
5-1

5.1  Introduction

The fascination of artificial neural networks started in the middle of the previous century. First artificial
neurons were proposed by McCulloch and Pitts [MP43] and they showed the power of the threshold logic.
Later Hebb [H49] introduced his learning rules. A decade later, Rosenblatt [R58] introduced the perceptron
concept. In the early 1960s, Widrow and Holf [WH60] developed intelligent systems such as ADALINE
and MADALINE. Nilsson [N65] in his book, Learning Machines, summarized many developments of that
time. The publication of the Mynsky and Paper [MP69] book, with some discouraging results, stopped for
sometime the fascination with artificial neural networks, and achievements in the mathematical founda-
tion of the backpropagation algorithm by Werbos [W74] went unnoticed. The current rapid growth in the
area of neural networks started with the work of Hopfield’s [H82] recurrent network, Kohonen’s [K90]
unsupervised training algorithms, and a description of the backpropagation algorithm by Rumelhart et al.
[RHW86]. Neural networks are now used to solve many engineering, medical, and business problems
[WK00,WB01,B07,CCBC07,KTP07,KT07,MFP07,FP08,JM08,W09]. Descriptions of neural network tech-
nology can be found in many textbooks [W89,Z92,H99,W96].

5.2  The Neuron

A biological neuron is a complicated structure, which receives trains of pulses on hundreds of excitatory
and inhibitory inputs. Those incoming pulses are summed with different weights (averaged) during the
time period [WPJ96]. If the summed value is higher than a threshold, then the neuron itself is generat-
ing a pulse, which is sent to neighboring neurons. Because incoming pulses are summed with time, the
neuron generates a pulse train with a higher frequency for higher positive excitation. In other words, if
the value of the summed weighted inputs is higher, the neuron generates pulses more frequently. At the
same time, each neuron is characterized by the nonexcitability for a certain time after the firing pulse.
This so-called refractory period can be more accurately described as a phenomenon, where after excita-
tion, the threshold value increases to a very high value and then decreases gradually with a certain time
constant. The refractory period sets soft upper limits on the frequency of the output pulse train. In the
biological neuron, information is sent in the form of frequency-modulated pulse trains.

AQ1

5
Understanding of
Neural Networks

5.1 Introduction .. 5-1
5.2 The Neuron .. 5-1
5.3 Should We Use Neurons with Bipolar or Unipolar

Activation Functions? .. 5-5
5.4 Feedforward Neural Networks ... 5-5
References .. 5-10

Bogdan M.
Wilamowski
Auburn University

K10149_C005.indd 1 8/31/2010 4:32:01 AM

5-2 Intelligent Systems

The description of neuron action leads to a very complex neuron model, which is not practical.
McCulloch and Pitts [MP43] show that even with a very simple neuron model, it is possible to build logic
and memory circuits. Examples of McCulloch-Pitts’ neurons realizing OR, AND, NOT, and MEMORY
operations are shown in Figure 5.1.

Furthermore, these simple neurons with thresholds are usually more powerful than typical logic
gates used in computers (Figure 5.1). Note that the structure of OR and AND gates can be identical.
With the same structure, other logic functions can be realized, as shown in Figure 5.2.

The McCulloch-Pitts neuron model (Figure 5.3a) assumes that incoming and outgoing signals may
have only binary values 0 and 1. If incoming signals summed through positive or negative weights have
a value equal or larger than threshold, then the neuron output is set to 1. Otherwise, it is set to 0.

out

net T
net T=

≥
<

1
0

if
if

(5.1)

where
T is the threshold
net value is the weighted sum of all incoming signals (Figure 5.3)

Memory

A+B+C ABC
A

B

C

A

B

C

+1
+1

+1

+1
+1
+1

+1
+1

–2
Write 0

Write 1–1 T= –0.5

T= 0.5

T= 0.5

T= 2.5

A A

Figure 5.1 Examples of logical operations using McCulloch–Pitts neurons.

ABCA+B+C
A

B

C

A

B

C

+1
+1

+1+1
+1
+1 T=0.5 T=2.5

AB+BC+CA
A

B

C

+1
+1

+1

T=1.5

Figure 5.2 The same neuron structure and the same weights, but a threshold change results in different logical
functions.

x1
x2
x3
x4

xn
(a)

T = t T = 0

wi xinet =
n

i =1
∑

x1
x2
x3
x4

xn

+1(b)

wixi+ wn+1net =
n

i =1
∑

wn+1 = –t

Figure 5.3 Threshold implementation with an additional weight and constant input with +1 value: (a) neuron
with threshold T and (b) modified neuron with threshold T = 0 and additional weight wn+1= −t.

K10149_C005.indd 2 8/31/2010 4:32:04 AM

Understanding of Neural Networks 5-3

The perceptron model has a similar structure (Figure 5.3b). Its input signals, the weights, and the
thresholds could have any positive or negative values. Usually, instead of using variable threshold,
one additional constant input with a negative or positive weight can be added to each neuron, as
Figure 5.3 shows. Single-layer perceptrons are successfully used to solve many pattern classification
problems. Most known perceptron architectures are ADALINE and MADALINE [WH60] shown in
Figure 5.4.

Perceptrons using hard threshold activation functions for unipolar neurons are given by

o f net net net

netuni= = + =
≥
<

() sgn() 1

2
1 0
0 0

if
if

(5.2)

and for bipolar neurons

o f net net

net
netbip= = =

≥
− <

() sgn()

1 0
1 0
if
if

(5.3)

For these types of neurons, most of the known training algorithms are able to adjust weights only in
single-layer networks. Multilayer neural networks (as shown in Figure 5.8) usually use soft activation
functions, either unipolar

o f net

 netuni= =
+ −()

()
exp

1
1 λ

(5.4)

or bipolar

o f net net

 net
 bip= = () =

+ −()
−() tanh .

exp
0 5 2

1
1λ

λ
(5.5)

These soft activation functions allow for the gradient-based training of multilayer networks. Soft activa-
tion functions make neural network transparent for training [WT93]. In other words, changes in weight
values always produce changes on the network outputs. This would not be possible when hard activation

+1

ADALINE

wi xi + wn+1net =
n

i =1
∑

+1 +1

MADALINE

o = net
During
trainingHidden layer

Figure 5.4 ADALINE and MADALINE perceptron architectures.

K10149_C005.indd 3 8/31/2010 4:32:12 AM

5-4 Intelligent Systems

functions are used. Typical activation functions are shown in Figure 5.5. Note, that even neuron models
with continuous activation functions are far from an actual biological neuron, which operates with
frequency-modulated pulse trains [WJPM96].

A single neuron is capable of separating input patterns into two categories, and this separation is linear.
For example, for the patterns shown in Figure 5.6, the separation line is crossing x1 and x2 axes at points
x10 and x20. This separation can be achieved with a neuron having the following weights: w1 = 1/x10;
w2 = 1/x20 and w3 = −1. In general, for n dimensions, the weights are

w

x
i n wi

i
n= = = −+

1 1 1
0

1for , , ;…

One neuron can divide only linearly separated patterns. To select just one region in n-dimensional input
space, more than n + 1 neurons should be used.

2
sgn(net)+1

o = f (net) =

f (net)

net

o = f (net) = sgn(net)

f (net)

net

f (net)

k

o = f uni(net) =
1 + exp(−k net)

1

funi(o) = k o(1−o)

net k

−1 = tanh= 21 + exp(−k net)
2 k net

o = fbip(net) = 2 funi (net)−1

k(1 − o2)
2f bip(o)=

f (net)

net

´ ´

()
Figure 5.5 Typical activation functions: hard in upper row and soft in the lower row.

x1

x2

x10

x20

+1

w2

w1x1

x2
w3

w1= 1

1

x10

w2=

w3=–1

x20

Figure 5.6 Illustration of the property of linear separation of patterns in the two-dimensional space by a single
neuron.

K10149_C005.indd 4 8/31/2010 4:32:14 AM

Understanding of Neural Networks 5-5

5.3   Should We Use Neurons with Bipolar 
or Unipolar Activation Functions?

Neural network users often face a dilemma if they have to use unipolar or bipolar neurons (see Figure 5.5).
The short answer is that it does not matter. Both types of networks work the same way and it is very easy to
transform bipolar neural network into unipolar neural network and vice versa. Moreover, there is no need
to change most of weights but only the biasing weight has to be changed. In order to change from bipolar
networks to unipolar networks, only biasing weights must be modified using the formula

w w wbias

uni
bias
bip

i
bip

i

N

= −

=
∑0 5

1

.

(5.6)

While, in order to change from unipolar networks to bipolar networks

w w wbias

bip
bias
uni

i
uni

i

N

= +
=

∑2
1

(5.7)

Figure 5.7 shows the neural network for parity-3 problem, which can be transformed both ways:
from bipolar to unipolar and from unipolar to bipolar. Notice that only biasing weights are different.
Obviously input signals in bipolar network should be in the range from −1 to +1, while for unipolar
network they should be in the range from 0 to +1.

5.4  Feedforward Neural Networks

Feedforward neural networks allow only unidirectional signal flow. Furthermore, most feedforward
neural networks are organized in layers and this architecture is often known as MLP (multilayer percep-
tron). An example of the three-layer feedforward neural network is shown in Figure 5.8. This network
consists of four input nodes, two hidden layers, and an output layer.

If the number of neurons in the input (hidden) layer is not limited, then all classification problems
can be solved using a multilayer network. An example of such neural network, separating patterns from
the rectangular area on Figure 5.9 is shown in Figure 5.10

When the hard threshold activation function is replaced by soft activation function (with a gain of 10),
then each neuron in the hidden layer will perform a different task as it is shown in Figure 5.11 and the

Weights = 1 Weights = 1

–2 –2

+1 +1

–1.5 –0.5
0 0

Bipolar Unipolar

Figure 5.7 Neural networks for parity-3 problem.

K10149_C005.indd 5 8/31/2010 4:32:18 AM

5-6 Intelligent Systems

response of the output neuron is shown in Figure 5.12. One can notice that the shape of the output
surface depends on the gains of activation functions. For example, if this gain is set to be 30, then acti-
vation function looks almost as hard activation function and the neural network work as a classifier
(Figure 5.13a). If the neural network gain is set to a smaller value, for example, equal 5, then the neural
network performs a nonlinear mapping, as shown in Figure 5.13b. Even though this is a relatively simple
example, it is essential for understanding neural networks.

+1 +1 +1

Hidden
Hidden
layer # 2

Output
layer

Figure 5.8 An example of the three-layer feedforward neural network, which is sometimes known also
as MLP.

1

2

1

3

x

y

y < 2.5

y > 0.5

x < 2x > 1

x − 1 > 0

− x + 2 > 0

− y + 2.5 > 0

y − 0.5 > 0

w11 = 1, w12 = 0, w13 = –1

w21= –1, w22 = 0, w23 = 2

w31 = 0, w32 = –1, w33 = 2.5

w41 = 0, w42 = 1, w43 = –0.5
2

Figure 5.9 Rectangular area can be separated by four neurons.

x

y

+1 +1

x>1

y<2.5

x<2

y>0.5

+1

–1
–1

+2–1

+1
+2
5

–0.5

AND

+1

+1

+1

+1
–3.5

Figure 5.10 Neural network architecture that can separate patterns in the rectangular area of Figure 5.7.

K10149_C005.indd 6 8/31/2010 4:32:19 AM

Understanding of Neural Networks 5-7

Let us now use the same neural network architecture as shown in Figure 5.10, but let us change
weights for hidden neurons so their neuron lines are located as it is shown in Figure 5.14. This network
can separate patterns in pentagonal shape as shown in Figure 5.15a or perform a complex nonlinear
mapping as shown in Figure 5.15b depending on the neuron gains. In this simple example of network
from Figure 5.10, it is very educational because it lets neural network user understand how neural net-
work operates and may help to select a proper neural network architecture for problems of different
complexities. Commonly used trial-and-error methods may not be successful unless the user may have
some understanding of neural network operation.

1

0.5

0
3

2

1

0 0 0.5 1 1.5 2 2.5 3

Output for neuron 1

1

0.5

0
3

2

1

0 0 0.5 1 1.5 2 2.5 3

Output for neuron 2

1

0.5

0
3

2

1

0 0 0.5 1 1.5 2 2.5

Output for neuron 4

1

0.5

0
3

2

1

0 0 0.5 1 1.5 2 2.5 3

Output for neuron 3

3

Figure 5.11 Responses of four hidden neurons of the network from Figure 5.10.

1

0.5

0
3

2

1

0 0 0.5 1 1.5 2.52
3

Output

4
3.5

2.5
3

2
3

2

1

0 0 0.5 1 1.5

Net

2 2.5 3

Figure 5.12 The net and output values of the output neuron of the network from Figure 5.10.

K10149_C005.indd 7 8/31/2010 4:32:21 AM

5-8 Intelligent Systems

0 0.5 1 1.5 2 2.5 3

0

1

2

3
0

0.5

1

Output k= 200

0 0.5 1 1.5 2 2.5 3

0

1

2

3
0

0.2
0.4
0.6
0.8

Output k= 2

(a) (b)

Figure 5.15 Response on the neural network of Figure 5.9 with weights define in Figure 5.13 for different values
of neurons gain: (a) gain = 200 and network works as classifier and (b) gain = 2 and network perform nonlinear
mapping.

Neuron equations:

1

2

1

3

x

y

3

1

2

4

3
w11 = 3, w12 = 1, w13 = –3

w21 = 1, w22 = 3, w23 = –3

w31 = 1, w32 = 0, w33 = –2

w41 = 1, w42 = –2, w43 = 2

3x + y − 3 > 0

x + 3y − 3 > 0

x − 2 > 0

x − 2y + 2 > 0

2

Figure 5.14 Two-dimensional input space with four separation lines representing four neurons.

(a) (b)

1

0.5

0
3

2

0 0 0.5
1.5

2.5
1

2
31

1

0.5

0

0 0.5
1.5

2.5
1

2
3

3

2

0

1

Figure 5.13 Response on the neural network of Figure 5.10 with different values of neurons gain: (a) gain = 30
and network works as classifier and (b) gain = 5 and network perform nonlinear mapping.

K10149_C005.indd 8 8/31/2010 4:32:35 AM

Understanding of Neural Networks 5-9

The linear separation property of neurons makes some problems especially difficult for neural
networks, such as exclusive OR, parity computation for several bits, or to separate patterns on two
neighboring spirals. Also, the most commonly used feedforward neural network may have dif-
ficulties to separate clusters in multidimensional space. For example, in order to separate cluster
in two-dimensional space, we have used four neurons (rectangle), but it is also possible to separate
cluster with three neurons (triangle). In three dimensions we may need at least four planes (neu-
rons) to separate space with tetrahedron. In n-dimensional space, in order to separate a cluster of

–4x+ 1 + 2 > 0
–x+ 2y– 2 > 0

x+ y+ 2 > 0
3x+ y> 0

Weights for the first layer:
wx
–4
–1

1
3

1
2
1
1

2 layer1 _neuron1
layer1 _neuron2
layer1 _neuron3
layer1 _neuron3

–2
2
0

wy wbias

Weights for the second layer:
w1

0
+1
+1

–1
–1
–1

–0.5 layer2 _neuron1
layer2 _neuron2
layer2 _neuron3

–1.5
–0.5

w2
+1

0
0

w3
–1
+1

0

w4 wbias

3

12

4

3

2

1

–1
–1–2 1 2 3

–2

2

1

Figure 5.16 Problem with the separation of three clusters.

1

0.5

0
4

2

0

–2
–4 –4 –2

0 2
4

Output for neuron 1

1

0.5

0
4

2

0

–2

–4 –4 –2 0 2
4

Output for neuron 2

1

0.5

0
4

2

0

–2

–4 –4 –2 0 2
4

Output for neuron 3

Figure 5.17 Neural Network performing cluster separation and resulted output surfaces for all three clusters.

K10149_C005.indd 9 8/31/2010 4:32:37 AM

5-10 Intelligent Systems

patterns, there are at least n + 1 neurons required. However, if neural network with several hidden
layers are used, then the number of neurons needed may not be that excessive. Also, a neuron in the
first hidden layer may be used for separation of multiple clusters. Let us analyze another example
where we would like to design neural network with multiple outputs to separate three clusters and
each network output must produce +1 only for a given cluster. Figure 5.16 shows three clusters to
be separated, corresponding equations for four neurons and weights for resulted neural network,
as shown in Figure 5.17.

The example with three clusters shows that often there is no need to have several neurons in the hid-
den layer dedicated for a specific cluster. These hidden neurons may perform multiple functions and
they can contribute to several clusters instead of just one. It is, of course, possible to develop separate
neural networks for every cluster, but it is much more efficient to have one neural network with multiple
outputs as shown in Figures 5.16 and 5.17. This is one advantage of neural networks over fuzzy systems,
which can be developed only for one output at a time [WJK99]. Another advantage of neural network is
that the number of inputs can be very large so they can process signals in multidimensional space, while
fuzzy systems can handle usually two or three inputs only [WB99].

The most commonly used neural networks have the MLP architecture, as shown in Figure 5.8. For
such a layer-by-layer network, it is relatively easy to develop the learning software, but these networks are
significantly less powerful than networks where connections across layers are allowed. Unfortunately,
only very limited number of software were developed to train other than MLP networks [WJ96,W02]. As
a result, most researchers use MLP architectures, which are far from optimal. Much better results can
be obtained with BMLP (bridged MLP) architecture or with FCC (fully connected cascade) architecture
[WHM03]. Also, most researchers are using simple EBP (error backpropagation) learning algorithm,
which is not only much slower than more advanced algorithms such as LM (Levenberg–Marquardt)
[HM94] or NBN (Neuron by Neuron) [WCKD08,HW09,WH10], but also EBP algorithm often is not
able to train close-to-optimal neural networks [W09].

References

[B07] B.K. Bose, Neural network applications in power electronics and motor drives—An introduction
and perspective. IEEE Trans. Ind. Electron. 54(1):14–33, February 2007.

[CCBC07] G. Colin, Y. Chamaillard, G. Bloch, and G. Corde, Neural control of fast nonlinear systems—
Application to a turbocharged SI engine with VCT. IEEE Trans. Neural Netw. 18(4):1101–1114,
April 2007.

[FP08] J.A. Farrell and M.M. Polycarpou, Adaptive approximation based control: Unifying neural, fuzzy and
traditional adaptive approximation approaches. IEEE Trans. Neural Netw. 19(4):731–732, April 2008.

[H49] D.O. Hebb, The Organization of Behavior, a Neuropsychological Theory. Wiley, New York, 1949.
[H82] J.J. Hopfield, Neural networks and physical systems with emergent collective computation abilities.

Proc. Natl. Acad. Sci. 79:2554–2558, 1982.
[H99] S. Haykin, Neural Networks—A Comprehensive Foundation. Prentice Hall, Upper Saddle River, NJ, 1999.
[HM94] M.T. Hagan and M. Menhaj, Training feedforward networks with the Marquardt algorithm. IEEE

Trans. Neural Netw. 5(6):989–993, 1994.
[HW09] H. Yu and B.M. Wilamowski, C++ implementation of neural networks trainer. 13th International

Conference on Intelligent Engineering Systems, INES-09, Barbados, April 16–18, 2009.
[JM08] M. Jafarzadegan and H. Mirzaei, A new ensemble based classifier using feature transformation for hand

recognition. 2008 Conference on Human System Interactions, Krakow, Poland, May 2008, pp. 749–754.
[K90] T. Kohonen, The self-organized map. Proc. IEEE 78(9):1464–1480, 1990.
[KT07] S. Khomfoi and L.M. Tolbert, Fault diagnostic system for a multilevel inverter using a neural net-

work. IEEE Trans. Power Electron. 22(3):1062–1069, May 2007.
[KTP07] M. Kyperountas, A. Tefas, and I. Pitas, Weighted piecewise LDA for solving the small sample size

problem in face verification. IEEE Trans. Neural Netw. 18(2):506–519, February 2007.

AQ2

K10149_C005.indd 10 8/31/2010 4:32:37 AM

Understanding of Neural Networks 5-11

[MFP07] J.F. Martins, V. Ferno Pires, and A.J. Pires, Unsupervised neural-network-based algorithm
for an on-line diagnosis of three-phase induction motor stator fault. IEEE Trans. Ind. Electron.
54(1):259–264, February 2007.

[MP43] W.S. McCulloch and W.H. Pitts, A logical calculus of the ideas imminent in nervous activity. Bull.
Math. Biophy. 5:115–133, 1943.

[MP69] M. Minsky and S. Papert, Perceptrons. MIT Press, Cambridge, MA, 1969.
[MW01] M. McKenna and B.M. Wilamowski, Implementing a fuzzy system on a field programmable gate

array. International Joint Conference on Neural Networks (IJCNN’01), Washington, DC, July 15–19,
2001, pp. 189–194.

[N65] N.J. Nilsson, Learning Machines: Foundations of Trainable Pattern Classifiers. McGraw Hill Book
Co., New York, 1965.

[R58] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in
the brain. Psych. Rev. 65:386–408, 1958.

[RHW86] D.E. Rumelhart, G.E. Hinton, and R.J. Wiliams, Learning representations by back-propagating
errors. Nature 323:533–536, 1986.

[W02] B.M. Wilamowski, Neural networks and fuzzy systems, Chapter 32. Mechatronics Handbook, ed.
R.R. Bishop. CRC Press, Boca Raton, FL, 2002, pp. 33-1–32-26.

[W09] B. M. Wilamowski, Neural network architectures and learning algorithms. IEEE Ind. Electron. Mag.
3(4):56–63.

[W74] P. Werbos, Beyond regression: New tools for prediction and analysis in behavioral sciences. PhD
dissertation, Harvard University, Cambridge, MA, 1974.

[W89] P.D. Wasserman, Neural Computing Theory and Practice. Van Nostrand Reinhold, New York, 1989.
[W96] B.M. Wilamowski, Neural networks and fuzzy systems, Chapters 124.1–124.8. The Electronic

Handbook. CRC Press, Boca Raton, FL, 1996, pp. 1893–1914.
[WB99] B.M. Wilamowski and J. Binfet, Do fuzzy controllers have advantages over neural controllers in

microprocessor implementation. Proceedings of the 2nd International Conference on Recent Advances
in Mechatronics - ICRAM’99, Istanbul, Turkey, May 24–26, 1999, pp. 342–347.

[WCKD08] B.M. Wilamowski, N.J. Cotton, O. Kaynak, and G. Dundar, Computing gradient vector
and Jacobian matrix in arbitrarily connected neural networks. IEEE Trans. Ind. Electron.
55(10):3784–3790, October 2008.

[WH10] B.M. Wilamowski and H. Yu, Improved computation for Levenberg Marquardt training. IEEE
Trans. Neural Netw. 21:930–937, 2010.

[WH60] B. Widrow and M.E. Hoff, Adaptive switching circuits. 1960 IRE Western Electric Show and
Convention Record, Part 4, New York (August 23), pp. 96–104, 1960.

[WHM03] B. Wilamowski, D. Hunter, and A. Malinowski, Solving parity-N problems with feedforward
neural network. Proceedings of the IJCNN᾿03 International Joint Conference on Neural Networks,
Portland, OR, July 20–23, 2003, pp. 2546–2551.

[WJ96] B.M. Wilamowski and R.C. Jaeger, Implementation of RBF type networks by MLP networks. IEEE
International Conference on Neural Networks, Washington, DC, June 3–6, 1996, pp. 1670–1675.

[WJPM96] B.M. Wilamowski, R.C. Jaeger, M.L. Padgett, and L.J. Myers, CMOS implementation of a
pulse-coupled neuron cell. IEEE International Conference on Neural Networks, Washington, DC,
June 3–6, 1996, pp. 986–990.

[WK00] B.M. Wilamowski and O. Kaynak, Oil well diagnosis by sensing terminal characteristics of the
induction motor. IEEE Trans. Ind. Electron. 47(5):1100–1107, October 2000.

[WPJ96] B.M. Wilamowski, M.L. Padgett, and R.C. Jaeger, Pulse-coupled neurons for image filtering.
World Congress of Neural Networks, San Diego, CA, September 15–20, 1996, pp. 851–854.

[WT93] B.M. Wilamowski and L. Torvik, Modification of gradient computation in the back-propaga-
tion algorithm. Presented at ANNIE’93—Artificial Neural Networks in Engineering, St. Louis, MO,
November 14–17, 1993.

[Z92] J. Zurada, Introduction to Artificial Neural Systems, West Publishing Co., St. Paul, MN, 1992.

AQ3

K10149_C005.indd 11 8/31/2010 4:32:37 AM

K10149_C005.indd 12 8/31/2010 4:32:37 AM

