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26.1  Introduction

Analog filters are essential in many different systems that electrical engineers are required to design 
in their engineering career. Filters are widely used in communication technology as well as in other 
applications. Although we discuss and talk a lot about digital systems nowadays, these systems always 
contain one or more analog filters internally or as the interface with the analog world [SV01].

There are many different types of filters such as Butterworth filter, Chebyshev filter, inverse Chebyshev 
filter, Cauer elliptic filter, etc. The characteristic responses of these filters are different. The Butterworth 
filter is flat in the stop-band but does not have a sharp transition from the pass-band to the stop-band 
while the Chebyshev filter has a sharp transition from the pass-band to the stop-band but it has the 
ripples in the pass-band. Oppositely, the inverse Chebyshev filter works almost the same way as the 
Chebyshev filter but it does have the ripple in the stop-band instead of the pass-band. The Cauer filter 
has ripples in both pass-band and stop-band; however, it has lower order [W02, KAS89]. The analog 
filter is a broad topic and this chapter will focus more on the methodology of synthesizing analog filters 
only (Figures 26.1 and 26.2).

Section 26.2 will present methods to synthesize four different types of these low-pass filters. Then 
we will go through design example of a low-pass filter that has 3 dB attenuation in the pass-band, 30 dB 
attenuation in the stop-band, the pass-band frequency at 1 kHz, and the stop-band frequency at 3 kHz 
to see four different results corresponding to four different synthesizing methods.

26.2  Methods to Synthesize Low-Pass Filter

26.2.1  Butterworth Low-Pass Filter

ωp—pass-band frequency
ωs—stop-band frequency
αp—attenuation in pass-band
αs—attenuation in stop-band
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26-2	 Fundamentals of Industrial Electronics

Butterworth response (Figure 26.3):
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There are three basic steps to synthesize any type of low-pass filters. The first step is calculating the 
order of a low-pass filter. The second step is calculating poles and zeros of a low-pass filter. The third step 
is design circuits to meet pole and zero locations; however, this part is another topic of analog filters, so 
it will be not be covered in this work [W90, WG05, WLS92].

All steps to design Butterworth low-pass filter.

Step 1:  Calculate order of filter:
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FIGURE 26.1  Butterworth filter (left), Chebyshev filter (right). AQ1
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FIGURE 26.2  Inverse Chebyshev filter (left), Cauer elliptic filter (right).
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Step 2:  Calculate pole and zero locations:
Angle if n is odd:
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Angle if n is even:
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Step 3:  Design circuits to meet pole and zero locations (not covered in this work) (Figure 26.4).

Example:

Step 1:  Calculate order of filter:

	
n n= − − = ⇒ =log[(10 1)(10 1)]

log(3000 1000)
3.1456 4

30/10 3/10 1/2

/

Step 2:  Calculate pole and zero locations
Normalized values of poles and ω0 and Q:

−0.38291 + 0.92443i 1.00059 1.30656

−0.38291 − 0.92443i 1.00059 1.30656
−0.92443 + 0.38291i 1.00059 0.54120
−0.92443 − 0.38291i 1.00059 0.54120

Normalized values of zeros ⇒ none.

0 dB

αs

ωs

αp

ωp

FIGURE 26.3  Butterworth filter characteristic.
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26.2.2  Chebyshev Low-Pass Filter

ωp—pass-band frequency
ωs—stop-band frequency
αp—attenuation in pass-band
αs—attenuation in stop-band

Chebyshev response (Figure 26.5):
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Step 1:  Calculate order of filter:
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FIGURE 26.4  Pole-zero locations, magnitude response, and phase of Butterworth filter.
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FIGURE 26.5  Chebyshev filter characteristic.
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Step 2:  Calculate pole and zero locations:
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Step 3:  Design circuits to meet pole and zero locations (not covered in this work) (Figure 26.6).

Example:

Step 1:  Calculate order of filter:

	
n = − −

+
ln[4 * (10 1) (10 1)]

log[(3000 1000) ((3000 1
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2

/
// 0000 ) 1) ]

2.3535 32 −
= ⇒ =1/2 n

	

Step 2:  Calculate pole and zero locations
Normalized values of poles and ω0 and Q:

−0.14931 + 0.90381i 0.91606 3.06766

−0.14931 − 0.90381i 0.91606 3.06766
−0.29862

Normalized values of zeros ⇒ none.
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FIGURE 26.6  Pole-zero locations, magnitude response, and phase of Chebyshev filter.
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26.2.3  Inverse Chebyshev Low-Pass Filter

ωp—pass-band frequency
ωs—stop-band frequency
αp—attenuation in pass-band
αs—attenuation in stop-band

Inverse Chebyshev response (Figure 26.7):
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The method to design the inverse Chebyshev low-pass filter is almost the same as the Chebyshev low-
pass filter. It is just slightly different.

Step 1:  Calculate order of filter
n = order of the Chebyshev filter

Step 2:  Calculate pole and zero locations:
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Notes: two conjugate poles on the imaginary axis.

Step 3:  Design circuits to meet pole and zero locations (not covered in this work) (Figure 26.8).

Example:

Step 1:  Calculate order of filter:

	
n = − −

+
ln[4 * (10 1) (10 1)]

log[(3000 1000) ((3000 1

30/10 3/10 1/2

2

/
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FIGURE 26.7  Inverse Chebyshev filter characteristic.
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Step 2:  Calculate pole and zero locations
Normalized values of poles and ω0 and Q:

−0.6613 + 1.29944i 1.45803 1.10240

−0.6613 − 1.29944i 1.45803 1.10240
−1.60734

Normalized values of zeros:
3.4641i 3.4641i 3.4641

−3.4641i −3.4641i 3.4641

26.2.4  Cauer Elliptic Low-Pass Filter

Cauer elliptic response (Figure 26.9):
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To design the Cauer elliptic filter is more complicated than designing three previous filters. In order 
to calculate the transfer function of this filter, a mathematic process is summarized as below. Although 
the low-pass Cauer elliptic filter has ripples in both stop-band and pass-band, it has lower order than the 
three previous filters (Figure 26.10). That is the advantage of the Cauer elliptic filter:
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FIGURE 26.8  Pole-zero locations, magnitude response, and phase of inverse Chebyshev filter.
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FIGURE 26.10  Pole-zero locations, magnitude response, and phase of Cauer elliptic filter.
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FIGURE 26.9  Cauer elliptic filter characteristic.
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Example:

n = 1.9713 ⇒ n = 2. This filter is the second low pass filter.
Normalized values of poles and ω0 and Q:

−0.31554 + 0.97313i 0.85360 1.35259

−0.31554 + 0.97313i 0.85360 1.35259

Normalized values of zeros:

4.18154i 4.18154i 4.18154
−4.18154i −4.18154i 4.18154
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26.3  Frequency Transformations

Four typical methods of deriving a low-pass transfer function that satisfies a set of given specifications 
are presented. However, there are a lot of applications in the real world of designing, which require 
not only the low-pass filters but also the band-pass filters, high-pass filters, and band-rejection filters. 
A designer can design any type of filters by designing a low-pass filter first. When a low-pass filter is 
achieved, the desired filter can be derived by “frequency transformation.” In other words, the under-
standing of methods to design a low-pass filter is the basic but not the trivial task.

26.3.1  Frequency Transformations Low-Pass to High-Pass
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j
j

( ) ; ;= = = ⇒
− ≤ ≤
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1 1 1 1 1
Ω Ω

Ω
ω ω

frequency of low-pass passband
11 1≤ ≤ω frequency of high-pass passband

Frequency transformation transforms the pass-band of the low-pass, centered around Ω = 0, into that 
of the high-pass, centered around ω = ∞ (Figure 26.11). Similarly, it transforms the low-pass stop-band 
that is centered around Ω = ∞ into that of the high pass, centered around ω = 0. Consequently, the fre-
quency transformation function Z(s) has a zero in the center of the pass-band of the high-pass (at ω = ∞) 
and a pole in the center of the high-pass, stop-band (at ω = 0) [SV01]:
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T(S): low-pass transfer function; T(s): high-pass transfer function.

26.3.2  Frequency Transformations Low-Pass to Band-Pass

Z s S s
Bs

s
B s B

Bc c c

c

c
c( ) ( ) ; ;= = + = + ⇒ = − = = −

2 2 2 2
2

1 2 2 1
ω ω ω

ω
ω ω

ω
ω ω ω ω ωΩ

Frequency transformation transforms the pass-band of the low-pass, centered around Ω = 0, into 
that of the band-pass, centered around ω = ωc. Similarly, it transforms the low-pass stop-band that is 
centered around Ω = ∞ into that of the band-pass, centered around ω = 0 (Figure 26.12). Consequently, 
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sS=

FIGURE 26.11  Frequency transformations low-pass to high-pass.
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the frequency transformation function Z(s) has zeros in the center of the pass-band of the band-pass 
(at ω = ± ωc) and poles in the center of the band-pass, stop-band (at ω = 0 and ω = ∞) [SV01]:
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T(S): low-pass transfer function; T(s): band-pass transfer function.

26.3.3  Frequency Transformations Low-Pass to Band-Stop
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Frequency transformation transforms the pass-band of the low-pass, centered around Ω = 0, into 
that of the band-stop, centered around ω = 0 and ω = ∞ (Figure 26.13). Similarly, it transforms the 
low-pass, stop-band that is centered around Ω = ∞ into that of the band-stop, centered around ω = ωc. 
Consequently, the frequency transformation function Z(s) has zeros in the center of the pass-band of the 
band-stop (at ω = 0 and ω = ∞) and poles in the center of the band-stop, stop-band (at ω = ± ωc) [SV01]:

BΩ

ω

ω1 ωc ω2

Ω0

–Ω0

FIGURE 26.13  Frequency transformations low-pass to band-stop.
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Ω0
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FIGURE 26.12  Frequency transformations low-pass to band-pass.
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26.3.4  Frequency Transformation Low-Pass to Multiple Band-Pass

Frequency transformation transforms the pass-band of the low-pass, centered around Ω = 0, into that 
of the multiple band-pass, centered around ω = 0 and ω = ωz1. Similarly, it transforms the low-pass, 
stop-band that is centered around Ω = ∞ into that of the multiple band-pass, centered around ω = ωp1 
and ω = ∞. Consequently, the frequency transformation function Z(s) has zeros in the center of the pass-
band of multiple band-pass and at ωz1 (at ω = 0 and ω = ±ωz1) and poles in the center of the band-stop of 
multiple pass-band (at ω = ±ωc and ω = ∞) [SV01] (Figure 26.14):
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Transfer functions from the low-pass frequency S to the frequency s of other types of filters are recog-
nized and can be written under the following form:
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Z(s) has zeros where the desired filter has pass-bands and poles where it has stop-bands. The function 
Z(s) is called Foster Reactance function. For example, we can write the transfer function of the filter 
(Figure 26.15) as
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FIGURE 26.14  Frequency transformation low-pass to multiple band-pass.
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The transfer function has zeros at ω = 0, ω = ωz and poles at ω = ωp and ω = ∞.
At corner frequencies ω1 = 1 kHz, ω2 = 4 kHz, ω3 = 6 kHz, the values of Ω (ω) are equal to 1, −1, and 1, 

respectively. Therefore, the transformation Ω (ω) can be rewritten into multi-equations corresponding 
to ω = ω1, ω2, ω3. Three equations with three unknowns always have solutions:
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26.4  Summary and Conclusion

Analog filters have been used broadly in communication. Understanding the methods to synthesiz-
ing analog filters is extremely important and is the basic step to design analog filters. Four different 
synthesizing methods were presented, each method will result in different characteristics of filters. 
Besides that, this chapter also presented steps to design other types of filters from the low-pass filter by 
writing the frequency transfer function.
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