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5.1  Introduction

The fascination of artificial neural networks started in the middle of the previous century. First artificial 
neurons were proposed by McCulloch and Pitts [MP43] and they showed the power of the threshold logic. 
Later Hebb [H49] introduced his learning rules. A decade later, Rosenblatt [R58] introduced the perceptron 
concept. In the early 1960s, Widrow and Holf [WH60] developed intelligent systems such as ADALINE 
and MADALINE. Nilsson [N65] in his book, Learning Machines, summarized many developments of that 
time. The publication of the Mynsky and Paper [MP69] book, with some discouraging results, stopped for 
sometime the fascination with artificial neural networks, and achievements in the mathematical founda-
tion of the backpropagation algorithm by Werbos [W74] went unnoticed. The current rapid growth in the 
area of neural networks started with the work of Hopfield’s [H82] recurrent network, Kohonen’s [K90] 
unsupervised training algorithms, and a description of the backpropagation algorithm by Rumelhart et al. 
[RHW86]. Neural networks are now used to solve many engineering, medical, and business problems 
[WK00,WB01,B07,CCBC07,KTP07,KT07,MFP07,FP08,JM08,W09]. Descriptions of neural network tech-
nology can be found in many textbooks [W89,Z92,H99,W96].

5.2  The Neuron

A biological neuron is a complicated structure, which receives trains of pulses on hundreds of excitatory 
and inhibitory inputs. Those incoming pulses are summed with different weights (averaged) during the 
time period [WPJ96]. If the summed value is higher than a threshold, then the neuron itself is generat-
ing a pulse, which is sent to neighboring neurons. Because incoming pulses are summed with time, the 
neuron generates a pulse train with a higher frequency for higher positive excitation. In other words, if 
the value of the summed weighted inputs is higher, the neuron generates pulses more frequently. At the 
same time, each neuron is characterized by the nonexcitability for a certain time after the firing pulse. 
This so-called refractory period can be more accurately described as a phenomenon, where after excita-
tion, the threshold value increases to a very high value and then decreases gradually with a certain time 
constant. The refractory period sets soft upper limits on the frequency of the output pulse train. In the 
biological neuron, information is sent in the form of frequency-modulated pulse trains.
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5-2 Intelligent Systems

The description of neuron action leads to a very complex neuron model, which is not practical. 
McCulloch and Pitts [MP43] show that even with a very simple neuron model, it is possible to build logic 
and memory circuits. Examples of McCulloch-Pitts’ neurons realizing OR, AND, NOT, and MEMORY 
operations are shown in Figure 5.1.

Furthermore, these simple neurons with thresholds are usually more powerful than typical logic 
gates used in computers (Figure 5.1). Note that the structure of OR and AND gates can be identical. 
With the same structure, other logic functions can be realized, as shown in Figure 5.2.

The McCulloch-Pitts neuron model (Figure 5.3a) assumes that incoming and outgoing signals may 
have only binary values 0 and 1. If incoming signals summed through positive or negative weights have 
a value equal or larger than threshold, then the neuron output is set to 1. Otherwise, it is set to 0.
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(5.1)

where
T is the threshold
net value is the weighted sum of all incoming signals (Figure 5.3)
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Figure 5.1 Examples of logical operations using McCulloch–Pitts neurons.
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Figure 5.2 The same neuron structure and the same weights, but a threshold change results in different logical 
functions.
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with threshold T and (b) modified neuron with threshold T = 0 and additional weight wn+1= −t.
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Understanding of Neural Networks 5-3

The perceptron model has a similar structure (Figure 5.3b). Its input signals, the weights, and the 
thresholds could have any positive or negative values. Usually, instead of using variable threshold, 
one additional constant input with a negative or positive weight can be added to each neuron, as 
Figure 5.3 shows. Single-layer perceptrons are successfully used to solve many pattern classification 
problems. Most known perceptron architectures are ADALINE and MADALINE [WH60] shown in 
Figure 5.4.

Perceptrons using hard threshold activation functions for unipolar neurons are given by
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and for bipolar neurons
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For these types of neurons, most of the known training algorithms are able to adjust weights only in 
single-layer networks. Multilayer neural networks (as shown in Figure 5.8) usually use soft activation 
functions, either unipolar
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These soft activation functions allow for the gradient-based training of multilayer networks. Soft activa-
tion functions make neural network transparent for training [WT93]. In other words, changes in weight 
values always produce changes on the network outputs. This would not be possible when hard activation 
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Figure 5.4 ADALINE and MADALINE perceptron architectures.
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5-4 Intelligent Systems

functions are used. Typical activation functions are shown in Figure 5.5. Note, that even neuron models 
with continuous activation functions are far from an actual biological neuron, which operates with 
frequency-modulated pulse trains [WJPM96].

A single neuron is capable of separating input patterns into two categories, and this separation is linear. 
For example, for the patterns shown in Figure 5.6, the separation line is crossing x1 and x2 axes at points 
x10 and x20. This separation can be achieved with a neuron having the following weights: w1 = 1/x10; 
w2 = 1/x20 and w3 = −1. In general, for n dimensions, the weights are
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One neuron can divide only linearly separated patterns. To select just one region in n-dimensional input 
space, more than n + 1 neurons should be used.
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Figure 5.5 Typical activation functions: hard in upper row and soft in the lower row.
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Figure 5.6 Illustration of the property of linear separation of patterns in the two-dimensional space by a single 
neuron.
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Understanding of Neural Networks 5-5

5.3   Should We Use Neurons with Bipolar 
or Unipolar Activation Functions?

Neural network users often face a dilemma if they have to use unipolar or bipolar neurons (see Figure 5.5). 
The short answer is that it does not matter. Both types of networks work the same way and it is very easy to 
transform bipolar neural network into unipolar neural network and vice versa. Moreover, there is no need 
to change most of weights but only the biasing weight has to be changed. In order to change from bipolar 
networks to unipolar networks, only biasing weights must be modified using the formula
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(5.6)

While, in order to change from unipolar networks to bipolar networks
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Figure 5.7 shows the neural network for parity-3 problem, which can be transformed both ways: 
from bipolar to unipolar and from unipolar to bipolar. Notice that only biasing weights are different. 
Obviously input signals in bipolar network should be in the range from −1 to +1, while for unipolar 
network they should be in the range from 0 to +1.

5.4  Feedforward Neural Networks

Feedforward neural networks allow only unidirectional signal flow. Furthermore, most feedforward 
neural networks are organized in layers and this architecture is often known as MLP (multilayer percep-
tron). An example of the three-layer feedforward neural network is shown in Figure 5.8. This network 
consists of four input nodes, two hidden layers, and an output layer.

If the number of neurons in the input (hidden) layer is not limited, then all classification problems 
can be solved using a multilayer network. An example of such neural network, separating patterns from 
the rectangular area on Figure 5.9 is shown in Figure 5.10

When the hard threshold activation function is replaced by soft activation function (with a gain of 10), 
then each neuron in the hidden layer will perform a different task as it is shown in Figure 5.11 and the 
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Figure 5.7 Neural networks for parity-3 problem.
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5-6 Intelligent Systems

response of the output neuron is shown in Figure 5.12. One can notice that the shape of the output 
surface depends on the gains of activation functions. For example, if this gain is set to be 30, then acti-
vation function looks almost as hard activation function and the neural network work as a classifier 
(Figure 5.13a). If the neural network gain is set to a smaller value, for example, equal 5, then the neural 
network performs a nonlinear mapping, as shown in Figure 5.13b. Even though this is a relatively simple 
example, it is essential for understanding neural networks.

+1 +1 +1

Hidden
Hidden
layer # 2

Output
layer

Figure 5.8 An example of the three-layer feedforward neural network, which is sometimes known also 
as MLP.
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Let us now use the same neural network architecture as shown in Figure 5.10, but let us change 
weights for hidden neurons so their neuron lines are located as it is shown in Figure 5.14. This network 
can separate patterns in pentagonal shape as shown in Figure 5.15a or perform a complex nonlinear 
mapping as shown in Figure 5.15b depending on the neuron gains. In this simple example of network 
from Figure 5.10, it is very educational because it lets neural network user understand how neural net-
work operates and may help to select a proper neural network architecture for problems of different 
complexities. Commonly used trial-and-error methods may not be successful unless the user may have 
some understanding of neural network operation.
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1

0.5

0
3

2

1

0 0 0.5 1 1.5 2.52
3

Output

4
3.5

2.5
3

2
3

2

1

0 0 0.5 1 1.5

Net

2 2.5 3
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The linear separation property of neurons makes some problems especially difficult for neural 
networks, such as exclusive OR, parity computation for several bits, or to separate patterns on two 
neighboring spirals. Also, the most commonly used feedforward neural network may have dif-
ficulties to separate clusters in multidimensional space. For example, in order to separate cluster 
in two-dimensional space, we have used four neurons (rectangle), but it is also possible to separate 
cluster with three neurons (triangle). In three dimensions we may need at least four planes (neu-
rons) to separate space with tetrahedron. In n-dimensional space, in order to separate a cluster of 
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5-10 Intelligent Systems

patterns, there are at least n + 1 neurons required. However, if neural network with several hidden 
layers are used, then the number of neurons needed may not be that excessive. Also, a neuron in the 
first hidden layer may be used for separation of multiple clusters. Let us analyze another example 
where we would like to design neural network with multiple outputs to separate three clusters and 
each network output must produce +1 only for a given cluster. Figure 5.16 shows three clusters to 
be separated, corresponding equations for four neurons and weights for resulted neural network, 
as shown in Figure 5.17.

The example with three clusters shows that often there is no need to have several neurons in the hid-
den layer dedicated for a specific cluster. These hidden neurons may perform multiple functions and 
they can contribute to several clusters instead of just one. It is, of course, possible to develop separate 
neural networks for every cluster, but it is much more efficient to have one neural network with multiple 
outputs as shown in Figures 5.16 and 5.17. This is one advantage of neural networks over fuzzy systems, 
which can be developed only for one output at a time [WJK99]. Another advantage of neural network is 
that the number of inputs can be very large so they can process signals in multidimensional space, while 
fuzzy systems can handle usually two or three inputs only [WB99].

The most commonly used neural networks have the MLP architecture, as shown in Figure 5.8. For 
such a layer-by-layer network, it is relatively easy to develop the learning software, but these networks are 
significantly less powerful than networks where connections across layers are allowed. Unfortunately, 
only very limited number of software were developed to train other than MLP networks [WJ96,W02]. As 
a result, most researchers use MLP architectures, which are far from optimal. Much better results can 
be obtained with BMLP (bridged MLP) architecture or with FCC (fully connected cascade) architecture 
[WHM03]. Also, most researchers are using simple EBP (error backpropagation) learning algorithm, 
which is not only much slower than more advanced algorithms such as LM (Levenberg–Marquardt) 
[HM94] or NBN (Neuron by Neuron) [WCKD08,HW09,WH10], but also EBP algorithm often is not 
able to train close-to-optimal neural networks [W09].
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