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11.1  �Introduction

The concept of systems that can be learned was well described over half a century ago by Nilsson [N65] 
in his book Learning Machines where he summarized many developments of that time. The publication 
of the Mynsky and Paper [MP69] book slowed down artificial neural network research, and the mathe-
matical foundation of the back-propagation algorithm by Werbos [W74] went unnoticed. A decade later, 
Rumelhart et al. [RHW86] showed that the error back-propagation (EBP) algorithm effectively trained 
neural networks [W96,W02]. Since that time many learning algorithms have been developed and only 
a few of them can efficiently train multilayer neuron networks. But even the best learning algorithms 
currently known have difficulty training neural networks with a reduced number of neurons.

Similar to biological neurons, the weights in artificial neurons are adjusted during a training pro-
cedure. Some use only local signals in the neurons, others require information from outputs; some 
require a supervisor who knows what outputs should be for the given patterns, and other unsupervised 
algorithms need no such information. Common learning rules are described in the following sections.

11.2  �Foundations of Neural Network Learning

Neural networks can be trained efficiently only if networks are transparent so small changes in weights’ 
values produce changes on neural outputs. This is not possible if neurons have hard-activation functions. 
Therefore, it is essential that all neurons have soft activation functions (Figure 11.1).

AQ1

11
Neural Networks 

Learning

11.1	 Introduction..................................................................................... 11-1
11.2	 Foundations of Neural Network Learning.................................. 11-1
11.3	 Learning Rules for Single Neuron................................................. 11-3

Hebbian Learning Rule  •  Correlation Learning Rule  •  Instar 
Learning Rule  •  Winner Takes All  •  Outstar Learning 
Rule  •  Widrow–Hoff LMS Learning Rule  •  Linear 
Regression  •  Delta Learning Rule

11.4	 Training of Multilayer Networks.................................................. 11-7
Error Back-Propagation Learning  •  Improvements 
of EBP  •  Quickprop Algorithm  •  RPROP-Resilient Error 
Back Propagation  •  Back Percolation  •  Delta-Bar-Delta

11.5	 Advanced Learning Algorithms.................................................. 11-13
Levenberg–Marquardt Algorithm  •  Neuron by Neuron

11.6	 Warnings about Neural Network Training................................11-16
11.7	 Conclusion.......................................................................................11-16
References....................................................................................................11-17

Bogdan M. 
Wilamowski
Auburn University

K10149_C011.indd   1 9/3/2010   12:16:53 AM



11-2	 Intelligent Systems

Neurons strongly respond to input patterns if weights’ values are similar to incoming signals. Let us 
analyze the neuron shown in Figure 11.2 with five inputs, and let us assume that input signal is binary 
and bipolar (−1 or +1). For example, inputs X = [1, −1, 1, −1, −1] and also weights W = [1, −1, 1, −1, −1] 
then the net value

	
net x wi i

i

T= = =
=

∑
1

5

5XW
	

(11.1)

This is maximal net value, because for any other input signals the net value will be smaller. For example, 
if input vector differs from the weight vector by one bit (it means the Hamming distance HD = 1), then 
the net = 3. Therefore,

	
net x w n HDi i

i

n
T= = = −

=
∑

1

2XW
	

(11.2)

where
n is the size of the input 
HD is the Hamming distance between input pattern X and the weight vector W.

This is true for binary bipolar values, but this concept can be extended to weights and patterns with 
analog values, as long as both lengths of the weight vector and input pattern vectors are the same. 
Therefore, the weights’ changes should be proportional to the input pattern

	 ∆W X~ 	 (11.3)

In other words, the neuron receives maximum excitation if input pattern and weight vector are equal. 
The learning process should continue as long as the network produces wrong answers. Learning may 
stop if there are no errors on the network outputs. This implies the rule that weight change should be 
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Figure 11.1  Neurons in the trainable network must have soft activation functions.
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Figure 11.2  Neuron as the Hamming distance classifier.
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Neural Networks Learning	 11-3

proportional to the error. This rule is used in the popular EBP algorithm. Unfortunately, when errors 
become smaller, then weight corrections become smaller and the training process has very slow asymp-
totic character. Therefore, this rule is not used in advanced fast-learning algorithms such as LM [HM94] 
or NBN [WCKD08,W09,WY10].

11.3  �Learning Rules for Single Neuron

11.3.1  �Hebbian Learning Rule

The Hebb [49H] learning rule is based on the assumption that if two neighbor neurons must be acti-
vated and deactivated at the same time, then the weight connecting these neurons should increase. For 
neurons operating in the opposite phase, the weight between them should decrease. If there is no signal 
correlation, the weight should remain unchanged. This assumption can be described by the formula

	 ∆ ij i jw  = cx o 	 (11.4)

where
wij is the weight from ith to jth neuron
c is the learning constant
xi is the signal on the ith input
oj is the output signal

The training process usually starts with values of all weights set to zero. This learning rule can be used 
for both soft- and hard-activation functions. Since desired responses of neurons are not used in the 
learning procedure, this is the unsupervised learning rule. The absolute values of the weights are usually 
proportional to the learning time, which is undesired.

11.3.2  �Correlation Learning Rule

The correlation learning rule is based on a similar principle as the Hebbian learning rule. It assumes that 
weights between simultaneously responding neurons should be largely positive, and weights between 
neurons with opposite reaction should be largely negative.

Contrary to the Hebbian rule, the correlation rule is the supervised learning. Instead of actual 
response, oj, the desired response, dj, is used for the weight-change calculation

	 ∆ ij i jw  = cx d 	 (11.5)

where dj is the desired value of output signal. This training algorithm usually starts with initialization 
of weights to zero.

11.3.3  �Instar Learning Rule

If input vectors and weights are normalized, or if they have only binary bipolar values (−1 or +1), then 
the net value will have the largest positive value when the weights and the input signals are the same. 
Therefore, weights should be changed only if they are different from the signals

	 ∆w c x wi i i= −( ) 	 (11.6)

Note that the information required for the weight is taken only from the input signals. This is a very local 
and unsupervised learning algorithm [G69].
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11-4	 Intelligent Systems

11.3.4  �Winner Takes All

The winner takes all (WTA) is a modification of the instar algorithm, where weights are modified only 
for the neuron with the highest net value. Weights of remaining neurons are left unchanged. Sometimes 
this algorithm is modified in such a way that a few neurons with the highest net values are modified 
at the same time. Although this is an unsupervised algorithm because we do not know what desired 
outputs are, there is a need for a “judge” or “supervisor” to find a winner with a largest net value. The 
WTA algorithm, developed by Kohonen [K88], is often used for automatic clustering and for extracting 
statistical properties of input data.

11.3.5  �Outstar Learning Rule

In the outstar learning rule, it is required that weights connected to a certain node should be equal to 
the desired outputs for the neurons connected through those weights

	 ∆w c d wij j ij= −( ) 	 (11.7)

where
dj is the desired neuron output
c is the small learning constant, which further decreases during the learning procedure

This is the supervised training procedure, because desired outputs must be known. Both instar and 
outstar learning rules were proposed by Grossberg [G69].

11.3.6  �Widrow–Hoff LMS Learning Rule

Widrow and Hoff [WH60] developed a supervised training algorithm that allows training a neuron for 
the desired response. This rule was derived so the square of the difference between the net and output 
value is minimized. The Errorj for jth neuron is

	
j

p=

P

jp jpError  =  net d
1

2∑ −( )
	

(11.8)

where
P is the number of applied patterns
djp is the desired output for jth neuron when pth pattern is applied
net is given by

	
net = w x  

i=1

n

i i∑
	

(11.9)

This rule is also known as the least mean square (LMS) rule. By calculating a derivative of Equation 11.8 
with respect to wij to find the gradient, the formula for the weight change can be found:

	

∂
∂

−( )∑Error
w

= x   d netj

ij
ij

p=

P

jp jp2
1 	

(11.10)
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so

	
∆ ij ij

p=

P

jp jpw  = cx   d   net
1

∑ −( )
	

(11.11)

Note that weight change, Δwij, is a sum of the changes from each of the individual applied patterns. 
Therefore, it is possible to correct the weight after each individual pattern is applied. This process is 
known as incremental updating. The cumulative updating is when weights are changed after all patterns 
have been applied once. Incremental updating usually leads to a solution faster, but it is sensitive to the 
order in which patterns are applied. If the learning constant c is chosen to be small, then both methods 
give the same result. The LMS rule works well for all types of activation functions. This rule tries to 
enforce the net value to be equal to desired value. Sometimes, this is not what the observer is looking for. 
It is usually not important what the net value is, but it is important if the net value is positive or negative. 
For example, a very large net value with a proper sign will result in a correct output and in a large error 
as defined by Equation 11.8, and this may be the preferred solution.

11.3.7  �Linear Regression

The LMS learning rule requires hundreds of iterations, using formula (11.11), before it converges to 
the proper solution. If the linear regression is used, the same result can be obtained in only one step 
[W02,AW95]. Considering one neuron and using vector notation for a set of the input patterns X applied 
through weight vector w, the vector of net values net is calculated using

	 Xw  netT = 	 (11.12)

where
X is the rectangular array (n + 1) × p of input patterns
n is the number of inputs
p is the number of patterns

Note that the size of the input patterns is always augmented by one, and this additional weight is respon-
sible for the threshold (see Figure 11.3).

This method, similar to the LMS rule, assumes a linear activation function, and so the net values 
should be equal to desired output values d

	 Xw  = dT
	 (11.13)

Usually, p > n + 1, and the preceding equation can be solved only in 
the least mean square error sense. Using the vector arithmetic, the 
solution is given by

	
W = X X  X  dT T( )−1

	 (11.14)

The linear regression that is an equivalent of the LMS algorithm 
works correctly only for linear activation functions. For typical sig-
moidal activation functions, this learning rule usually produces a 
wrong answer. However, when it is used iteratively by computing 
ΔW instead of W, correct results can be obtained (see Figure 11.4).
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net = ∑ wixi + wn+1

n

i=1

wn+1 = −t

Figure 11.3  Single neuron with 
the threshold adjusted by additional 
weight wn+1.
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11-6	 Intelligent Systems

11.3.8  �Delta Learning Rule

The LMS method assumes linear activation function net = o, and the obtained solution is sometimes far 
from optimum as it is shown in Figure 11.4 for a simple two dimensional case, with four patterns belonging 
to two categories. In the solution obtained using the LMS algorithm, one pattern is misclassified. The most 
common activation functions and its derivatives are for bipolar neurons:

	
o f net

k net
f o k o= =







′ = −( )( ) tanh ( ) .
2

0 5 1 2

	
(11.15)

and for unipolar neurons

	
o f net

k net
f o ko o= =

+ −( ) ′ = −( )( )
exp

( )1
1

1
	

(11.16)

where k is the slope of the activation function at net = 0. If error is defined as

	
j

p=

P

jp jpError  =  o d
1

2∑ −( )
	

(11.17)

then the derivative of the error with respect to the weight wij is

	

dError
dw

 =   o d
df net

dnet
xj

ij p=1

P

jp jp
jp

jp
i2

( )∑ −( )
	

(11.18)

where o = f(net) are given by (11.15) or (11.16) and the net is given by (11.10). Note that this derivative is 
proportional to the derivative of the activation function f ′(net).
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Figure 11.4  Single neuron training to separate patterns using LMS rule and using iterative regression with 
sigmoidal activation function.
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In case of the incremental training for each applied pattern

	 ∆w cx f d o cxij i j j j i j= ′ − =( ) δ 	 (11.15′)

Using the cumulative approach, the neuron weight, wij, should be changed after all patterns are applied:

	

∆w cx d o f cxij i jp jp
p

P

jp i pj
p

P

= − =
= =

∑ ∑( )
1 1

′ δ

	

(11.16′)

The weight change is proportional to input signal xi, to the difference between desired and actual 
outputs djp − ojp, and to the derivative of the activation function ′f jp. Similar to the LMS rule, weights 
can be updated using both ways: incremental and cumulative methods. One-layer neural networks are 
relatively easy to train [AW95,WCM99]. In comparison to the LMS rule, the delta rule always leads to 
a solution close to the optimum. When the delta rule is used, then all patterns on Figure 11.4 are 
classified correctly.

11.4  �Training of Multilayer Networks

The multilayer neural networks are more difficult to train. The most commonly used feed-forward 
neural network is multilayer perceptron (MLP) shown in Figure 11.5. Training is difficult because 
signals propagate by several nonlinear elements (neurons) and there are many signal paths. The first 
algorithm for multilayer training was error back-propagation algorithm [W74,RHW86], and it is still 
often used because of its simplicity, even though the training process is very slow and training of 
close-to-optimal networks seldom produces satisfying results.

11.4.1  �Error Back-Propagation Learning

The delta learning rule can be generalized for multilayer networks [W74,RHW86]. Using a similar 
approach, the gradient of the global error can be computed with respect to each weight in the network, 
as was described for the delta rule. The difference is that on top of a nonlinear activation function of a 
neuron, there is another nonlinear term F{z} as shown in Figure 11.6. The learning rule for EBP can be 
derived in a similar way as for the delta learning rule:

AQ2

+1 +1 +1

Hidden
layer #2

Output
layer

Hidden
layer #1

Input
layer

Figure 11.5  An example of the four layer (4-5-6-3) feed-forward neural network, which is sometimes known 
also as multilayer perceptron (MLP) network.
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11-8	 Intelligent Systems

	
o F f w x w x w xp p p n n= + + +( ){ }1 1 2 2 �

	
(11.17′)

	

TE d op p
p

np

= − 
=

∑
1

2

	

(11.18′)

	

d TE
dw

d o F z f net x
i

p p p p pi
p

np( ) = − −( ) ′{ } ′( ) 
=

∑2
1 	

(11.19)

The weight update for a single pattern p is

	
∆w xp p p o p p pd o F z f net= −( ) ′{ } ′( )α

	
(11.20)

In the case of batch training (weights are changed once all patterns are applied),

	

∆ ∆w w x= ( ) = −( ) ′{ } ′′ ( ) 
= =

∑ ∑α αp
p

np

p p o p p p
p

np

d o F z f net
1 1 	

(11.21)

The main difference is that instead of using just derivative of activation function f ′ as in the delta 
learning rule, the product of f ′F′ must be used. For multiple outputs as shown in Figure 11.7, the resulted 
weight change would be the sum of all the weight changes from all outputs calculated separately for each 
output using Equation 11.20. In the EBP algorithm, the calculation process is organized in such a 
way that error signals, Δp, are being propagated through layers from outputs to inputs as it is shown in 
Figure 11.8. Once the delta values on neurons inputs are found, then weights for this neuron are updated 
using a simple formula:

	 ∆ ∆w xp p p= α 	 (11.22)

+1

f (x)
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Figure 11.7  Error back propagation for neural networks with multiple outputs.
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f (x) F{z}
xp opzp

Figure 11.6  Error back propagation for neural networks with one output.
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where Δ was calculated using the error back-propagation process for all outputs K:

	
∆ p pk pk k pk pk

k

K

d o F z f net= −( ) ′{ } ′( ) 
=

∑
1 	

(11.23) 

(11.24) 

The calculation of the back-propagating error is kind of artificial to the real nervous system. Also, the 
error back-propagation method is not practical from the point of view of hardware realization. Instead, 
it is simpler to find signal gains Aj,k from the input of the jth neuron to each of the network output k 
(Figure 11.9). For each pattern, the Δ value for a given neuron, j, can be now obtained for each output k:

	 ∆ j k j k k kA o d, ,= −( ) 	 (11.25)
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Figure 11.8  Calculation errors in neural network using error back-propagation algorithm. The symbols fi and 
gi represent slopes of activation functions.
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Figure 11.9  Finding gradients using evaluation of signal gains, Aj,k.
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and for all outputs for neuron j

	
∆ ∆j j k

k

K

jk k k
k

K

A o d= = −( ) 
= =

∑ ∑,

1 1 	
(11.26)

Note that the above formula is general, no matter whether neurons are arranged in layers or not. One 
way to find gains Aj,k is to introduce an incremental change on the input of the jth neuron and observe 
the change in the kth network output. This procedure requires only forward signal propagation, and it 
is easy to implement in a hardware realization. Another possible way is to calculate gains through each 
layer and then find the total gains as products of layer gains. This procedure is equally or less computa-
tion intensive than a calculation of cumulative errors in the error back-propagation algorithm.

11.4.2  �Improvements of EBP

11.4.2.1  �Momentum

The back-propagation algorithm has a tendency for oscillation. In order to smooth up the process, the 
weights increment, Δwij, can be modified according to Rumelhart et al. [RHW86] (Figure 11.10):

	 ij ij ij ijw n  = w n w n   w n( 1) ( ) ( ) ( 1)+ + + −∆ ∆η 	 (11.27)

or according to Sejnowski and Rosenberg [SR87]

	 ij ij ij ijw (n   w n    w n  w n+ = + −( ) + −1) ( ) 1 ( ) ( 1)α η∆ ∆ 	 (11.28)

11.4.2.2  �Gradient Direction Search

The back-propagation algorithm can be significantly accelerated, when after finding components of the 
gradient, weights are modified along the gradient direction until a minimum is reached. This process 
can be carried on without the necessity of computational intensive gradient calculation at each step. The 
new gradient components are calculated once a minimum on the direction of the previous gradient is 
obtained. This process is only possible for cumulative weight adjustment. One method to find a minimum 
along the gradient direction is the three step process of finding error for three points along gradient 
direction and then, using a parabola approximation, jump directly to the minimum (Figure 11.11).

11.4.2.3  �Elimination of Flat Spots

The back-propagation algorithm has many disadvantages that lead to very slow convergence. One of 
the most painful is that in the back-propagation algorithm, it has difficulty to train neurons with the 

AQ4

Figure 11.10  Solution process without and with momentum term.
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maximally wrong answer. In order to understand this problem, let us analyze a bipolar activation function 
shown in Figure 11.12. Maximum error equal 2 exists if the desired output is −1 and actual output is +1. 
At this condition, the derivative of the activation function is close to zero so the neuron is not transpar-
ent for error propagation. In other words, this neuron with large output error will not be trained or it 
will be trained very slowly. In the mean time, other neurons will be trained and weights of this neuron 
would remain unchanged.

To overcome this difficulty, a modified method for derivative calculation was introduced by 
Wilamowski and Torvik [WT93]. The derivative is calculated as the slope of a line connecting the point 
of the output value with the point of the desired value as shown in Figure 11.11:

	
f o o

net netmodif
desired actual

desired actual
= −

− 	
(11.29)

If the computation of the activation derivative as given by

	
′ = − f net k o( ) 1 2

	
(11.30)
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Figure 11.11  Search on the gradient direction before a new calculation of gradient components.
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Figure 11.12  Lack of error back propagation for very large errors.
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is replaced by

	
′ = − − 



























f net k o err( ) 1 1
2

2
2

	
(11.31)

then for small errors

	
′ = − f net k o( ) 1 2

	
(11.32)

and for large errors (err = 2)

	 ′ =f net k( ) 	 (11.33)

Note that for small errors, the modified derivative would be equal to the derivative of activation function 
at the point of the output value. Therefore, modified derivative is used only for large errors, which cannot 
be propagated otherwise.

11.4.3  �Quickprop Algorithm

The fast-learning algorithm using the approach below was proposed by Fahlman [88F], and it is known 
as the quickprop:

	 ∆ ∆w t S t w tij ij ij ij( ) ( ) ( )= − + −α γ 1 	 (11.34)

	
S t

E t
w

w tij
ij

ij( )
( )

( )=
∂ ( )

∂
+

w
η

	
(11.35)

where
α is the learning constant
γ is the memory constant (small 0.0001 range) leads to reduction of weights and limits growth of 

weights
η is the momentum term selected individually for each weight

	

0 01 0 6 0
0

. .< < =
=
α

α
when w or signof   

otherwise
ij ij∆ ∆w

	
(11.36)

	 S t w tij ij( ) ( )∆ > 0 	 (11.37)

	 ∆ ∆w t S t w tij ij ij ij( ) ( ) ( )= − + −α γ 1 	 (11.38)

The momentum term selected individually for each weight is a very important part of this algorithm. 
Quickprop algorithm sometimes reduces computation time hundreds of times.
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11.4.4  �RPROP-Resilient Error Back Propagation

Very similar to EBP, but weights are adjusted without using values of the propagated errors but only its 
sign. Learning constants are selected individually to each weight based on the history:

	
∆w t

E t
w tij ij

ij
( ) sgn

( )
( )

= −
∂ ( )

∂






α

w

	
(11.39)

	
S t

E t
w

w tij
ij

ij( )
( )

( )=
∂ ( )

∂
+

w
η

	
(11.40)

α

α α

αij

ij ij ij

ijt

a t S t S t

b t( )

min , ( )

max
max

=

⋅ −( )( ) ⋅ −( ) >

⋅ −

1 1 0

1

for

(( )( ) ⋅ −( ) <

−( )










, ( )minα

α

for

otherwise

S t S t

t
ij ij

ij

1 0

1

11.4.5  �Back Percolation

Error is propagated as in EBP and then each neuron is “trained” using the algorithm to train one neuron 
such as pseudo inversion. Unfortunately, pseudo inversion may lead to errors, which are sometimes 
larger than 2 for bipolar or larger than 1 for unipolar.

11.4.6  �Delta-Bar-Delta

For each weight, the learning coefficient is selected individually. It was developed for quadratic error 
functions

	

∆α αij

ij ij

ij ij ijt
a S t D t

b t S t D t( )
( )
( )=

−( ) >
− ⋅ −( ) −( ) <

for
for

1 0
1 1 0

00 otherwise









	

(11.41)

	
D t E t

w tij
ij

( ) = ∂ ( )
∂ ( ) 	

(11.42)

	 S t D t S tij ij ij( ) ( )= −( ) + −( )1 1ξ ξ 	 (11.43)

11.5  �Advanced Learning Algorithms

Let us introduce basic definitions for the terms used in advanced second-order algorithms. In the 
first-order methods such as EBP, which is the steepest descent method, the weight changes are propor-
tional to the gradient of the error function:

	 w w gk k k+ = −1 α 	 (11.44)
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where g is gradient vector.

	

gradient g =

∂
∂
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For the second-order Newton method, the Equation 11.42 is replaced by

	 w w A gk k k k+
−= −1

1
	 (11.46)

where Ak is Hessian.
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(11.47)

Unfortunately, it is very difficult to find Hessians so in the Gauss–Newton method the Hessian is 
replaced by product of Jacobians:

	 A J J= 2 T
	 (11.48)

where
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(11.49)
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Knowing Jacobian, J, the gradient can be calculated as

	 g J e= 2 T
	 (11.50)

Therefore, in Gauss–Newton algorithm, the weight update is calculated as

	
w w J J J ek k k

T
k k

T
+

−
= − ( )1

1

	
(11.51)

This method is very fast, but it works well only for systems that are almost linear and this is not true for 
neural networks.

11.5.1  �Levenberg–Marquardt Algorithm

Levenberg and Marquardt, in order to secure convergence, modified Equation (11.46) to the form

	
w w J J I J ek k k

T
k k

T
+

−
= − +( )1

1
µ

	
(11.52)

where the μ parameter changed during the training process. If μ = 0 algorithm works as Gauss–Newton 
method and for large values of μ algorithm works as steepest decent method.

The Levenberg–Marquardt algorithm was adopted for neural network training by Hagan and Menhaj 
[HM94], and then Demuth and Beale [DB04] adopted the LM algorithm in MATLAB• Neural Network 
Toolbox.

The LM algorithm is very fast, but there are several problems:

	 1.	 It was written only for MLP networks, which are not the best architectures for neural networks.
	 2.	 It can handle only problems with relatively small patterns because the size of Jacobian is propor-

tional to the number of patterns.

11.5.2  �Neuron by Neuron

The recently developed neuron by neuron (NBN) algorithm [WCKD08,W09,YW09] is very fast. Figures 
11.13 and 11.14 show speed comparison of EBP and NBN algorithms to solve the parity-4 problem.

The NBN algorithm eliminates most deficiencies of the LM algorithm. It can be used to train neural 
networks with arbitrarily connected neurons (not just MLP architecture). It does not require to com-
pute and to store large Jacobians, so it can train problems with basically unlimited number of patterns 
[WY10]. Error derivatives are computed only in forward pass, so back-propagation process is not needed. 
It is equally fast, but in the case of networks with multiple outputs faster than LM algorithm. It can train 
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1.0E–03
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Figure 11.13  Sum of squared errors as a function of number of iterations for the parity-4 problem using EBP 
algorithm, and 100 runs.
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networks that are impossible to train with other algorithms. A more detailed description of the NBN 
algorithm is given in another chapter.

11.6  �Warnings about Neural Network Training

It is much easier to train neural networks where the number of neurons is larger than required. But, with 
a smaller number of neurons the neural network has much better generalization abilities. It means it will 
respond correctly for patterns not used for training. If too many neurons are used, then the network can be 
overtrained on the training patterns, but it will fail on patterns never used in training. With a smaller number 
of neurons, the network cannot be trained to very small errors, but it may produce much better approxima-
tions for new patterns. The most common mistake made by many researchers is that in order to speed up the 
training process and to reduce the training errors, they use neural networks with a larger number of neurons 
than required. Such networks would perform very poorly for new patterns not used for training [W09].

11.7  �Conclusion

There are several reasons for the frustration of people trying to adapt neural networks for their research:

	 1.	 In most cases, the relatively inefficient MLP architecture is used instead of more powerful topologies 
[WHM03] where connections across layers are allowed.

	 2.	 When a popular learning software is used, such as EBP, the training process is not only very time 
consuming, but frequently the wrong solution is obtained. In other words, EBP is often not able to 
find solutions for neural network with the smallest possible number of neurons.

	 3.	 It is easy to train neural networks with an excessive number of neurons. Such complex archi-
tectures for a given pattern can be trained to very small errors, but such networks do not have 
generalization abilities. Such networks are not able to deliver a correct response to new patterns, 
which were not used for training [W09,HW09]. In other words, the main purpose of using neural 
networks is missed. In order to properly utilize neural networks, its architecture should be as 
simple as possible to perform the required function.

	 4.	 In order of find solutions for close-to-optimal architectures, second-order algorithms such as 
NBN or LM should be used [WCKD07,WCKD08]. Unfortunately, the LM algorithm adopted in 
the popular MATLAB NN Toolbox can handle only MLP topology without connections across 
layers and these topologies are far from optimal.

The importance of the proper learning algorithm was emphasized, since with an advanced learning 
algorithm we can train those networks, which cannot be trained with simple algorithms. The software 
used in this work, which implements the NBN algorithm, can be downloaded from [WY09].

AQ5
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Figure 11.14  Sum of squared errors as a function of number of iterations for the parity-4 problem using NBN 
algorithm and 100 runs.
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