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6.1  Introduction

Different neural network architectures are widely described in the literature [W89,Z95,W96,WJK99, 
H99,WB01,W07]. The feedforward neural networks allow only for one directional signal flow. 
Furthermore, most of the feedforward neural networks are organized in layers. An example of the three 
layer feedforward neural network is shown in Figure 6.1. This network consists of three input nodes: two 
hidden layers and an output layer. Typical activation functions are shown in Figure 6.2. These continuous 
activation functions allow for the gradient-based training of multilayer networks.

6.2  Special Easy-to-Train Neural Network Architectures

Training of multilayer neural networks is difficult. It is much easier to train a single neuron or a single 
layer of neurons. Therefore, several concepts of neural network architectures were developed where only 
one neuron can be trained at a time. There are also neural network architectures where training is not 
needed [HN87,W02]. This chapter reviews various easy-to-train architectures. Also, it will be shown 
that abilities to recognize patterns strongly depend on the used architectures.

6.2.1  Polynomial Networks

Using nonlinear terms with initially determined functions, the actual number of inputs supplied to the 
one layer neural network is increased. In the simplest case, nonlinear elements are higher order polynomial 
terms of input patterns.
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6-2 Intelligent Systems

The learning procedure for one layer is easy and fast. Figure 6.3 shows an XOR problem solved using 
functional link networks. Figure 6.4 shows a single trainable layer neural network with nonlinear poly-
nomial terms. The learning procedure for one layer is easy and fast.

Note that when the polynomial networks have their limitations, they cannot handle networks with 
many inputs because the number of polynomial terms may grow exponentially.

6.2.2  Functional Link Networks

One-layer neural networks are relatively easy to train, but these networks can solve only linearly sepa-
rated problems. One possible solution for nonlinear problems was elaborated by Pao [P89] using the 
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Figure 6.1 MLP type architecture 3-3-4-1 (without connections across layers).
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Figure 6.2 Typical activation functions: (a) bipolar and (b) unipolar.
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Neural Network Architectures 6-3

functional link network shown in Figure 6.5. Note that the functional link network can be treated as a 
one-layer network, where additional input data are generated off-line using nonlinear transformations.

Note that, when the functional link approach is used, this difficult problem becomes a trivial one. The 
problem with the functional link network is that proper selection of nonlinear elements is not an easy 
task. However, in many practical cases it is not difficult to predict what kind of transformation of input 
data may linearize the problem, so the functional link approach can be used.
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Figure 6.3 Polynomial networks for solution of the XOR problem: (a) using unipolar signals and (b) using 
bipolar signals.
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Figure 6.5 One layer neural network with arbitrary nonlinear terms.
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6-4 Intelligent Systems

6.2.3  Sarajedini and Hecht-Nielsen Network

Figure 6.6 shows a neural network which can calculate the Euclidean distance between two vectors x 
and w. In this powerful network, one may set weights to the desired point w in a multidimensional 
space and the network will calculate the Euclidean distance for any new pattern on the input. The dif-
ficult task is the calculate ‖x‖2, but it can be done off-line for all incoming patterns. A sample output for 
a two-dimensional case is shown in Figure 6.7.

6.2.4  Feedforward Version of the Counterpropagation Network

The counterpropagation network was originally proposed by Hecht-Nilsen [HN87]. In this chapter, a 
modified feedforward version as described by Zurada [Z92] is discussed. This network, which is shown 
in Figure 6.8, requires the number of hidden neurons to be equal to the number of input patterns, or, 
more exactly, to the number of input clusters.
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Figure 6.6 Sarajedini and Hecht-Nielsen neural network.
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Figure 6.7 Output of the Sarajedini and Hecht-Nielsen network is proportional to the square of Euclidean 
distance.
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Neural Network Architectures 6-5

When binary input patterns are considered, then the input weights must be exactly equal to the input 
patterns. In this case,

 net n HDt= = −( )x w x w2 ( , )  (6.1)

where
n is the number of inputs
w are weights
x is the input vector
HD(x, w) is the Hamming distance between input pattern and weights

In order that a neuron in the input layer is reacting just for the stored pattern, the threshold value for 
this neuron should be

 w nn+ = − −1 1( )  (6.2)

If it is required that the neuron must react also for similar patterns, then the threshold should be set to 
wn+1 = −(n − (1 + HD)), where HD is the Hamming distance defining the range of similarity. Since for 
a given input pattern, only one neuron in the first layer may have the value of one and the remaining 
neurons have zero values, the weights in the output layer are equal to the required output pattern.

The network, with unipolar activation functions in the first layer, works as a look-up table. When the 
linear activation function (or no activation function at all) is used in the second layer, then the network 
also can be considered as an analog memory (Figure 6.9) [W03,WJ96].

The counterpropagation network is very easy to design. The number of neurons in the hidden layer 
should be equal to the number of patterns (clusters). The weights in the input layer should be equal to the 
input patterns and, the weights in the output layer should be equal to the output patterns. This simple 
network can be used for rapid prototyping. The counterpropagation network usually has more hidden 
neurons than required.

6.2.5  Learning Vector Quantization

At learning vector quantization (LVQ) network (Figure 6.10), the first layer detects subclasses. The second 
layer combines subclasses into a single class. First layer computes Euclidean distances between input 
pattern and stored patterns. Winning “neuron” is with the minimum distance.
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Figure 6.8 Counterpropagation network.
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6-6 Intelligent Systems

6.2.6  WTA Architecture

The winner-take-all (WTA) network was proposed by Kohonen [K88]. This is basically a one-layer 
network used in the unsupervised training algorithm to extract a statistical property of the input data. 
At the first step, all input data is normalized so that the length of each input vector is the same, and 
usually equal to unity. The activation functions of neurons are unipolar and continuous. The learning 
process starts with a weight initialization to small random values.

Let us consider a neuron shown in Figure 6.11. If inputs are binaries, for example X=[1, −1, 1, −1, −1], 
then the maximum value of net

 net x wi i
i

T= =
=

∑
1

5

XW  (6.3)
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Figure 6.9 Counterpropagation network used as analog memory with analog address.

K10149_C006.indd   6 9/3/2010   2:44:43 PM



Neural Network Architectures 6-7

is when weights are identical to the input pattern W=[1, −1, 1, −1, −1]. The Euclidean distance between 
weight vector W and input vector X is

 W X− = − + − + + −( ) ( ) ( )w x w x w xn n1 1
2

2 2
2 2�  (6.4)

 
W X− = −

=
∑( )w xi i
i

n
2

1  
(6.5)

 W X WW WX XX− = − +T T T2  (6.6)

When the lengths of both the weight and input vectors are normalized to value of 1

 X W= =1 1and  (6.7)

then the equation simplifies to

 W X WX− = −2 2 T

 
(6.8)

Please notice that the maximum value of net value net = 1 is when W and X are identical.
Kohonen WTA networks have some problems:

 1. Important information about length of the vector is lost during the normalization process
 2. Clustering depends on
 a. Order of patterns applied
 b. Number of initial neurons
 c. Initial weights

6.2.7  Cascade Correlation Architecture

The cascade correlation architecture (Figure 6.12) was proposed by Fahlman and Lebiere [FL90]. 
The process of network building starts with a one-layer neural network and hidden neurons are 
added as needed.

In each training step, the new hidden neuron is added and its weights are adjusted to maximize the 
magnitude of the correlation between the new hidden neuron output and the residual error signal on 
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Figure 6.11 Neuron as the Hamming distance classifier.
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6-8 Intelligent Systems

the network output that we are trying to eliminate. The correlation parameter S defined in the following 
equation must be maximized:

 
S    V V E E

o

O

p

P

p po o= − −
= =

∑ ∑
1 1

( )( )
 

(6.9)

where
O is the number of network outputs
P is the number of training patterns
Vp is output on the new hidden neuron
Epo is the error on the network output

By finding the gradient, ΔS/Δwi, the weight adjustment for the new neuron can be found as

 
∆w     E E f xi

o

O

p

P

o po o p ip= −
= =

′∑∑
1 1

σ ( )
 

(6.10)

The output neurons are trained using the delta (backpropagation) algorithm. Each hidden neuron is 
trained just once and then its weights are frozen. The network learning and building process is com-
pleted when satisfactory results are obtained.

6.2.8  Radial Basis Function Networks

The structure of the radial basis function (RBF) network is shown in Figure 6.13. This type of network 
usually has only one hidden layer with special “neurons”. Each of these “neurons” responds only to the 
inputs signals close to the stored pattern.

The output signal hi of the ith hidden “neuron” is computed using formula:

 
hi

i= −
−











exp
2

22
x s

σ  
(6.11)

Note that the behavior of this “neuron” significantly differs from the biological neuron. In this 
“neuron”, excitation is not a function of the weighted sum of the input signals. Instead, the distance 
between the input and stored pattern is computed. If this distance is zero, then the “neuron” responds 
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Figure 6.12 Cascade correlation architecture.
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Neural Network Architectures 6-9

with a maximum output magnitude equal to one. This “neuron” is capable of recognizing certain 
patterns and generating output signals being functions of a similarity.

6.2.9  Implementation of RBF Networks with Sigmoidal Neurons

The network shown in Figure 6.14 has similar property (and power) like RBF networks, but it uses 
only traditional neurons with sigmoidal activation functions [WJ96]. By augmenting the input space 
to another dimension the traditional neural network will perform as a RBF network. Please notice that 
this additional transformation can be made by another neural network. As it is shown in Figure 6.15, 
2 first neurons are creating an additional dimension and then simple 8 neurons in one layer feedforward 
network can solve the two spiral problem. Without this transformation, about 35 neurons are required 
to solve the same problem with neural network with one hidden layer.

6.2.10  Networks for Solution of Parity-N Problems

The most common test benches for neural networks are parity-N problems, which are considered to be 
the most difficult benchmark for neural network training. The simplest parity-2 problem is also known 
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6-10 Intelligent Systems

as the XOR problem. The larger the N, the more difficult it is to solve. Even though parity-N problems are 
very complicated, it is possible to analytically design neural networks to solve them [WHM03,W09]. Let 
us design neural networks for the parity-7 problem using different neural network architectures with 
unipolar neurons.

Figure 6.16 shows the multilayer perceptron (MLP) architecture with one hidden layer. In order to 
properly classify patterns in parity-N problems, the location of zeros and ones in the input patterns 
are not relevant, but it is important how many ones are in the patterns. Therefore, one may assume 
identical weights equal +1 connected to all inputs. Depending on the number of ones in the pattern, 
the net values of neurons in the hidden layer are calculated as a sum of inputs times weights. The 
results may vary from 0 to 7 and will be equal to the number of ones in an input pattern. In order to 
separate these eight possible cases, we need seven neurons in the hidden layer with thresholds equal 
to 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5. Let us assign positive (+1) and negative (−1) weights to outputs 
of consecutive neurons starting with +1. One may notice that the net value of the output neuron 
will be zero for patterns with an odd number of ones and will be one with an even number of ones. 
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Figure 6.15 Solution of two spiral problem using transformation from Figure 6.14 implemented on two 
additional neurons.
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The threshold of +0.5 of the last neuron will just reinforce the same values on the output. The signal 
flow for this network is shown in the table of Figure 6.16.

In summary, for the case of a MLP neural network the number of neurons in the hidden layer is equal 
to N = 7 and total number of neurons is 8. For other parity-N problems and MLP architecture:

 Number of neurons = +N 1  (6.12)

Figure 6.17 shows a solution with bridged multilayer perceptron (BMLP) with connections across lay-
ers. With this approach the neural network can be significantly simplified. Only 3 neurons are needed 
in the hidden layer with thresholds equal to 1.5, 3.5, and 5.5. In this case, all weights associated with out-
puts of hidden neurons must be equal to −2 while all remaining weights in the network are equal to +1. 

All weights = 1 T= 0.5
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i=1 wi*outinet 8 =net 1 + Σ

Figure 6.16 MLP architecture for parity-7 problem. The computation process of the network is shown in 
the table.
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6-12 Intelligent Systems

Signal flow in this BMLP network is shown in the table in Figure 6.17. With bridged connections across 
layers the number of hidden neurons was reduced to (N − 1)/2 = 3 and the total number of neurons is 4. 
For other parity-N problems and BMLP architecture:

 

Number of neurons
for odd parity

for even parity
=

− +

+










N

N

1
2

1

2
1

 

(6.13)

Figure 6.18 shows a solution for the fully connected cascade (FCC) architecture for the same parity-7 
problem. In this case, only 3 neurons are needed with thresholds 3.5, 1.5, and 0.5. The first neuron with 
threshold 3.5 is inactive (out = 0) if the number of ones in an input pattern is less than 4. If the number of 
ones in an input pattern is 4 or more then the first neuron becomes active and with −4 weights attached 
to its output it subtracts −4 from the nets of neurons 2 and 3. Instead of [0 1 2 3 4 5 6 7] these neurons 
will see [0 1 2 3 0 1 2 3]. The second neuron with a threshold of 1.5 and the −2 weight associated with its 
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net1 (from inputs only)
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T= 5.5
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out4 (of output neuron) T= 0.5
net1 =nel – 2*(out1 + out2 + out3)

T= 0.5

Figure 6.17 BMLP architecture with one hidden layer for parity-7 problem. The computation process of the 
network is shown in the table.
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output works in such a way that the last neuron will see [0 1 0 1 0 1 0 1] instead of [0 1 2 3 0 1 2 3]. 
For other parity-N problems and FCC architecture:

 
Number of neurons = + log ( )2 1N

 
(6.14)

6.2.11  Pulse-Coded Neural Networks

Commonly used artificial neurons behave very differently than biological neurons. In biological neu-
rons, information is sent in a form of pulse trains [WJPM96]. As a result, additional phenomena such 
as pulse synchronization play an important role and the pulse coded neural networks are much more 
powerful than traditional artificial neurons. Then can be used very efficiently for example for image 
filtration [WPJ96]. However, their hardware implementation is much more difficult [OW99,WJK99].

6.3  Comparison of Neural Network Topologies

With the design process, as described in section II, it is possible to design neural networks to arbitrarily 
large parity problems using MLP, BMLP, and FCC architectures. Table I shows comparisons of mini-
mum number of neurons required for these three architectures and various parity-N problems.

As one can see from Table 6.1 and Figures 6.16 through 6.18, the MLP architectures are the least efficient 
parity-N application. For small parity problems, BMLP and FCC architectures give similar results. For 
larger parity problems, the FCC architecture has a significant advantage, and this is mostly due to more 
layers used. With more layers one can also expect better results in BMLP, too. These more powerful neural 
network architectures require more advanced software to train them [WCKD07,WCKD08,WH10]. Most 
of the neural network software available in the market may train only MLP networks [DB04,HW09].
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Figure 6.18 FCC architecture for parity-7 problem. The computation process of the network is shown in 
the table.
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6.4  Recurrent Neural Networks

In contrast to feedforward neural networks, recurrent networks neuron outputs could be connected 
with their inputs. Thus, signals in the network can continuously be circulated. Until now, only a limited 
number of recurrent neural networks were described.

6.4.1  Hopfield Network

The single layer recurrent network was analyzed by Hopfield [H82]. This network shown in Figure 6.17 
has unipolar hard threshold neurons with outputs equal to 0 or 1. Weights are given by a symmetrical 
square matrix W with zero elements (wij = 0 for i=j) on the main diagonal. The stability of the system is 
usually analyzed by means of the energy function

 
E w v v

i

N

j

N

ij i j= −
= =

∑∑1
2

1 1  
(6.15)

It was proved that during signal circulation the energy E of the network decreases and system converges 
to the stable points. This is especially true when values of system outputs are updated in the asynchro-
nous mode. This means that at the given cycle, only one random output can be changed to the required 
value. Hopfield also proved that those stable points to which the system converges can be programmed 
by adjusting the weights using a modified Hebbian [H49] rule

 ∆ ∆w w v  vij ji i j= = − −( ) ( )2 1 2 1  (6.16)

Such memory has limited storage capacity. Based on experiments, Hopfield estimated that the maxi-
mum number of stored patterns is 0.15N, where N is the number of neurons.

6.4.2  Autoassociative Memory

Hopfield [H82] extended the concept of his network to autoassociative memories. In the same network 
structure as shown in Figure 6.19, the bipolar neurons were used with outputs equal to −1 of +1. In this 
network pattern, sm are stored into the weight matrix W using autocorrelation algorithm

 
W s s I= −

=
∑
m

M

m m
T M

1  
(6.17)

where
M is the number of stored pattern
i is the unity matrix

TABLe 6.1 Minimum Number of Neurons Required 
for Various Parity-N Problems

Parity-8 Parity-16 Parity-32 Parity-64

# inputs 8 16 32 64
# patterns 256 65536 4.294e+9 1.845e+19
MLP (one hidden layer) 9 17 33 65
BMLP (one hidden layer) 5 9 17 33
FCC 4 5 6 7
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Note that W is the square symmetrical matrix with elements on the main diagonal equal to zero 
(wji for i=j). Using a modified formula, new patterns can be added or subtracted from memory. When such 
memory is exposed to a binary bipolar pattern by enforcing the initial network states, then after signal 
circulation the network will converge to the closest (most similar) stored pattern or to its complement.

This stable point will be at the closest minimum of the energy function

 E v  T( ) = − 1
2
v Wv  (6.18)

Like the Hopfield network, the autoassociative memory has limited storage capacity, which is estimated 
to be about Mmax=0.15N. When the number of stored patterns is large and close to the memory capacity, 
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Figure 6.19 Autoassociative memory.
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Figure 6.20 Bidirectional autoassociative memory.
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6-16 Intelligent Systems

the network has a tendency to converge to spurious states which were not stored. These spurious states 
are additional minima of the energy function.

6.4.3  BAM—Bidirectional Autoassociative Memories

The concept of the autoassociative memory was extended to bidirectional associative memories BAM 
by Kosko [87K]. This memory shown in Figure 6.20 is able to associate pairs of the patterns a and b.

This is the two layer network with the output of the second layer connected directly to the input of 
the first layer. The weight matrix of the second layer is WT and it is W for the first layer. The rectangular 
weight matrix W is obtained as the sum of the cross correlation matrixes

 
W a b=

=
∑
m

M

m m

1  
(6.19)

where
M is the number of stored pairs
am and bm are the stored vector pairs

The BAM concept can be extended for association of three or more vectors.
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