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Abstract-The presentation is focused on comparison of neural
networks and fuzzy systems. Advantages and disadvantages of
both technologies are discussed. Fuzzy systems are relatively
easy to design but number of inputs in the system are
significantly limited. It is very difficult to design neural
networks so rather they have to be trained instead. Neural
networks produce much smoother nonlinear mapping than
fuzzy systems. When neural networks are selected then
researchers are facing two dilemmas: what should be neural
network architectures and how to train them. The presentation
gives answers for both problems. It was found that Bridged
Multilayer Preceptron BMLP are a much better architecture
than popular MLP architecture. It isfaster to train and more
complex problems can be solved with fewer neurons. Training
of neural networks is not easy. For example most of the
existing software cannot train close to optimal neural network
so networks with excessive number of neurons are being used
by most researchers. Such networks indeed can be trained to
very small errors using training patterns but they are not able
to respond correctly for new patterns not used in training. A
new NBN learning algorithm is presented in this work. This
algorithm is not only up to 1000 times faster than the popular
EBP algorithm, but it can train all neural network
architectures. More importantly it can train close to optimum
neural networ ks which were not ableto betrained before.

I INTRODUCTION

There are three major areas of computational igezice:
Neural networks, fuzzy systems, and
computation. The complexity of neural networks soeh
that humans are not able to design them. Insteapraguce
neural networks with random connections and theriraia
them so they can perform required function. Pefcgyyawe
as humans are not able to design dogs and we tebleoto
follow operations of dogs' neurons, but we are abléain
them. On other hand, fuzzy systems are relatigatyple
and we can design them for required applicatiorghe
current approach for fuzzy systems allows us gigeonly
systems with number of inputs limited to 3 or 4 avith one
output only. Neural networks do not have thesatditions
and also the qualities of nonlinear mapping of akur
networks are superior to fuzzy systems
evolutionary computation the design process isaega by a
selection process out of many populations of sohsti In
this presentation we will focus on neural netwaaksl fuzzy
systems since applications of evolutionary algongh are
not used in real time applications.
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Il. Fuzzy SYSTEMS proposed by Mamdani [3] and Fig. 2.b shows TSK
architecture developed by Takagi, Sugeno, and K&jig].

The block diagram of the Mamdani approach [3] igvaf in
Fig. 2.a. The rightmost block of the diagram reprgs
defuzzification, where the output analog varialesitrieved
from a set of output fuzzy variables. The most g@n is
the centroid type of defuzzification.

The fuzzy logic is similar to Boolean logic but fead of
AND and OR operators, MIN and MAX operators aredis
The concept is shown in Fig. 1. Sometimes MIN afmgris
replaced by product operator in order to obtain ctmer
response. As a consequence it is possible to perfogic
operations on analog values in the range betweand0l.
The key issue is how to design fuzzy systems s@eauro
nonlinear mapping between input and output can b
obtained
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Fig. 5. Example of control surface obtained willy systems (a) desired

Fig. 4. Design process for TSK type fuzzy contmolle

rface, (b) surface obtained with Mamdani archite; (c) surface

There are two most commonly used approaches fc%t‘)tainedwithTSKarchitecture

development of fuzzy systems. Fig. 2.a shows achite
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The popular TKS architecture follows well known cept
of Look up Table (LUT) implemented in ROM and PLA
memories. At first there is a selection of the ateen a
specific value is assigned to this area. Mamdape tpf
architectures are more restrictive because instead
assigning output values to each area, as in TK8,fozzy
variable from the predefined output fuzzy set isigiged to
each area. Then the defuzzification process isopagd in
order to obtain the output variable.
Let us assume that we have to design the Mamdaaiy fu
controller having the required function shown irg.Fb.a.
NOt!Ce that for every area one S_p(?CIfIC fuzz_y valige Fig. 6 Surface matching problem:((a)) Required 2iBase with
assigned of the output fuzzy set. This is markedign3 by  37x37=1,369points, used for verification; ()0x10=100training patterns
letters from A to F. extracted in equal space from (a), used for trginin
In TSK fuzzy architecture the defuzzification bloekas
replaced with normalization and weighted averagg. (Eb).
The TSK architecture does not require MAX operatbtd a
weighted average is applied directly to regioneded by
MIN operators (Fig. 4). What makes the TSK systeaily
simple is that the output weights are proportiotmlthe
average function values at the selected regionsvibiy
operators. The TSK fuzzy system works as a lookbjet
Samples of surfaces obtained with Mamdani an&K TS
architectures using triangular membership functiare
shown in Fig. 5.

. NEURAL NETWORKS

The most important feature of neural networks isirth
generalization abilities. This means that neuraiwoeks
should correctly respond to new patterns which wereer
used in the training. The number of neurons in such
networks should be as small as possible. Unforalyatt is
very difficult to train neural networks with good
generalization abilities. In order to reduce numbmr 1
neurons special network architectures have to bd.uslso,

more advanced learning algorithms than popular EBP
algorithm should be used. These issues will beudsed in
following sections.
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Fig. 7 Training results using 100 trials with (aBN algorithm, 8 neurons in
FCC network (52 weights); maximum training iteratie 1,000;
SSEwin=0.0044, SSk:i,=0.0080 and training time=0.37 s, (b) EBP
algorithm, 13 neurons in FCC network (117 weightsaximum training
iteration is 1,000,000; S$&~=0.0018, SSki,=0.4909 and training
time=635.72 s,

A. Generalization Abilities

It is relatively easy to find neural network areluitures so
they can be trained to very small errors. Howekeés, more
important to find an architecture which after trag will
respond correctly to patterns which were not used f
training. Let us illustrate this problem using example
with the peak surface [7] shown in Fig. 6.a asréguired
surface and let us use equally spat@e10=100 patterns
(Fig. 6.b) in training neural networks. The qualitiytrained
networks is evaluated using errors computed forakyu
spaced37x37=1,369 patterns. In order to make a valid
comparison between training and verification ertoe, SSE,
as defined in (1), is divided by 100 and 1,369 eetipely.

Sk b Ao s o o®
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TABLE I. Training Results of peak surface problem.

Neurons Success Average Average Time g
Rate Iteration (s) p
EBP | NBN EBP NBN EBP NBN x
8 0% 5% / 222.5 / 0.33
9 0% 25% / 214.6 / 0.58 X
10 0% 61% / 183.5 / 0.70
11 0% 76% / 177.2 / 0.93
12 0% 90% / 149.5 / 1.08
13 35% | 96% | 573,226 | 142.5 | 624.88 1.35 +1 +
14 42% | 99% | 544,734 | 134.5 | 651.66 | 1.76 MLPwith one hidden layer
15 56% | 100% | 627,224 | 119.3 | 891.90 1.85 Fig.9. MPL-Multi Layer Perceptron topology with Apiuts in one hidden

layer

As the training results are shown in Table |, ugimg NBN
algorithm, which can handle arbitrarily connecteeural
networks, it was possible to find the acceptablkitem
(Fig. 7a), SSE,=0.0044 and SSk:=0.0080) with 8
neurons (52 weights). Unfortunately, with the EBP
algorithm, it was not possible to find acceptaldiions in
100 trials within 1,000,000 iterations each. Thethbesult
out of the 100 trials with 1,000,000 iterations feasas
SSEinm0.0764 and SSkKiy=0.1271. When the network
size was significantly increased from 8 to 13 near¢l17
weights), the EBP algorithm was able to reach ailaim
training error as with NBN algorithm, but the netWwdost

its ability to respond correctly for new patterrisetiveen
training points). Please notice that indeed withaegyed
number of neurons, the EBP algorithm was abledin tthe
network to small error SSE;=0.0018, but as one can see
from Fig. 7b, the result is unacceptable with veaifion
error SSKeir,=0.4909. When reduced number of neurons are
used the EBP algorithm can’t converge to requiradhing
error.  When the size of networks increase, the EBP
algorithm can reach the required training errot, toained
networks lose their generalization ability and ¢tgrocess
new patterns well (Fig. 7b). On the other handpsdarder
algorithms, such as a NBN algorithm [8][9][10], Wernot
only significantly faster but it can find good stiduns with
close to optimal networks (Fig. 7a).

From the above analysis, one may notice that demoto
sustain neural network generalization abilities tework
should have as few neurons/weights as possibles Thi
problem is very similar to function approximationy b
polynomials. If too high order of polynomial isagsthen
errors for training points and values between og#nnot
be evaluated correctly. In the example on Fig. @y &-th,
6-th, and 7-th order of polynomials are giving askHeq
results, while higher order polynomial can be turted
smaller errors for given points they are uselespridict
evaluated new points which were not used for trgni

X has 8 dimentions

+1
BMLP with one hidden layer
15

1r Fig 10. BMPL — Bridged Multi Layer Perceptron topgy with 8 inputs and

one hidden layer.
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Fig. 8. Approximation of data by different ordefgpolynomials
Fig. 11. BMPL — Bridged Multi Layer Perceptron téggy with 17 inputs
and two hidden layers
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For 3 hidden layers in BMLP architecture with, n, k
neurons in each layer the maximum possible paribplem
is:

[N —n=m=k =1 = N<2(n+1)(m+1)(k +1) -1 (5)

X has 31 dimentions

Please notice that in FCC architecture there iy ame
neuron in each layer (n=1; m=1; k=1) and one neimahe
output layer. So the equations (3) and (5) giventidel
results:

FCC — Fully Connected Cascade N S 2(1 + 1) (1 + l) (1 + 1) - 1 = 15 = 24 - 1 (6)

Fig. 12. FCC- Fully Connected Cascade with 5 nesiro

+1

Fig. 13 show comparisons of the efficiency of vasimeural
B. Neural Network Architectures network architectures. For example with 8 neurbhsP
with one hidden layer the largest problem which dan
solved is the Parity-7. With the same 8 neuronsguBIMLP
various parity problems can be solved starting Widhity-15
for the case of one hidden lay&6€7=1) to Parity=72 three
hidden layers when are usetP£3=2=2=1 or 72=2=3=2=1

There are many ways to connect neurons in feedfdrwa
networks. The most popular is MLP — Multilayer Raptron
(see Figs 9 through 12). The abbreviated descriptor
these particular networks would b&4-1. Much more A : )
powerful are BMLP Bridged Multilayer Perceptronwetks Orh7.2H2_2_3_b1 )I. With 8 dneu:jons UBSII\?EPFC'(t:h t(;p%I%%y
(see Figs. 10 and 11). The abbreviated descriftioshown (which can be also considered as Wi \aden
networks are8=4=1 and 17=2=2=1. The FCC — Fully Iaygrs) the ngural network can solve as large probas
C ; : : : Parity-255 usingd55=1=1=1=1=1=1=1=1) topology.

onnected Cascade neural network (Fig. 12) is pleeial ; . .
case of BMLP where there is only one neuron in éagér. Another example is the popular test bench with ®@fidltwo

The abbreviated description of the network of Hig.would spiral problgm Wh.'Ch can be solveq (Flg.l4).WI§’C®’ld
be31=1=1=1=1=1. order algorithm using cascade architecture withe8rons

The most common test benches for neural networks aPUt in order to solve the same problem with the EBP

parity-N problems, which are considered to be thestm algorithm (F|g 15) at least 13 neurons and We'g"!"‘s
difficult benchmark for neural network training. &h cascade architecture are needed. With only 12oneuin

simplest parity-2 problem is also known as the XORcascade, th_e NBN glgorlthm can p“?duc? a very smoot
problem. The larger the N, the more difficult ittt solve. respobnlse (F'gl' 16?\.\'\";2 less than 1g? 'tera!tfgs"mwrffe

It was shown [11][12] how to solve parity N proiig using SOI able to solve f IS h neuron problem wit i gﬁm m
various neural network architectures such as: Mlifh ane espite many trials with 1,000,000 iterations l{Az).

hidden layer, Bridged Multilayer Perceptron (BMLRjth ‘ efficiencies of NN topologies

300
one hidden layer and FCC architectures. In the oa84LP
with n neurons in the one hidden layer it is possiblsdive * MLPwith 1 hidden layer
g bl 250k O BMLP W!th 1 h!dden layer I
Parlty N prO em O  BMLP with 2 hidden layer
A MLP with 3 hidden layer
[N -n _1] — N S n (1) 2 200k FCC architecture i
In the case of BMLP with one hidden layer [10][11] § 150} 1
[N=n=1] = N=2(n+])-1=2n+1 (2  Zw0 ]
i
and in the case of FCC architecture ol A |
n N O H
— R o
N=1=1=-.=1| = N<2'-1 (@3 L e & § 9 9
2 3 4 5 6 7 8

number of neurons used
In the Case.Of BMLP arChlteCtu.reS the. Sltuatlom“ghtly Fig.13. Abilities of solving Parity-N problems asttion of number of
more complicated but BMLP with 2 hidden layers with neurons.
neurons in the first layer amd neurons in the second layer

C. Neural Network Training Algorithms
[N=n=m=1 = N<2(n+)(m+)-1 @

The most common training algorithm is EBP — Err@cB
Propagation [13][14]. It is relatively simple artddioes not

19



require a lot of computer resources. This algoritiowever
seldom leads to a good solution and is extremely.sMuch
better results can be obtained with second ordgmrighms
such as LM — Levenberg-Marquardt algorithm [15NBN

— Neuron by Neuron algorithm [7][8].

Tables Il and 11l show a comparison of these athors for
the parity-4 problem and the MLP architecture3(3-1)
(Table 1l) and for the FCC architecturd=(1=1=1) (Table
lll). The LM was not developed for arbitrarily cogoted
neural networks [16]. Please notice that the papula
MATLAB Neural Network Toolbox [11] where LM
algorithm is implemented can also handle only MLP
architectures. The SNNS software [15] which candhan
arbitrarily connected neural networks unfortunateiges T

only first order algorithms. The Neuron by NeurdtB()  Fig. 16. Solution of the two spiral problem with NBalgorithm [4] using
algorithm, implemented in NNT software package [ms fully connected architecture with only 12 neurond 402 weights
developed in order to eliminate most disadvantazfethe

LM algorithm and can handle arbitrarily connecteslinal Table IV shows training results for paritypdoblems
networks. and FCC architecture, but the size of the netwak i

increased. In this case both EBP and NBN algoriticanrs
easily find solutions.

TABLE Il Average data for parity-4 training and MLP

i, b
i = I{”Q.\I\u
T I8
Niah
! X

architecture 4-3-3-1
EBP LM NBN
Number  of 2438.9 19.7 19.6
iterations
Training 931.9 19.6 19.6
time[ms]
Success rate 90% 2% 82%
Fig. 14. Solution of the two spilil p1rDobIem with NBalgorithm [4] using  TABLE Il Average data for parity-4 training and EC
fully connected architecture with 8 neurons anavéjhts. architecture 4=1=1=1
EBP LM NBN
Number of 7568.8 NA 14.6
iterations
- Training 2985.8 NA 8.7
" . 'mlllu ) time[ms]
{:ﬂ nrin'l'l' ,. . i Success rate 88% NA 98%

TABLE IV Average data for parity-4 training and FCC
architecture 4=1=1=1=1

EBP LM NBN
Number of 3977  NA| 124
P iterations
Fig. 15. Solution of the two spiral problem with ERlgorithm using fully Training
connected architecture with 16 neurons and 168hsig time[ms] 1582 NA 8.15
Success rate 98% NA 100%%

Fig. 17 shows surfaces produced by neural netwiorkdhe
same desired surface as it was used with fuzzemgs(Fig.
5). One may notice that neural networks produceshmu
smoother and more accurate surfaces.
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IV. CONCLUSION

As was already mentioned the success rate incregagethe
increased size of neural network but such netwarks
excessive number of neurons are losing their gératian
abilities. If too many neurons are used, then #isvark can
be over-trained on the training patterns, but il ¥&il on
patterns never used in training. With a smallember of
neurons, the network cannot be trained to very Isenedrs,

but it may produce much better approximations fewn
The most common mistake made by many
researchers is that in order to speed up the migiprocess

patterns.

and to reduce the training errors they use newrtharks
with larger number of neurons than required. Suefivorks
would perform very poorly for new patterns not uded
training [9].

Neural networks exhibit superior performance in panson
to fuzzy systems but there are several reasorfsustration
of people trying to adapt neural networks for tliesearch:

(1)In most cases the relatively inefficient MLP [1]

architecture is used
topologies which allow connections across layers.

instead of more powerfu

(2)When popular learning software is used, such &
EBP, the training process is not only very time

consuming, but EBP is often not able to find solosi
for the neural network with reduced number
neurons.

[2]
ol

(3)As neural network complexity increases neura
networks can be over-trained to the training date[s]

losing its ability for generalization; therefore,is not
able to correctly process new patterns which werte
used for training.

n

(4]

(4)In order to find solutions for close to optimal
architectures, second order algorithms such as BN
LM should be used. Unfortunately, the LM algorithm
adopted in popular MATLAB NN Toolbox can handle [5]
only MLP topology without connections across layers

and these topologies are far from optimal.
With the recently developed advanced learning &lyor[6]
it is possible to train those networks, which cdrb®trained
with simple algorithms.

(6]

(7]

(8]

(9]

(10]
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(b)

Fig.17. Example of control surface obtained with neurateys (a)
with 5 neurons in BMLP architecture , (b) with 4unens using

FFC architecture. Required surface is shown in Fa. 5
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