By comparing Equations 12.4 and 12.15, one may notice that well-
matched step sizes are given by the inverted Hessian matrix.

12.2.3   Gauss–Newton Algorithm

If Newton’s method is applied for weight updating, in order to get Hessian matrix H, the second-order 
derivatives of total error function have to be calculated and it could be very complicated. In order to 
simplify the calculating process, Jacobian matrix J is introduced as
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12-6 Intelligent Systems

By integrating Equations 12.1 and 12.3, the elements of gradient vector can be calculated as
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Combining Equations 12.16 and 12.17, the relationship between Jacobian matrix J and gradient vector 
g would be

 g Je=  (12.18)

where error vector e has the form
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Inserting Equation 12.1 into 12.12, the element at ith row and jth column of Hessian matrix can be 
calculated as
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where Si,j is equal to
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As the basic assumption of Newton’s method is that Si,j is closed to zero [TM94], the relationship between 
Hessian matrix H and Jacobian matrix J can be rewritten as

 H J J≈ T  (12.22)

By combining Equations 12.15, 12.18, and 12.22, the update rule of the Gauss–Newton algorithm is 
presented as

 w w J J J ek k k
T

k k k+
−

= − ( )1
1

 (12.23)
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Levenberg–Marquardt Training 12-7

Obviously, the advantage of the Gauss–Newton algorithm over the standard Newton’s method 
(Equation 12.15) is that the former does not require the calculation of second-order derivatives of the 
total error function, by introducing Jacobian matrix J instead. However, the Gauss–Newton algorithm 
still faces the same convergent problem like the Newton algorithm for complex error space optimiza-
tion. Mathematically, the problem can be interpreted as the matrix JTJ may not be invertible.

12.2.4   Levenberg–Marquardt Algorithm

In order to make sure that the approximated Hessian matrix JTJ is invertible, Levenberg–Marquardt 
algorithm introduces another approximation to Hessian matrix:

 H J J I≈ +T µ  (12.24)

where
μ is always positive, called combination coefficient
I is the identity matrix

From Equation 12.24, one may notice that the elements on the main diagonal of the approximated 
Hessian matrix will be larger than zero. Therefore, with this approximation (Equation 12.24), it can be 
sure that matrix H is always invertible.

By combining Equations 12.23 and 12.24, the update rule of Levenberg–Marquardt algorithm can be 
presented as

 w w J J I J ek k k
T

k k k+
−

= − +( )1
1

µ  (12.25)

As the combination of the steepest descent algorithm and the Gauss–Newton algorithm, the Levenberg–
Marquardt algorithm switches between the two algorithms during the training process. When the com-
bination coefficient μ is very small (nearly zero), Equation 12.25 is approaching to Equation 12.23 and 
Gauss–Newton algorithm is used. When combination coefficient μ is very large, Equation 12.25 approx-
imates to Equation 12.4 and the steepest descent method is used.

If the combination coefficient μ in Equation 12.25 is very big, it can be interpreted as the learning 
coefficient in the steepest descent method (12.4):

 α
µ

= 1  (12.26)

Table 12.1 summarizes the update rules for various algorithms.

Table 12.1 Specifications of Different Algorithms

Algorithms Update Rules Convergence Computation Complexity

EBP algorithm wk+1 = wk − αgk Stable, slow Gradient
Newton algorithm w wk k k k+

−= −1
1H g Unstable, fast Gradient and Hessian

Gauss–Newton algorithm w w ek k k
T

k k k+
−

= − ( )1
1

J J J Unstable, fast Jacobian

Levenberg–Marquardt algorithm w w J J I J ek k k
T

k k k+

−
= − +( )1

1
µ Stable, fast Jacobian

NBN algorithm [08WC]a w wk k k k+
−= −1

1Q g Stable, fast Quasi Hessiana

a Reference Chapter 12.

K10149_C012.indd   7 9/3/2010   2:22:58 PM



12-8 Intelligent Systems

12.3   Algorithm Implementation

In order to implement the Levenberg–Marquardt algorithm for neural network training, two problems 
have to be solved: how does one calculate the Jacobian matrix, and how does one organize the training 
process iteratively for weight updating.

In this section, the implementation of training with the Levenberg–Marquardt algorithm will be 
introduced in two parts: (1) calculation of Jacobian matrix; (2) training process design.

12.3.1   Calculation of Jacobian Matrix

Different from Section 12.2, in the computation followed, j and k are used as the indices of neurons, 
from 1 to nn, where nn is the number of neurons contained in a topology; i is the index of neuron inputs, 
from 1 to ni, where ni is the number of inputs and it may vary for different neurons.

As an introduction of basic concepts of neural network training, let us consider a neuron j with ni 
inputs, as shown in Figure 12.2. If neuron j is in the first layer, all its inputs would be connected to 
the inputs of the network, otherwise, its inputs can be connected to outputs of other neurons or to net-
works inputs if connections across layers are allowed.

Node y is an important and flexible concept. It can be yj,i, meaning the ith input of neuron j. It also 
can be used as yj to define the output of neuron j. In the following derivation, if node y has one index 
then it is used as a neuron output node, but if it has two indices (neuron and input), it is a neuron 
input node.
The output node of neuron j is calculated using

 y f netj j j= ( )  (12.27)

where fj is the activation function of neuron j and net value netj is the sum of weighted input nodes of 
neuron j:

 net w yj j i j i
i

ni

= +
=

∑ , ,

1

wj,0  (12.28)

where
yj,i is the ith input node of neuron j, weighted by wj,i

wj,0 is the bias weight of neuron j

AQ4

fj(netj) Fm,j (yj)
om

wj,1

yj
wj,2

wj,i

+1

yj,1

yj,2

yj,i

yj,ni–1

wj,ni–1

yj,ni

wj,ni

wj,0

…

…

Figure 12.2 Connection of a neuron j with the rest of the network. Nodes yj,i could represent network inputs or 
outputs of other neurons. Fm,j(yj) is the nonlinear relationship between the neuron output node yj and the network 
output om.
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Using Equation 12.28, one may notice that derivative of netj is

 ∂
∂

=net
w

yj

j i
j i

,
,  (12.29)

and slope sj of activation function fj is
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Between the output node yj of a hidden neuron j and network output om, there is a complex nonlinear 
relationship (Figure 12.2):

 o F ym m j j= , ( )  (12.31)

where om is the mth output of the network.
The complexity of this nonlinear function Fm,j(yj) depends on how many other neurons are between 

neuron j and network output m. If neuron j is at network output m, then om = yj and ′ =F ymj j( ) 1, where 
′Fmj is the derivative of nonlinear relationship between neuron j and output m.

The elements of Jacobian matrix in Equation 12.16 can be calculated as
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Combining with Equations 12.28 through 12.30, 12.31 can be rewritten as

 
∂
∂

= − ′e
w
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j i
mj j j i
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,
,  (12.33)

where ′Fmj is the derivative of nonlinear function between neuron j and output m.
The computation process for Jacobian matrix can be organized according to the traditional backprop-

agation computation in first-order algorithms (like the EBP algorithm). But there are also differences 
between them. First of all, for every pattern, in the EBP algorithm, only one backpropagation process is 
needed, while in the Levenberg–Marquardt algorithm the backpropagation process has to be repeated 
for every output separately in order to obtain consecutive rows of the Jacobian matrix (Equation 12.16). 
Another difference is that the concept of backpropagation of δ parameter [N89] has to be modified. In 
the EBP algorithm, output errors are parts of the δ parameter:

 δ j j mj m
m

M

s F e= ′
=

∑
1

 (12.34)

In the Levenberg–Marquardt algorithm, the δ parameters are calculated for each neuron j and each 
output m, separately. Also, in the backpropagation process, the error is replaced by a unit value [TM94]:

 δm j j mjs F, = ′  (12.35)

By combining Equations 12.33 and 12.35, elements of the Jacobian matrix can be calculated by
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12-10 Intelligent Systems

There are two unknowns in Equation 12.36 for the Jacobian matrix computation. The input node, yj,i, 
can be calculated in the forward computation (signal propagating from inputs to outputs); while δm,j is 
obtained in the backward computation, which is organized as errors backpropagating from output neu-
rons (output layer) to network inputs (input layer). At output neuron m (j = m), δm,j = sm.

For better interpretation of forward computation and backward computation, let us consider the 
three-layer multilayer perceptron network (Figure 12.3) as an example.

For a given pattern, the forward computation can be organized in the following steps:

 a. Calculate net values, slopes, and outputs for all neurons in the first layer:

 net I w wj i j i
i

ni

j
1 1

1

0
1= +

=
∑ , ,  (12.37)

 y f netj j j
1 1 1= ( )  (12.38)

 s f
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j

1
1
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∂

 (12.39)

  where
Ii are the network inputs
the superscript “1” means the first layer
j is the index of neurons in the first layer

 b. Use the outputs of the first layer neurons as the inputs of all neurons in the second layer, do a 
similar calculation for net values, slopes, and outputs:

 net y w wj i j i
i

n

j
2 1 2

1

0
2

1

= +
=

∑ , ,  (12.40)

 y f netj j j
2 2 2= ( )  (12.41)

n1

+1 +1 +1

I1

I2

I3

Ini

n2 no
O1

O2

Om

Ono

… … … …

Figure 12.3 Three-layer multilayer perceptron network: the number of inputs is ni, the number of outputs is n0, 
and n1 and n2 are the numbers of neurons in the first and second layers separately.
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 s f
netj

j

j

2
2

2= ∂
∂

 (12.42)

 c. Use the outputs of the second layer neurons as the inputs of all neurons in the output layer (third 
layer), do a similar calculation for net values, slopes, and outputs:

 net y w wj i j i
i

n

j
3 2 3

1

0
3

2

= +
=

∑ , ,  (12.43)

 o f netj j j= ( )3 3  (12.44)

 s f
netj

j

j

3
3

3= ∂
∂

 (12.45)

  After the forward calculation, node array y and slope array s can be obtained for all neurons with 
the given pattern.

  With the results from the forward computation, for a given output j, the backward computation 
can be organized as

 d. Calculate error at the output j and initial δ as the slope of output j:

 e d oj j j= −  (12.46)

 δ j j js,
3 3=  (12.47)

 δ j k,
3 0=  (12.48)

  where
dj is the desired output at output j
oj is the actual output at output j obtained in the forward computation
δ j j,
3  is the self-backpropagation

δ j k,
3  is the backpropagation from other neurons in the same layer (output layer)

 e. Backpropagate δ from the inputs of the third layer to the outputs of the second layer

 δ δj k j k j jw, , ,
2 3 3=  (12.49)

  where k is the index of neurons in the second layer, from 1 to n2.
 f. Backpropagate δ from the outputs of the second layer to the inputs of the second layer

 δ δj k j k ks, ,
2 2 2=  (12.50)

  where k is the index of neurons in the second layer, from 1 to n2.
 g. Backpropagate δ from the inputs of the second layer to the outputs of the first layer

 δ δj k j i j i
i

n

w, , ,
1 2 2

1

2

=
=

∑  (12.51)

  where k is the index of neurons in the first layer, from 1 to n1.
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 h. Backpropagate δ from the outputs of the first layer to the inputs of the first layer

 δ δj k j k ks, ,
1 1 1=  (12.52)

  where k is the index of neurons in the second layer, from 1 to n1.

For the backpropagation process of other outputs, the steps (d)–(h) are repeated.
By performing the forward computation and backward computation, the whole 𝛅 array and y array 

can be obtained for the given pattern. Then related row elements (no rows) of Jacobian matrix can be 
calculated by using Equation 12.36.

For other patterns, by repeating the forward and backward computation, the whole Jacobian matrix 
can be calculated.

The pseudo code of the forward computation and backward computation for Jacobian matrix in the 
Levenberg–Marquardt algorithm is shown in Figure 12.4.

12.3.2   Training Process Design

With the update rule of the Levenberg–Marquardt algorithm (Equation 12.25) and the computation of 
Jacobian matrix, the next step is to organize the training process.

According to the update rule, if the error goes down, which means it is smaller than the last error, 
it implies that the quadratic approximation on total error function is working and the combination 
coefficient μ could be changed smaller to reduce the influence of gradient descent part (ready to speed 
up). On the other hand, if the error goes up, which means it’s larger than the last error, it shows that it’s 
necessary to follow the gradient more to look for a proper curvature for quadratic approximation and 
the combination coefficient μ is increased.

for all patterns 
% Forward computation 
for all layers 

for all neurons in the layer 
calculate net;         % Equation (12.28)
calculate output;    % Equation (12.27)
calculate slope;      % Equation (12.30)

end; 
end; 

%Backward computation 
initial delta as slope;  
for all outputs 

calculate error; 
for all layers 

for all ne

urons in the previous layer 
for all neurons in the current layer 

multiply delta through weights 
sum the backpropagated delta at proper nodes 

end; 
multiply delta by slope; 

end; 
end;

Figure 12.4 Pseudo code of forward computation and backward computation implementing Levenberg–
Marquardt algorithm.

AQ5
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Therefore, the training process using Levenberg–Marquardt algorithm could be designed as follows:

 i. With the initial weights (randomly generated), evaluate the total error (SSE).
 ii. Do an update as directed by Equation 12.25 to adjust weights.
 iii. With the new weights, evaluate the total error.
 iv. If the current total error is increased as a result of the update, then retract the step (such as reset 

the weight vector to the precious value) and increase combination coefficient μ by a factor of 10 or 
by some other factors. Then go to step ii and try an update again.

 v. If the current total error is decreased as a result of the update, then accept the step (such as keep 
the new weight vector as the current one) and decrease the combination coefficient μ by a factor 
of 10 or by the same factor as step iv.

 vi. Go to step ii with the new weights until the current total error is smaller than the required value.

The flowchart of the above procedure is shown in Figure 12.5.

12.4   Comparison of Algorithms

In order to illustrate the advantage of the Levenberg–Marquardt algorithm, 
let us use the parity-3 problem (see Figure 12.6) as an example and make a 
comparison among the EBP algorithm, the Gauss–Newton algorithm, and 
the Levenberg algorithm.

Three neurons in multilayer perceptron network (Figure 12.7) are used 
for training, and the required training error is 0.01. In order to compare 
the convergent rate, for each algorithm, 100 trials are tested with randomly 
generated weights (between −1 and 1).

wk , m = 1

m = m + 1

wk+1 =wk –(JT
k J+ μI)–1 Jk ekm ≤ 5

μ = μ × 10
restore wk

m > 5

wk =wk+1

Ek+1 > Ek Ek+1 Ek+1 ≤ Ek

Ek+1 ≤ Emax

Ek

Jacobian matrix computation μ = μ ÷ 10
wk =wk+1

Error evaluation

Error evaluation

End

Figure 12.5 Block diagram for training using Levenberg–Marquardt algorithm: wk is the current weight, wk+1 
is the next weight, Ek+1 is the current total error, and Ek is the last total error.
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Figure 12.6 Training 
patterns of the parity-3 
problem.
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Figure 12.7 Three neurons in multilayer perceptron network.
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Figure 12.8 Training results of parity-3 problem: (a) EBP algorithm (α = 1), (b) EBP algorithm (α = 100) (c) 
Gauss–Newton algorithm, and (d) Levenberg–Marquardt algorithm
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The training results are shown in Figure 12.8 and the comparison is presented in Table 12.2. One 
may notice that: (1) for the EBP algorithm, the larger the training constant α is, the faster and less 
stable the training process will be; (2) Levenberg–Marquardt is much faster than the EBP algorithm 
and more stable than the Gauss–Newton algorithm.

For more complex parity-N problems, the Gauss–Newton method cannot converge at all, and the 
EBP algorithm also becomes more inefficient to find the solution, while the Levenberg–Marquardt algo-
rithm may lead to successful solutions.

12.5   Summary

The Levenberg–Marquardt algorithm solves the problems existing in both gradient descent method and 
the Gauss–Newton method for neural-networks training, by the combination of those two algorithms. 
It is regarded as one of the most efficient training algorithms [TM94].

However, the Levenberg–Marquardt algorithm has its flaws. One problem is that the Hessian matrix 
inversion needs to be calculated each time for weight updating and there may be several updates in each 
iteration. For small size networks training, the computation is efficient, but for large networks, such as 
image recognition problems, this inversion calculation is going to be a disaster and the speed gained 
by second-order approximation may be totally lost. In that case, the Levenberg–Marquardt algorithm 
may be even slower than the steepest descent algorithm. Another problem is that the Jacobian matrix 
has to be stored for computation, and its size is P × M × N, where P is the number of patterns, M is the 
number of outputs, and N is the number of weights. For large-sized training patterns, the memory cost 
for Jacobian matrix storage may be too huge to be practical. Also, the Levenberg–Marquardt algorithm 
was implemented only for multilayer perceptron networks.

Even though there are still some problems not solved for the Levenberg–Marquardt training, for 
small- and medium-sized networks and patterns, the Levenberg–Marquardt algorithm is remarkably 
efficient and strongly recommended for neural network training.
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