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Abstract-The presentation is focused on comparison of neural 
networks and fuzzy systems. Advantages and disadvantages of 
both technologies are discussed.  Fuzzy systems are relatively 
easy to design but number of inputs in the system are 
significantly limited. It  is very difficult to design neural 
networks so rather they have to be trained instead. Neural 
networks produce much smoother  nonlinear mapping than 
fuzzy systems.  When neural networks are selected then 
researchers are facing two dilemmas: what should be neural 
network architectures and how to train them. The presentation 
gives answers for both problems.  It was found that Bridged 
Multilayer Preceptron BMLP are a much better architecture 
than popular MLP architecture.  It is faster to train and more 
complex problems can be solved with fewer neurons.  Training 
of neural networks is not easy.  For example most of the 
existing software cannot train close to optimal neural network 
so networks with excessive number of neurons are being used 
by most researchers. Such networks indeed can be trained to 
very small errors using training patterns but they are not able 
to respond correctly for new patterns not used in training. A 
new NBN learning algorithm is presented in this work. This 
algorithm is not only up to 1000 times faster than the popular 
EBP algorithm, but it can train all neural network 
architectures. More importantly it can train close to optimum 
neural networks which were not able to be trained before.  

I. INTRODUCTION 

There are three major areas of computational intelligence: 
Neural networks, fuzzy systems, and evolutionary 
computation.  The complexity of neural networks are such 
that humans are not able to design them. Instead we produce 
neural networks with random connections and then we train 
them so they can perform required function. Per analogy we 
as humans are not able to design dogs and we are not able to 
follow operations of dogs' neurons, but we are able to train 
them.  On other hand, fuzzy systems are relatively simple 
and we can design them for required applications.  The 
current  approach for fuzzy systems allows us to design only 
systems with number of inputs limited to 3 or 4 and with one 
output only.  Neural networks do not have these limitations 
and also the qualities of nonlinear mapping of neural 
networks are superior to fuzzy systems [1][2]. In 
evolutionary computation the design process is replaced by a 
selection process out of many populations of solutions.  In 
this presentation we will focus on neural networks and fuzzy 
systems since applications of evolutionary algorithms  are 
not used in real time applications.  
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Fig. 1.  Comparison of (a) Boolean and (b) Fuzzy logic. 
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Fig. 2 Fuzzy architectures (a) Mamdani and (b) TSK 
 

 

978-1-4244-6392-3/10/$26.00 ©2010 IEEE 15



II. FUZZY SYSTEMS 

The fuzzy logic is similar to Boolean logic but instead of 
AND  and OR operators, MIN and MAX operators are used.  
The concept is shown in Fig. 1.  Sometimes MIN operator is 
replaced by product operator in order to obtain smoother 
response. As a consequence it is possible to perform logic 
operations on analog values in the range between 0 and 1.  
The key issue is how to design fuzzy systems so proper 
nonlinear mapping between input and output can be 
obtained. 
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Fig. 3. Design process for Mamdani type fuzzy controller 
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Fig. 4. Design process for TSK type fuzzy controller 
 
There are two most commonly used approaches for 
development of fuzzy systems. Fig. 2.a shows architecture 

proposed by Mamdani [3] and Fig. 2.b shows TSK 
architecture developed by Takagi, Sugeno, and Kang [4][5].  
The block diagram of the Mamdani approach [3] is shown in 
Fig. 2.a. The rightmost block of the diagram represents 
defuzzification, where the output analog variable is retrieved 
from a set of output fuzzy variables.  The most common is 
the centroid type of defuzzification.  
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Fig. 5.  Example of control surface obtained with fuzzy systems (a) desired 
surface, (b) surface obtained with Mamdani architecture, (c) surface 
obtained with TSK architecture 
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The popular TKS architecture follows well known concept 
of Look up Table (LUT) implemented in ROM and PLA 
memories. At first there is a selection of the area then a 
specific value is assigned to this area. Mamdani type of 
architectures are more restrictive because instead of 
assigning output values to each area, as in TKS, one fuzzy 
variable from the predefined output fuzzy set is assigned to 
each area. Then the defuzzification process is performed in 
order to obtain the output variable.  
Let us assume that we have to design the Mamdani fuzzy 
controller having the required function shown in Fig. 5.a.  
Notice that for every area one specific fuzzy value is 
assigned of the output fuzzy set. This is marked on Fig. 3 by 
letters from A to F.   
In TSK fuzzy architecture the defuzzification block was 
replaced with normalization and weighted average (Fig. 2.b). 
The TSK architecture does not require MAX operators, but a 
weighted average is applied directly to regions selected by 
MIN operators (Fig. 4).  What makes the TSK system really 
simple is that the output weights are proportional to the 
average function values at the selected regions by MIN 
operators. The TSK fuzzy system works as a lookup table. 
   Samples of surfaces obtained with Mamdani and TSK 
architectures using triangular membership functions are 
shown in Fig. 5. 
 

III.  NEURAL NETWORKS 

The most important feature of neural networks is their 
generalization abilities. This means that neural networks 
should correctly respond to new patterns which were never 
used in the training. The number of neurons in such 
networks should be as small as possible. Unfortunately it is 
very difficult to train neural networks with good 
generalization abilities. In order to reduce number of 
neurons special network architectures have to be used. Also, 
more advanced learning algorithms than popular EBP 
algorithm should be used. These issues will be discussed in 
following sections. 

 
(a)                                                                  

 
 (b) 

Fig. 6 Surface matching problem: (a) Required 2-D surface with 
37×37=1,369 points, used for verification; (b) 10×10=100 training patterns 
extracted in equal space from (a), used for training. 

 

 
(a)                                                                  

 
 (b) 

Fig. 7 Training results using 100 trials with (a) NBN algorithm, 8 neurons in 
FCC network (52 weights); maximum training iteration is 1,000; 
SSETrain=0.0044, SSEVerify=0.0080 and training time=0.37 s, (b) EBP 
algorithm, 13 neurons in FCC network (117 weights); maximum training 
iteration is 1,000,000; SSETrain=0.0018, SSEVerify=0.4909 and training 
time=635.72 s,   

A. Generalization Abilities 
 
It is relatively easy to find neural network architectures so 
they can be trained to very small errors. However, it is more 
important to find an architecture which after training will 
respond correctly to patterns which were not used for 
training.   Let us illustrate this problem using an example 
with the peak surface [7] shown in Fig. 6.a as the required 
surface and let us use equally spaced 10×10=100 patterns 
(Fig. 6.b) in training neural networks. The quality of trained 
networks is evaluated using errors computed for equally 
spaced 37×37=1,369 patterns. In order to make a valid 
comparison between training and verification error, the SSE, 
as defined in (1), is divided by 100 and 1,369 respectively. 
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TABLE I. Training Results of peak surface problem.  
 

Neurons 

 

Success 

Rate 

Average 

Iteration 

Average Time 

(s) 

EBP NBN EBP NBN EBP NBN 

8 0% 5% / 222.5 / 0.33 

9 0% 25% / 214.6 / 0.58 

10 0% 61% / 183.5 / 0.70 

11 0% 76% / 177.2 / 0.93 

12 0% 90% / 149.5 / 1.08 

13 35% 96% 573,226 142.5 624.88 1.35 

14 42% 99% 544,734 134.5 651.66 1.76 

15 56% 100% 627,224 119.3 891.90 1.85 

 
As the training results are shown in Table I, using the NBN 
algorithm, which can handle arbitrarily connected neural 
networks, it was possible to find the acceptable solution 
(Fig. 7a), SSETrain=0.0044 and SSEVerify=0.0080) with 8 
neurons (52 weights). Unfortunately, with the EBP 
algorithm, it was not possible to find acceptable solutions in 
100 trials within 1,000,000 iterations each. The best result 
out of the 100 trials with 1,000,000 iterations each was 
SSETrain=0.0764 and SSEVerify=0.1271. When the network 
size was significantly increased from 8 to 13 neurons (117 
weights), the EBP algorithm was able to reach a similar 
training error as with NBN algorithm, but the network lost 
its ability to respond correctly for new patterns (between 
training points). Please notice that indeed with enlarged 
number of neurons, the EBP algorithm was able to train the 
network to small error SSETrain=0.0018, but as one can see 
from Fig. 7b, the result is unacceptable with verification 
error SSEVerify=0.4909. When reduced number of neurons are 
used the EBP algorithm can’t converge to required training 
error.  When the size of networks increase, the EBP 
algorithm can reach the required training error, but trained 
networks lose their generalization ability and can’t process 
new patterns well (Fig. 7b). On the other hand, second order 
algorithms, such as a NBN algorithm [8][9][10], works not 
only significantly faster but it can find good solutions with 
close to optimal networks (Fig. 7a). 
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Fig. 8. Approximation of data by different orders of polynomials 

 
Fig.9. MPL-Multi Layer Perceptron topology with 4 inputs in one hidden 
layer 
 
From the above analysis, one may notice that  in order to 
sustain neural network generalization abilities the network 
should have as few neurons/weights as possible. This 
problem is very similar to function approximation by 
polynomials.  If too high order of polynomial is used then 
errors for training points and values between points cannot 
be evaluated correctly. In the example on Fig. 8  only 5-th, 
6-th, and 7-th order of polynomials are giving adequate 
results, while higher order polynomial can be tuned to 
smaller errors for given points they are useless to predict 
evaluated new points which were not used for training.  
 

 
 
Fig 10. BMPL – Bridged Multi Layer Perceptron topology with 8 inputs and 
one hidden layer. 
 

+1

BMLP – Bridged MLP with two hidden layers

X

 
 
Fig. 11. BMPL – Bridged Multi Layer Perceptron topology with 17 inputs 
and two hidden layers 
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Fig. 12. FCC- Fully Connected Cascade  with 5 neurons.  
 

B. Neural Network Architectures 

 
There are many ways to connect neurons in feedforward 
networks. The most popular is MLP – Multilayer Perceptron 
(see Figs 9 through 12). The abbreviated description for 
these particular networks would be 4-4-1. Much more 
powerful are BMLP Bridged Multilayer Perceptron networks 
(see Figs. 10 and 11). The abbreviated description for shown 
networks are 8=4=1 and 17=2=2=1. The FCC – Fully 
Connected Cascade neural network (Fig. 12) is the special 
case of BMLP where there is only one neuron in each layer. 
The abbreviated description of the network of Fig. 12 would 
be 31=1=1=1=1=1.  
The most common test benches for neural networks are 
parity-N problems, which are considered to be the most 
difficult benchmark for neural network training. The 
simplest parity-2 problem is also known as the XOR 
problem. The larger the N, the more difficult it is to solve.   
It was shown [11][12]  how to solve parity N problems using 
various neural network architectures such as: MLP with one 
hidden layer, Bridged Multilayer Perceptron (BMLP) with 
one hidden layer and FCC architectures. In the case of MLP 
with n neurons in the one hidden layer it is possible to solve 
Parity-N problem  
 

[ ]1−− nN        ⇒           nN ≤          (1)  

 

In the case of BMLP with one hidden layer [10][11] 
 

[ ]1== nN     ⇒    ( ) 12112 +=−+≤ nnN          (2) 

 
and in the case of FCC architecture 
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N 111     ⇒     12 −≤ nN    (3)  

In the case of BMLP architectures the situation is slightly 
more complicated but BMLP with 2 hidden layers with n 
neurons in the first layer and m neurons in the second layer 
 

[ ]1=== mnN     ⇒    ( ) 1)1(12 −++≤ mnN    (4) 

 

For 3 hidden layers in BMLP architecture with m, n, k 
neurons in each layer the maximum possible parity problem 
is: 

[ ]1==== kmnN ⇒ ( ) 1)1)(1(12 −+++≤ kmnN  (5) 

 
Please notice that in FCC architecture there is only one 
neuron in each layer (n=1; m=1; k=1) and one neuron in the 
output layer. So the equations (3) and (5) give identical 
results:  

( ) 12151)11)(11(112 4 −==−+++≤N          (6) 

 
Fig. 13 show comparisons of the efficiency of various neural 
network architectures.  For example with 8 neurons MLP 
with one hidden layer the largest problem which can be 
solved is the Parity-7. With the same 8 neurons using BMLP 
various parity problems can be solved starting with Parity-15 
for the case of one hidden layer (15=7=1)  to Parity=72 three 
hidden layers when are used (72=3=2=2=1 or 72=2=3=2=1 
or 72=2=2=3=1  ). With 8 neurons using FCC topology 
(which can be also considered as BMLP with 7 hidden 
layers) the neural network can solve as large problem as 
Parity-255 using (255=1=1=1=1=1=1=1=1) topology.   
Another example is the popular test bench with Wieland two 
spiral problem  which can be solved (Fig.14) with second 
order algorithm using cascade architecture with 8 neurons 
but in order to solve the same problem with the EBP 
algorithm (Fig 15) at least 13 neurons and weights in 
cascade architecture  are needed. With only 12 neurons in 
cascade, the NBN algorithm can produce a very smooth 
response (Fig. 16) with less than 150 iterations but we were 
not able to solve this 12 neuron problem with EBP algorithm 
despite many trials with 1,000,000 iterations limit [13]. 
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Fig.13. Abilities of solving Parity-N problems as function of number of 

neurons.  
 

C. Neural Network Training Algorithms 
 
The most common training algorithm is EBP – Error Back 
Propagation [13][14]. It is relatively simple and it does not 
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require a lot of computer resources. This algorithm however 
seldom leads to a good solution and is extremely slow. Much 
better results can be obtained with second order algorithms 
such as LM – Levenberg-Marquardt algorithm [15] or NBN 
– Neuron by Neuron algorithm [7][8]. 
 Tables II and III show a comparison of these algorithms for 
the parity-4 problem and the MLP architecture (4-3-3-1) 
(Table II) and for the FCC architecture (4=1=1=1) (Table 
III). The LM was not developed for arbitrarily connected 
neural networks [16]. Please notice that the popular 
MATLAB Neural Network Toolbox [11] where LM 
algorithm is implemented can also handle only MLP 
architectures. The SNNS software [15] which can handle 
arbitrarily connected neural networks unfortunately uses 
only first order algorithms. The Neuron by Neuron (NBN) 
algorithm, implemented in NNT software package [10], was 
developed in order to eliminate most disadvantages of the 
LM algorithm and can handle arbitrarily connected neural 
networks.   

 
Fig. 14. Solution of the two spiral problem with NBN algorithm [4] using 
fully connected architecture with 8 neurons and 52 weights. 
 

 
Fig. 15. Solution of the two spiral problem with EBP algorithm using fully 
connected architecture with 16 neurons and 168 weights 
 

 
Fig. 16. Solution of the two spiral problem with NBN algorithm [4] using 
fully connected architecture with only 12 neurons and 102 weights 
 
      Table IV shows training results for parity-4 problems 
and FCC architecture, but the size of the network is 
increased. In this case both EBP and NBN algorithms can 
easily find solutions.  
 
TABLE II Average data for parity-4 training and MLP 
architecture 4-3-3-1 

 EBP LM NBN 

Number of 
iterations 

2438.9 19.7 19.6 

Training 
time[ms] 

931.9 19.6 19.6 

Success rate 90% 72% 82% 

 
 
TABLE III Average data for parity-4 training and FCC 
architecture 4=1=1=1 

 EBP LM NBN 

Number of 
iterations 

7568.8 NA 14.6 

Training 
time[ms] 

2985.8 NA 8.7 

Success rate 88% NA 98% 

 
 
TABLE IV Average data for parity-4 training and FCC 
architecture 4=1=1=1=1 

 EBP LM NBN 
Number of 
iterations 

3977 NA 12.4 

Training 
time[ms] 

1582 NA 8.15 

Success rate 98% NA 100% 
 
 Fig. 17 shows surfaces produced by neural networks for the 
same desired surface as it was used with fuzzy systems (Fig. 
5). One may notice that neural networks produces much 
smoother and more accurate surfaces. 
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IV.  CONCLUSION 

 
As was already mentioned the success rate increases with the 
increased size of neural network but such networks with 
excessive number of neurons are losing their generalization 
abilities. If too many neurons are used, then the network can 
be over-trained on the training patterns, but it will fail on 
patterns never used in training.  With a smaller number of 
neurons, the network cannot be trained to very small errors, 
but it may produce much better approximations for new 
patterns.  The most common mistake made by many 
researchers is that in order to speed up the training process 
and to reduce the training errors they use neural networks 
with larger number of neurons than required.  Such networks 
would perform very poorly for new patterns not used for 
training [9]. 
Neural networks exhibit superior performance in comparison 
to fuzzy systems but there are several reasons for frustration 
of people trying to adapt neural networks for their research: 

(1) In most cases the relatively inefficient MLP 
architecture is used instead of more powerful 
topologies which allow connections across layers. 
(2) When popular learning software is used, such as 
EBP, the training process is not only very time 
consuming, but EBP is often not able to find solutions 
for the neural network with reduced number of 
neurons. 
(3) As neural network complexity increases neural 
networks can be  over-trained to the training data, 
losing its ability for generalization; therefore, it is not 
able to correctly process new patterns which were not 
used for training. 
(4) In order to find solutions for close to optimal 
architectures, second order algorithms such as NBN or 
LM should be used. Unfortunately, the LM algorithm 
adopted in popular MATLAB NN Toolbox can handle 
only MLP topology without connections across layers 
and these topologies are far from optimal. 

With the recently developed advanced learning algorithm [6] 
it is possible to train those networks, which cannot be trained 
with simple algorithms.  
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Fig.17.  Example of control surface obtained with neural systems (a) 
with 5 neurons in BMLP architecture , (b) with 4 neurons using 

FFC architecture. Required surface is shown in Fig. 5.a. 
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