
Challenges in Applications of Computational
Intelligence in Industrial Electronics

Bogdan M. Wilamowski

Auburn University
wilam@ieee.org

Abstract-The presentation is focused on comparison of neural
networks and fuzzy systems. Advantages and disadvantages of
both technologies are discussed. Fuzzy systems are relatively
easy to design but number of inputs in the system are
significantly limited. It is very difficult to design neural
networks so rather they have to be trained instead. Neural
networks produce much smoother nonlinear mapping than
fuzzy systems. When neural networks are selected then
researchers are facing two dilemmas: what should be neural
network architectures and how to train them. The presentation
gives answers for both problems. It was found that Bridged
Multilayer Preceptron BMLP are a much better architecture
than popular MLP architecture. It is faster to train and more
complex problems can be solved with fewer neurons. Training
of neural networks is not easy. For example most of the
existing software cannot train close to optimal neural network
so networks with excessive number of neurons are being used
by most researchers. Such networks indeed can be trained to
very small errors using training patterns but they are not able
to respond correctly for new patterns not used in training. A
new NBN learning algorithm is presented in this work. This
algorithm is not only up to 1000 times faster than the popular
EBP algorithm, but it can train all neural network
architectures. More importantly it can train close to optimum
neural networks which were not able to be trained before.

I. INTRODUCTION

There are three major areas of computational intelligence:
Neural networks, fuzzy systems, and evolutionary
computation. The complexity of neural networks are such
that humans are not able to design them. Instead we produce
neural networks with random connections and then we train
them so they can perform required function. Per analogy we
as humans are not able to design dogs and we are not able to
follow operations of dogs' neurons, but we are able to train
them. On other hand, fuzzy systems are relatively simple
and we can design them for required applications. The
current approach for fuzzy systems allows us to design only
systems with number of inputs limited to 3 or 4 and with one
output only. Neural networks do not have these limitations
and also the qualities of nonlinear mapping of neural
networks are superior to fuzzy systems [1][2]. In
evolutionary computation the design process is replaced by a
selection process out of many populations of solutions. In
this presentation we will focus on neural networks and fuzzy
systems since applications of evolutionary algorithms are
not used in real time applications.

BA ∩

11

01

10

00

11

01

10

00

1

0

0

0

1

0

0

0

BA ∪

11

01

10

00

11

01

10

00

1

1

1

0

1

1

1

0

MIN MAX

(a)

(b)

Fig. 1. Comparison of (a) Boolean and (b) Fuzzy logic.

(a)

(b)

Fig. 2 Fuzzy architectures (a) Mamdani and (b) TSK

978-1-4244-6392-3/10/$26.00 ©2010 IEEE 15

II. FUZZY SYSTEMS

The fuzzy logic is similar to Boolean logic but instead of
AND and OR operators, MIN and MAX operators are used.
The concept is shown in Fig. 1. Sometimes MIN operator is
replaced by product operator in order to obtain smoother
response. As a consequence it is possible to perform logic
operations on analog values in the range between 0 and 1.
The key issue is how to design fuzzy systems so proper
nonlinear mapping between input and output can be
obtained.

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

A B
B BB

B

C

DD
DD

CC

D

E

E E E

E

E

Fig. 3. Design process for Mamdani type fuzzy controller

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

9.5 7.57.5

7.3 6.56.5

3.5 3.5

3.03.0

1.8 1.83.73.7 4.5

1.9 1.51.5 0.70.7

Fig. 4. Design process for TSK type fuzzy controller

There are two most commonly used approaches for
development of fuzzy systems. Fig. 2.a shows architecture

proposed by Mamdani [3] and Fig. 2.b shows TSK
architecture developed by Takagi, Sugeno, and Kang [4][5].
The block diagram of the Mamdani approach [3] is shown in
Fig. 2.a. The rightmost block of the diagram represents
defuzzification, where the output analog variable is retrieved
from a set of output fuzzy variables. The most common is
the centroid type of defuzzification.

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

(a)

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

(b)

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

(c)

Fig. 5. Example of control surface obtained with fuzzy systems (a) desired
surface, (b) surface obtained with Mamdani architecture, (c) surface
obtained with TSK architecture

16

The popular TKS architecture follows well known concept
of Look up Table (LUT) implemented in ROM and PLA
memories. At first there is a selection of the area then a
specific value is assigned to this area. Mamdani type of
architectures are more restrictive because instead of
assigning output values to each area, as in TKS, one fuzzy
variable from the predefined output fuzzy set is assigned to
each area. Then the defuzzification process is performed in
order to obtain the output variable.
Let us assume that we have to design the Mamdani fuzzy
controller having the required function shown in Fig. 5.a.
Notice that for every area one specific fuzzy value is
assigned of the output fuzzy set. This is marked on Fig. 3 by
letters from A to F.
In TSK fuzzy architecture the defuzzification block was
replaced with normalization and weighted average (Fig. 2.b).
The TSK architecture does not require MAX operators, but a
weighted average is applied directly to regions selected by
MIN operators (Fig. 4). What makes the TSK system really
simple is that the output weights are proportional to the
average function values at the selected regions by MIN
operators. The TSK fuzzy system works as a lookup table.
 Samples of surfaces obtained with Mamdani and TSK
architectures using triangular membership functions are
shown in Fig. 5.

III. NEURAL NETWORKS

The most important feature of neural networks is their
generalization abilities. This means that neural networks
should correctly respond to new patterns which were never
used in the training. The number of neurons in such
networks should be as small as possible. Unfortunately it is
very difficult to train neural networks with good
generalization abilities. In order to reduce number of
neurons special network architectures have to be used. Also,
more advanced learning algorithms than popular EBP
algorithm should be used. These issues will be discussed in
following sections.

(a)

 (b)

Fig. 6 Surface matching problem: (a) Required 2-D surface with
37×37=1,369 points, used for verification; (b) 10×10=100 training patterns
extracted in equal space from (a), used for training.

(a)

 (b)

Fig. 7 Training results using 100 trials with (a) NBN algorithm, 8 neurons in
FCC network (52 weights); maximum training iteration is 1,000;
SSETrain=0.0044, SSEVerify=0.0080 and training time=0.37 s, (b) EBP
algorithm, 13 neurons in FCC network (117 weights); maximum training
iteration is 1,000,000; SSETrain=0.0018, SSEVerify=0.4909 and training
time=635.72 s,

A. Generalization Abilities

It is relatively easy to find neural network architectures so
they can be trained to very small errors. However, it is more
important to find an architecture which after training will
respond correctly to patterns which were not used for
training. Let us illustrate this problem using an example
with the peak surface [7] shown in Fig. 6.a as the required
surface and let us use equally spaced 10×10=100 patterns
(Fig. 6.b) in training neural networks. The quality of trained
networks is evaluated using errors computed for equally
spaced 37×37=1,369 patterns. In order to make a valid
comparison between training and verification error, the SSE,
as defined in (1), is divided by 100 and 1,369 respectively.

17

TABLE I. Training Results of peak surface problem.

Neurons

Success

Rate

Average

Iteration

Average Time

(s)

EBP NBN EBP NBN EBP NBN

8 0% 5% / 222.5 / 0.33

9 0% 25% / 214.6 / 0.58

10 0% 61% / 183.5 / 0.70

11 0% 76% / 177.2 / 0.93

12 0% 90% / 149.5 / 1.08

13 35% 96% 573,226 142.5 624.88 1.35

14 42% 99% 544,734 134.5 651.66 1.76

15 56% 100% 627,224 119.3 891.90 1.85

As the training results are shown in Table I, using the NBN
algorithm, which can handle arbitrarily connected neural
networks, it was possible to find the acceptable solution
(Fig. 7a), SSETrain=0.0044 and SSEVerify=0.0080) with 8
neurons (52 weights). Unfortunately, with the EBP
algorithm, it was not possible to find acceptable solutions in
100 trials within 1,000,000 iterations each. The best result
out of the 100 trials with 1,000,000 iterations each was
SSETrain=0.0764 and SSEVerify=0.1271. When the network
size was significantly increased from 8 to 13 neurons (117
weights), the EBP algorithm was able to reach a similar
training error as with NBN algorithm, but the network lost
its ability to respond correctly for new patterns (between
training points). Please notice that indeed with enlarged
number of neurons, the EBP algorithm was able to train the
network to small error SSETrain=0.0018, but as one can see
from Fig. 7b, the result is unacceptable with verification
error SSEVerify=0.4909. When reduced number of neurons are
used the EBP algorithm can’t converge to required training
error. When the size of networks increase, the EBP
algorithm can reach the required training error, but trained
networks lose their generalization ability and can’t process
new patterns well (Fig. 7b). On the other hand, second order
algorithms, such as a NBN algorithm [8][9][10], works not
only significantly faster but it can find good solutions with
close to optimal networks (Fig. 7a).

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 8. Approximation of data by different orders of polynomials

Fig.9. MPL-Multi Layer Perceptron topology with 4 inputs in one hidden
layer

From the above analysis, one may notice that in order to
sustain neural network generalization abilities the network
should have as few neurons/weights as possible. This
problem is very similar to function approximation by
polynomials. If too high order of polynomial is used then
errors for training points and values between points cannot
be evaluated correctly. In the example on Fig. 8 only 5-th,
6-th, and 7-th order of polynomials are giving adequate
results, while higher order polynomial can be tuned to
smaller errors for given points they are useless to predict
evaluated new points which were not used for training.

Fig 10. BMPL – Bridged Multi Layer Perceptron topology with 8 inputs and
one hidden layer.

+1

BMLP – Bridged MLP with two hidden layers

X

Fig. 11. BMPL – Bridged Multi Layer Perceptron topology with 17 inputs
and two hidden layers

18

Fig. 12. FCC- Fully Connected Cascade with 5 neurons.

B. Neural Network Architectures

There are many ways to connect neurons in feedforward
networks. The most popular is MLP – Multilayer Perceptron
(see Figs 9 through 12). The abbreviated description for
these particular networks would be 4-4-1. Much more
powerful are BMLP Bridged Multilayer Perceptron networks
(see Figs. 10 and 11). The abbreviated description for shown
networks are 8=4=1 and 17=2=2=1. The FCC – Fully
Connected Cascade neural network (Fig. 12) is the special
case of BMLP where there is only one neuron in each layer.
The abbreviated description of the network of Fig. 12 would
be 31=1=1=1=1=1.
The most common test benches for neural networks are
parity-N problems, which are considered to be the most
difficult benchmark for neural network training. The
simplest parity-2 problem is also known as the XOR
problem. The larger the N, the more difficult it is to solve.
It was shown [11][12] how to solve parity N problems using
various neural network architectures such as: MLP with one
hidden layer, Bridged Multilayer Perceptron (BMLP) with
one hidden layer and FCC architectures. In the case of MLP
with n neurons in the one hidden layer it is possible to solve
Parity-N problem

[]1−− nN ⇒ nN ≤ (1)

In the case of BMLP with one hidden layer [10][11]

[]1== nN ⇒ () 12112 +=−+≤ nnN (2)

and in the case of FCC architecture

====
�����

⋯

n

N 111 ⇒ 12 −≤ nN (3)

In the case of BMLP architectures the situation is slightly
more complicated but BMLP with 2 hidden layers with n
neurons in the first layer and m neurons in the second layer

[]1=== mnN ⇒ () 1)1(12 −++≤ mnN (4)

For 3 hidden layers in BMLP architecture with m, n, k
neurons in each layer the maximum possible parity problem
is:

[]1==== kmnN ⇒ () 1)1)(1(12 −+++≤ kmnN (5)

Please notice that in FCC architecture there is only one
neuron in each layer (n=1; m=1; k=1) and one neuron in the
output layer. So the equations (3) and (5) give identical
results:

() 12151)11)(11(112 4 −==−+++≤N (6)

Fig. 13 show comparisons of the efficiency of various neural
network architectures. For example with 8 neurons MLP
with one hidden layer the largest problem which can be
solved is the Parity-7. With the same 8 neurons using BMLP
various parity problems can be solved starting with Parity-15
for the case of one hidden layer (15=7=1) to Parity=72 three
hidden layers when are used (72=3=2=2=1 or 72=2=3=2=1
or 72=2=2=3=1). With 8 neurons using FCC topology
(which can be also considered as BMLP with 7 hidden
layers) the neural network can solve as large problem as
Parity-255 using (255=1=1=1=1=1=1=1=1) topology.
Another example is the popular test bench with Wieland two
spiral problem which can be solved (Fig.14) with second
order algorithm using cascade architecture with 8 neurons
but in order to solve the same problem with the EBP
algorithm (Fig 15) at least 13 neurons and weights in
cascade architecture are needed. With only 12 neurons in
cascade, the NBN algorithm can produce a very smooth
response (Fig. 16) with less than 150 iterations but we were
not able to solve this 12 neuron problem with EBP algorithm
despite many trials with 1,000,000 iterations limit [13].

2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of neurons used

M
ax

im
um

 N
 in

 a
 P

ar
ity

-N

efficiencies of NN topologies

MLP with 1 hidden layer

BMLP with 1 hidden layer

BMLP with 2 hidden layer
MLP with 3 hidden layer

FCC architecture

Fig.13. Abilities of solving Parity-N problems as function of number of

neurons.

C. Neural Network Training Algorithms

The most common training algorithm is EBP – Error Back
Propagation [13][14]. It is relatively simple and it does not

19

require a lot of computer resources. This algorithm however
seldom leads to a good solution and is extremely slow. Much
better results can be obtained with second order algorithms
such as LM – Levenberg-Marquardt algorithm [15] or NBN
– Neuron by Neuron algorithm [7][8].
 Tables II and III show a comparison of these algorithms for
the parity-4 problem and the MLP architecture (4-3-3-1)
(Table II) and for the FCC architecture (4=1=1=1) (Table
III). The LM was not developed for arbitrarily connected
neural networks [16]. Please notice that the popular
MATLAB Neural Network Toolbox [11] where LM
algorithm is implemented can also handle only MLP
architectures. The SNNS software [15] which can handle
arbitrarily connected neural networks unfortunately uses
only first order algorithms. The Neuron by Neuron (NBN)
algorithm, implemented in NNT software package [10], was
developed in order to eliminate most disadvantages of the
LM algorithm and can handle arbitrarily connected neural
networks.

Fig. 14. Solution of the two spiral problem with NBN algorithm [4] using
fully connected architecture with 8 neurons and 52 weights.

Fig. 15. Solution of the two spiral problem with EBP algorithm using fully
connected architecture with 16 neurons and 168 weights

Fig. 16. Solution of the two spiral problem with NBN algorithm [4] using
fully connected architecture with only 12 neurons and 102 weights

 Table IV shows training results for parity-4 problems
and FCC architecture, but the size of the network is
increased. In this case both EBP and NBN algorithms can
easily find solutions.

TABLE II Average data for parity-4 training and MLP
architecture 4-3-3-1

 EBP LM NBN

Number of
iterations

2438.9 19.7 19.6

Training
time[ms]

931.9 19.6 19.6

Success rate 90% 72% 82%

TABLE III Average data for parity-4 training and FCC
architecture 4=1=1=1

 EBP LM NBN

Number of
iterations

7568.8 NA 14.6

Training
time[ms]

2985.8 NA 8.7

Success rate 88% NA 98%

TABLE IV Average data for parity-4 training and FCC
architecture 4=1=1=1=1

 EBP LM NBN
Number of
iterations

3977 NA 12.4

Training
time[ms]

1582 NA 8.15

Success rate 98% NA 100%

 Fig. 17 shows surfaces produced by neural networks for the
same desired surface as it was used with fuzzy systems (Fig.
5). One may notice that neural networks produces much
smoother and more accurate surfaces.

20

IV. CONCLUSION

As was already mentioned the success rate increases with the
increased size of neural network but such networks with
excessive number of neurons are losing their generalization
abilities. If too many neurons are used, then the network can
be over-trained on the training patterns, but it will fail on
patterns never used in training. With a smaller number of
neurons, the network cannot be trained to very small errors,
but it may produce much better approximations for new
patterns. The most common mistake made by many
researchers is that in order to speed up the training process
and to reduce the training errors they use neural networks
with larger number of neurons than required. Such networks
would perform very poorly for new patterns not used for
training [9].
Neural networks exhibit superior performance in comparison
to fuzzy systems but there are several reasons for frustration
of people trying to adapt neural networks for their research:

(1) In most cases the relatively inefficient MLP
architecture is used instead of more powerful
topologies which allow connections across layers.
(2) When popular learning software is used, such as
EBP, the training process is not only very time
consuming, but EBP is often not able to find solutions
for the neural network with reduced number of
neurons.
(3) As neural network complexity increases neural
networks can be over-trained to the training data,
losing its ability for generalization; therefore, it is not
able to correctly process new patterns which were not
used for training.
(4) In order to find solutions for close to optimal
architectures, second order algorithms such as NBN or
LM should be used. Unfortunately, the LM algorithm
adopted in popular MATLAB NN Toolbox can handle
only MLP topology without connections across layers
and these topologies are far from optimal.

With the recently developed advanced learning algorithm [6]
it is possible to train those networks, which cannot be trained
with simple algorithms.

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

(a)

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

(b)

Fig.17. Example of control surface obtained with neural systems (a)
with 5 neurons in BMLP architecture , (b) with 4 neurons using

FFC architecture. Required surface is shown in Fig. 5.a.

REFERENCES

[1] B. M. Wilamowski, “Neural Networks and Fuzzy Systems
for Nonlinear Applications” (keynote) 11th INES 2007 -11th
INES 2007 -International Conference on Intelligent
Engineering Systems, Budapest, Hungary, June 29 2007-July
1 2007, pp. 13-19.

[2] Bodgan M. Wilamowski, “Methods of Computational
Intelligence for Nonlinear Control Systems” (keynote talk)
ICCAE’ 05 International Conference on Control, Automation
and System, June 2-5, 2005, KINTEX, Gyeonggi-Do, Korea,
pp. P1-P8

[3] Sugeno and G. T. Kang, “Structure Identification of Fuzzy
Model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp. 15-33,
1988.

[4] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems
and Its Application to Modeling and Control,” IEEE
Transactions on System, Man, Cybernetics, Vol. 15, No. 1,
pp. 116-132, 1985.

[5] Mike McKenna and Bogdan Wilamowski, " Implementing a
Fuzzy System on a Field Programmable Gate Array ",
International Joint Conference on Neural Networks
(IJCNN'01), pp. 189-194, Washington DC, July 15-19, 2001

[6] B. M. Wilamowski and H. Yu, "Improved Computation in
Levenberg Marquardt Training," IEEE Trans. on Neural
Networks (accepted for publication).

[7] Wilamowski, B.M. Cotton, N.J. Kaynak, O. Dundar, G.,
“Computing Gradient Vector and Jacobian Matrix in
Arbitrarily Connected Neural Networks”, IEEE Trans. on
Industrial Electronics, vol. 55, no. 10, pp. 3784-3790, Oct.
2008.

[8] B. M. Wilamowski, "Neural Network Architectures and
Learning Algorithms," IEEE Industrial Electronics Magazine,
vol. 3, no. 4, pp. 56-63, Dec. 2009

[9] Hao Yu and B. M. Wilamowski, “C++ Implementation of
Neural Networks Trainer”, 13-th International Conference
on Intelligent Engineering Systems, INES-09, Barbados,
April 16-18, 2009

[10] B. M. Wilamowski, D. Hunter, A. Malinowski, "Solving
Parity-n Problems with Feedforward Neural Network," Proc.
of the IJCNN'03 International Joint Conference on Neural
Networks, pp. 2546-2551, Portland, Oregon, July 20-23,
2003

21

[11] B. M. Wilamowski, "Efficient neural network architectures
and advanced training algorithms", ICIT-10, 3-rd
International Conference on Information Technology,
Gdansk, Poland, June 28-30, 2010.

[12] B. M. Wilamowski, “Special Neural Network Architectures
for Easy Electronic Implementations” POWERENG.2009,
Lisbon, Portugal, March 18-20, 2009, pp. 17-22Rumelhart D.
E., G. E. Hinton, R. J. Williams, “Learning representations
by back-propagating errors”. Nature, vol. 323, pp. 533-536,
1986.

[13] Werbos P. J., “Back-propagation: Past and Future”.
Proceeding of International Conference on Neural Networks,
San Diego, CA, 1, 343-354, 1988.

[14] Stuttgart Neural Network Simulator SNNS
http://www.ra.cs.uni-tuebingen.de/SNNS/

[15] M. T. Hagan, M.B. Menhaj, “Training feedforward networks
with the Marquardt algorithm”. IEEE Trans. on Neural
Networks, vol. 5, no. 6, pp. 989-993, Nov. 1994.

22

