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Neural Network Learning without
Backpropagation

Bogdan M. Wilamowski, Fellow, IEEE, and Hao Yu

Abstract— The method introduced in this paper allows for
training arbitrarily connected neural networks, therefore, more
powerful neural network architectures with connections across
layers can be efficiently trained. The proposed method also
simplifies neural network training, by using the forward-only
computation instead of the traditionally used forward and back-
ward computation.

Information needed for the gradient vector (for first-order
algorithms) and Jacobian or Hessian matrix (for second-order
algorithms) is obtained during forward computation. With the
proposed algorithm, it is now possible to solve the same problems
using a much smaller number of neurons because the proposed
algorithm is able to train more complex neural network archi-
tectures that require a smaller number of neurons. Comparison
results of computation cost show that the proposed forward-only
computation can be faster than the traditional implementation
of the Levenberg–Marquardt algorithm.

Index Terms— Forward-only computation, Levenberg–
Marquardt algorithm, neural network training.

I. INTRODUCTION

THE popular EBP algorithm [1] is relatively simple and it
can handle problems with basically an unlimited number

of patterns. Also, because of its simplicity, it was relatively
easy to adopt the EBP algorithm for more efficient neural
network architectures where connections across layers are
allowed [2]. However, the EBP algorithm can be up to 1000
times slower than more advanced second-order algorithms
[3]– [5]. Many improvements [6], [7] have been made to speed
up the EBP algorithm and some of them, such as momentum
[8], adaptive learning constant, and RPROP algorithm [9],
work relatively well. But as long as first-order algorithms are
used, improvements are not dramatic.

The very efficient second-order Levenberg–Marquardt (LM)
algorithm [10], [11] was adopted for neural network training
by Hagan and Menhaj [12], and later was implemented in the
MATLAB neural network toolbox [13]. The LM algorithm
uses significantly more number of parameters describing the
error surface than just gradient elements as in the EBP
algorithm. As a consequence, the LM algorithm is not only
fast but it can also train neural networks for which the EBP
algorithm has difficulty in converging [5]. Many researchers
now are using the Hagan and Menhaj LM algorithm for
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neural network training, but this algorithm has also several
disadvantages.

1) It cannot be used for problems with many training pat-
terns because the Jacobian matrix becomes prohibitively
too large.

2) The LM algorithm requires the inversion of a quasi-
Hessian matrix of size nw × nw in every iteration,
where nw is the number of weights. Because of the
necessity of matrix inversion in every iteration, the speed
advantage of the LM algorithm over the EBP algorithm
is less evident as the network size increases.

3) The Hagan and Menhaj LM algorithm was developed
only for multilayer perceptron (MLP) neural networks.
Therefore, much more powerful neural networks [14],
[15], such as fully connected cascade (FCC) or bridged
multilayer preceptron architectures cannot be trained.

4) In implementing the LM algorithm, Hagan and Men-
haj calculated elements of the Jacobian matrix using
basically the same routines as in the EBP algorithm.
The difference is that the error backpropagation process
(for Jacobian matrix computation) must be carried on
not only for every pattern but also for every output
separately.

Problems 1) and 2) inherited the property of the original
LM algorithm. The disadvantage 1) of the LM algorithm was
addressed in the recently proposed modification of the LM
algorithm [16]. The problem 2) is still unsolved, so the LM
algorithm can be used only for small and medium size neural
networks.

Also, an attempt was made to adopt the Hagan and Menhaj
forward and backward computation routine for arbitrarily
connected neural networks [2], but this method is relatively
complicated. It is easier to handle these networks with arbi-
trarily connected neurons when there is no need for backward
computation process.

In this paper, the limitations 3) and 4) of the Hagan and
Menhaj LM algorithm [12] are addressed and the proposed
method of computation allows it to train networks with
arbitrarily connected neurons. This way, more complex feed-
forward neural network architectures than MLP can be effi-
ciently trained. A further advantage of the proposed algorithm
is that the learning process requires only forward computation
without the necessity of the backward computations. This way,
the proposed method, in many cases, may also lead to the
reduction of the computation time.

The ability to solve problems with smaller networks is very
important. The common mistake made by many researchers
is the use of an excessive number of neurons. This way it is
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much easier to train such networks, but when new patterns (not
used in the training) are applied, the networks respond very
poorly [5]. Since the EBP algorithm usually requires a long
training time, over-eager researchers often end up with larger
networks than required and this leads to frustration when such
networks are used for new patterns.

In order to preserve the generalization abilities of neural
networks, the size of the networks should be as small as pos-
sible. The proposed algorithm partially addresses this problem
because it allows training smaller networks with arbitrarily
connected neurons.

This paper is organized as follows. In Section II, a short
review of the computational methodology for the first- and
second-order algorithms is given. In Section III, the descrip-
tion of the proposed forward-only computation is presented.
Section IV gives a comparison of computational efficiency be-
tween the Hagan and Menhaj LM algorithm and the proposed
implementation of the LM algorithm. Section V is an exper-
imental section where the advantages of the more powerful
network architectures are shown and actual computation time
is compared for both algorithms on several examples.

II. COMPUTATIONAL FUNDAMENTALS

Before the derivation, let us introduce some commonly used
indices in this paper:

1) p is the index of patterns, from 1 to np, where np is the
number of patterns;

2) m is the index of outputs, from 1 to no, where no is the
number of outputs;

3) j and k are the indices of neurons, from 1 to nn, where
nn is the number of neurons;

4) i is the index of neuron inputs, from 1 to ni, where ni
is the number of inputs and it may vary for different
neurons.

Other indices will be explained at appropriate places.
Sum square error (SSE) E is defined to evaluate the training

process. For all patterns and outputs, it is calculated by

E = 1

2

np∑

p=1

no∑

m=1

e2
p,m (1)

where ep,m is the error at output m defined as

ep,m = op,m − dp,m (2)

where dp,m and op,m are the desired output and actual output,
respectively, at network output m for training pattern p.

In all training algorithms, the same computations are being
repeated for one pattern at a time. Therefore, in order to
simplify notations, the index p for patterns will be skipped
in the following derivations, unless it is essential.

A. Definition of Basic Concepts in Neural Network Training

Let us consider neuron j with ni inputs, as shown in Fig. 1.
If neuron j is in the first layer, all its inputs would be
connected to the inputs of the network, otherwise, its inputs
can be connected to outputs of other neurons or to networks’
inputs if connections across layers are allowed.
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Fig. 1. Connection of a neuron j with the rest of the network. Nodes y j,i
could represents network inputs or outputs of other neurons. Fm, j (y j ) is the
nonlinear relationship between the neuron output node y j and the network
output om .

Node y is an important and flexible concept. It can be y j,i ,
meaning the i th input of neuron j . It also can be used as y j

to define the output of neuron j . In this paper, if node y has
one index, then it is used as a neuron output node, but if it
has two indices (neuron and input), it is a neuron input node.

Output node of neuron j is calculated using

y j = f j
(
net j

)
(3)

where f j is the activation function of neuron j and net value
net j is the sum of weighted input nodes of neuron j

net j =
ni∑

i=1

w j,i y j,i + w j,0 (4)

where y j,i is the i th input node of neuron j , weighted by w j,i ,
and w j,0 is the bias weight of neuron j .

Using (4), one may notice that derivative of net j is

∂net j

∂w j,i
= y j,i (5)

and slope s j of activation function f j is

s j = ∂y j

∂net j
= ∂ f j

(
net j

)

∂net j
. (6)

Between the output node y j of a hidden neuron j and
network output om , there is a complex nonlinear relationship
(Fig. 1)

om = Fm, j
(
y j

)
(7)

where om is the mth output of the network.
The complexity of this nonlinear function Fm, j (y j ) depends

on how many other neurons are between neuron j and network
output m. If neuron j is at network output m, then om = y j

and F ′
m, j (y j ) = 1, where F ′

m, j is the derivative of nonlinear
relationship between neuron j and output m.

B. Gradient Vector and Jacobian Matrix Computation

For every pattern, in EBP algorithm only one backpropaga-
tion process is needed, while in second-order algorithms the
backpropagation process has to be repeated for every output
separately in order to obtain consecutive rows of the Jacobian
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Fig. 2. Structure of Jacobian matrix. 1) The number of columns is equal
to the number of weights. 2) Each row corresponds to a specified training
pattern p and output m.

matrix (Fig. 2). Another difference in second-order algorithms
is that the concept of backpropagation of the δ parameter [17]
has to be modified. In EBP algorithm, output errors are parts
of the δ parameter

δ j = s j

no∑

m=1

F
′
m, j em . (8)

In second-order algorithms, the δ parameters are calculated
for each neuron j and each output m separately. Also, in the
backpropagation process [12], the error is replaced by a unit
value

δm, j = s j F
′
m, j . (9)

Knowing δm, j , elements of Jacobian matrix are calculated
as

∂ep,m

∂w j,i
= y j,iδm, j = y j,i s j F

′
m, j . (10)

In the EBP algorithm, elements of gradient vector are
computed as

g j,i = ∂ E

∂w j,i
= y j,i δ j (11)

where δ j is obtained with errorbackpropagation process. In
second-order algorithms, gradient can be obtained from partial
results of Jacobian calculations

g j,i = y j,i

no∑

m=1

δm, j em (12)

where m indicates a network output and δmj is given by (9).

for all patterns 
% Forward computation 
   for all neurons (nn)
      for all weights of the neuron (nx)
         calculate net;         % Eq. (4) 
      end; 
      calculate neuron output;   % Eq. (7) 
      calculate neuron slope;    % Eq. (6) 
   end; 
   for all outputs (no)
      calculate error;           % Eq. (2) 
%Backward computation 
      initial delta as slope;  
      for all neurons starting from output neurons  (nn)
         for the weights connected to other neurons (ny)
            multiply delta through weights 
            sum the backpropagated delta at proper nodes
         end; 
         multiply delta by slope (for hidden neurons);
      end; 
   end; 
end; 

Fig. 3. Pseudo code using traditional backpropagation of delta in second-
order algorithms (code in bold will be removed in the proposed computation).

The update rule of the EBP algorithm is

wn+1 = wn − α gn (13)

where n is the index of iterations, w is the weight vector, α is
the learning constant, and g is the gradient vector.

Derived from the Newton algorithm and the steepest descent
method, the update rule of the LM algorithm is [12], [18]

wn+1 = wn −
(

J T
n Jn + μ I

)−1
gn (14)

where μ is the combination coefficient, I is the identity matrix,
and J is Jacobian matrix shown in Fig. 2.

From Fig. 2, one may notice that, for every pattern p, there
are no rows of Jacobian matrix where no is the number of
network outputs. The number of columns is equal to number
of weights in the networks and the number of rows is equal
to np × no.

Traditional backpropagation computation, for delta matrix
(np × no × nn) computation in second-order algorithms, can
be organized as shown in Fig. 3.

III. FORWARD-ONLY COMPUTATION

A. Derivation

The proposed method is designed to improve the efficiency
of Jacobian matrix computation by removing the backpropa-
gation process.

The concept of δm, j was described in Section II. One may
notice that δm, j can be interpreted also as a signal gain between
net input of neuron j and the network output m. Let us extend
this concept to gain coefficients between all neurons in the
network (see Figs. 4, 6). The notation of δk, j is extension of
(9) and can be interpreted as signal gain between neurons j
and k and it is given by

δk, j = ∂ Fk, j
(
y j

)

∂net j
= ∂ Fk, j

(
y j

)

∂y j

∂y j

∂net j
= F

′
k, j s j (15)
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Fig. 5. Four neurons in fully connected neural network, with five inputs and
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where k and j are the indices of neurons and Fk, j (y j ) is the
nonlinear relationship between the output node of neuron k
and the output node of neuron j . Naturally, in feedforward
networks, k ≥ j. If k = j , then δk,k = sk , where sk is the
slope of activation function (6). Fig. 4 illustrates this extended
concept of δk, j parameter as a signal gain.

The matrix δ has a triangular shape, and its elements can
be calculated in the forward-only process. Later, elements of
gradient vector and elements of Jacobian can be obtained using
(10) and (12), where only the last rows of matrix δ associated
with network outputs are used. The key issue of the proposed
algorithm is the method of calculating of δk, j parameters in
the forward calculation process and it will be described in the
next section.

B. Calculation of δ Matrix for FCC Architectures

Let us start our analysis with fully connected neural net-
works (Fig. 5). Any other architecture could be considered as
a simplification of fully connected neural networks by elimi-
nating connections (setting weights to zero). If the feedforward
principle is enforced (no feedback), fully connected neural
networks must have cascade architectures.

Slopes of neuron activation functions s j can be also written
in form of the δ parameter as δ j, j = s j . By inspecting Fig. 6,
the δ parameters can be written as follows.

For the first neuron, there is only one δ parameter

δ1,1 = s1. (16)
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Fig. 6. δk, j parameters for the neural network of Fig. 5. Input and bias
weights are not used in the calculation of gain parameters.

For the second neuron, there are two δ parameters

δ2,2 = s2

δ2,1 = s2w1,2s1.
(17)

For the third neuron, there are three δ parameters

δ3,3 = s3

δ3,2 = s3w2,3s2

δ3,1 = s3w1,3s1 + s3w2,3s2w1,2s1.

(18)

One may notice that all δ parameters for third neuron can
be also expressed as a function the δ parameters calculated for
previous neurons. Equation (18) can be rewritten as

δ3,3 = s3

δ3,2 = δ3,3w2,3δ2,2

δ3,1 = δ3,3w1,3δ1,1 + δ3,3w2,3δ2,1.

(19)

For the fourth neuron, there are four δ parameters

δ4,4 = s4

δ4,3 = δ4,4w3,4δ3,3

δ4,2 = δ4,4w2,4δ2,2 + δ4,4w3,4δ3,2

δ4,1 = δ4,4w1,4δ1,1 + δ4,4w2,4δ2,1 + δ4,4w3,4δ3,1.

(20)

The last parameter δ4,1 can be also expressed in a compact
form by summing all terms connected to other neurons (from
1 to 3)

δ4,1 = δ4,4

3∑

i=1

wi,4δi,1. (21)

The universal formula to calculate the δk, j parameters using
already calculated data for previous neurons is

δk, j = δk,k

k−1∑

i= j

wi,kδi, j (22)

wherein the feedforward network neuron j must be located
before neuron k, so k ≥ j ; δk,k = sk is the slop of activation
function of neuron k; w j,k is weight between neuron j and
neuron k; and δk, j is a signal gain through weight w j,k and
through the other part of network connected to w j,k .

In order to organize the process, the nn × nn computation
table is used for calculating signal gains between neurons,
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where nn is the number of neurons (Fig. 7). Natural indices
(from 1 to nn) are given for each neuron according to the
direction of signals propagation. For signal gains computation,
only connections between neurons need to be concerned, while
the weights connected to network inputs and biasing weights
of all neurons will be used only at the end of the process.
For a given pattern, a sample of the nn × nn computation
table is shown in Fig. 7. One may notice that the indices of
rows and columns are the same as the indices of neurons. In
the followed derivation, let us use k and j , used as neurons
indices, to specify the rows and columns in the computation
table. In feed forward network, k ≥ j and matrix δ has a
triangular shape.

The computation table consists of three parts: weights be-
tween neurons in upper triangle; vector of slopes of activation
functions in main diagonal; and signal gain matrix δ in lower
triangle. Only main diagonal and lower triangular elements are
computed for each pattern. Initially, elements on main diagonal
δk,k = sk are known, as slopes of the activation functions and
values of signal gains δk, j are being computed subsequently
using (22).

The computation is processed neuron by neuron starting
with the neuron closest to network inputs. At first, the row
no. 1 is calculated and then elements of the subsequent rows.
Calculation on the row below is done using elements from
the rows above using (22). After completion of the forward
computation process, all elements of the δ matrix in the form
of the lower triangle are obtained.

In the next step, elements of gradient vector and Jacobian
matrix are calculated using (10) and (12). In the case of neural
networks with one output only, the last row of the δ matrix is
needed for gradient vector and Jacobian matrix computation. If
networks have more outputs no, then last no rows of the δ ma-
trix are used. For example, if the network shown in Fig. 5 has
three outputs, the following elements of the δ matrix are used:

⎡

⎣
δ2,1 δ2,2 = s2 δ2,3 = 0 δ2,4 = 0
δ3,1 δ3,2 δ3,3 = s3 δ3,4 = 0
δ4,1 δ4,2 δ4,3 δ4,4 = s4

⎤

⎦ (23)

and then for each pattern, the three rows of the Jacobian
matrix, corresponding to three outputs, are calculated in one

step using (10) without additional propagation of δ
⎡

⎢⎢⎣

δ2,1 × {y1} s2 × {y2} 0 × {y3} 0 × {y4}
δ3,1 × {y1} δ3,2 × {y2} s3 × {y3} 0 × {y4}
δ4,1 × {y1}︸ ︷︷ ︸

neuron 1

δ4,2 × {y2}︸ ︷︷ ︸
neuron 2

δ4,3 × {y3}︸ ︷︷ ︸
neuron 3

s4 × {y4}︸ ︷︷ ︸
neuron 4

⎤

⎥⎥⎦ (24)

where neurons’ input vectors y1 through y have six, seven,
eight, and nine elements, respectively (Fig. 5), corresponding
to number of weights connected. Therefore, each row of the
Jacobian matrix has 6 + 7 + 8 + 9 = 30 elements. If the
network has three outputs, then from six elements of the δ
matrix and three slopes, 90 elements of Jacobian matrix are
calculated. One may notice that the size of newly introduced
δ matrix is relatively small, and it is negligible in comparison
to other matrixes used in calculation.

The proposed method gives all the information needed
to calculate both the gradient vector (12) and the Jacobian
matrix (10) without the backpropagation process, instead,
the δ parameters are obtained in relatively simple forward
computation [see (22)].

C. Training Arbitrarily Connected Neural Networks

The proposed computation above was derived for fully con-
nected neural networks. If network is not fully connected, then
some elements of the computation table are zero. Fig. 8 shows
computation tables for different neural network topologies
with six neurons each. Note that the zero elements are for
unconnected neurons (in the same layers). This can further
simplify the computation process for popular MLP topologies
[Fig. 8(b)].

In order to further simplify the computation process, (22)
is completed in two steps

xk, j =
k−1∑

i= j

wi,kδi, j (25)

and

δk, j = δk,k xk, j = sk xk, j . (26)

The complete algorithm with forward-only computation
is shown in Fig. 9. By adding two additional steps using
(25) and (26) (highlighted in bold in Fig. 9), all com-
putation can be completed in the forward-only computing
process.

IV. COMPARISON OF THE TRADITIONAL AND

THE PROPOSED ALGORITHM

The proposed forward-only computation removes the back-
propagation part, but it includes an additional calculation in the
forward computation (bold part in Fig. 9). Let us compare the
computation cost of the forward part and the backward part for
each method in the LM algorithm. Naturally, such comparison
can be done only for traditional MLP architectures, which can
be handled by both algorithms.

As is shown in Figs. 3 and 9, the cost of traditional
computation and the forward-only computation depends on
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Fig. 8. Three different architectures with six neurons. (a) FCC network. (b)
MLP network. (c) Arbitrarily connected neural network.

the neural network topology. In order to do the analytical
comparison, for each neuron let us consider:

1) nx as the average number of weights

nx = nw

nn
; (27)

2) ny as the average number of weights between neurons

ny = nh × no

nn
; (28)

3) nz as the average number of previous neurons

nz = nh

nn
(29)

where nw is the number of weights, nn is the number of
neurons, no is the number of outputs, and nh is the number
of hidden neurons. The estimation of ny depends on network
structures. Equation (28) gives the ny value for MLP networks
with one hidden layer. The comparison below is for training
one pattern.

From the analytical results in Table I, one may notice
that, for the backward part, the time cost in backpropagation

for all patterns 
% Forward computation 
   for all neurons (nn) 

for all weights of the neuron (nx)
         calculate net;        % Eq. (4) 

end; 
calculate neuron output;  % Eq. (7) 

      calculate neuron slope;   % Eq. (6) 
set current slope as delta; 
for weights connected to previous neurons (ny)

         for previous neurons (nz)
multiply delta through weights then sum; % Eq. (25)

    end; 
    multiply the sum by the slope;            % Eq. (26) 

      end;
   end; 
   for all outputs (no) 
      calculate error;          % Eq. (2) 
   end; 
end;

Fig. 9. Pseudo code of the forward-only computation, in second-order
algorithms.

TABLE I

ANALYSIS OF COMPUTATION COST IN LM ALGORITHM

Hagan and Menhaj Computation
Forward Part Backward Part

+/− nn × nx + 3nn + no no × nn × ny
×/÷ nn × nx + 4nn no × nn × ny +no × (nn – no)
exp∗ nn 0

Proposed forward-only computation
Forward Backward

+/− nn × nx + 3nn + no + nn × ny × nz 0
×/÷ nn × nx + 4nn + nn × ny + nn × ny × nz 0
exp nn 0

Subtraction forward-only from traditional
+/− nn × ny × (no – 1)
×/÷ nn × ny × (no – 1) + no × (nn – no) – nn × ny × nz
exp 0

∗Exponential operation.

computation is tightly associated with the number of outputs,
while in the forward-only computation, the number of outputs
is almost irrelevant.

Table II shows the computation cost for the neural network
that will be used for the ASCII problem in Section V, using
the equations of Table I.

In typical PC with arithmetic coprocessor, based on the
experimental results, if the time cost for “+/−” operation is
set as unit “1,” then “×/÷” and “exp” operations will cost
nearly 2 and 65, respectively.

For the computation speed testing in the next section, the
analytical relative times are presented in Table III.

Based on the analytical results, it can be seen that, in the
LM algorithm for single output networks, the forward-only
computation is similar with the traditional computation. while
for networks with multiple outputs, the proposed forward-only
computation is faster.

V. EXPERIMENTAL RESULTS

The experiments were organized in three parts: 1) ability
of handling various network topologies; 2) training neural
networks with generalization abilities; and 3) computational
efficiency.
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TABLE II

COMPARISON FOR ASCII PROBLEM

Hagan and Menhaj
computation

Proposed forward-only
computation

Forward Backward Forward Backward
+/− 4088 175 616 7224 0
×/÷ 4144 178 752 8848 0
exp 7280 0 7280 0

Total 552 776 32 200
Relative time 100% 5.83%

∗Network structure: 112 neurons in 8-56-56 MLP network

TABLE III

ANALYTICAL RELATIVE TIME OF THE FORWARD-ONLY

COMPUTATION OF PROBLEMS

Problems nn no nx ny nz Relative
Time (%)

ASCII conversion 112 56 33 28 0.50 5.83
Error correction 42 12 18.1 8.57 2.28 36.96
Forward kinematics 10 3 5.9 2.10 0.70 88.16

A. Ability of Handling Various Network Topologies

The ability of training arbitrarily connected networks of the
proposed forward-only computation is illustrated by the two-
spiral problem.

The two-spiral problem is considered as a good evaluation
of training algorithms [19]. Depending on neural network
architecture, different numbers of neurons are required for suc-
cessful training. For example, using standard MLP networks
with one hidden layer, 34 neurons are required for the two-
spiral problem [20]. Using the proposed computation in LM
algorithm, two types of topologies, MLP networks with two
hidden layers and FCC networks, are tested for training the
two-spiral patterns, and the results are presented in the tables
below. In MLP networks with two hidden layers, the number
of neurons is assumed to be equal in both hidden layers.

Results for MLP architectures shown in the Table IV are
identical, whether or not the Hagan and Menhaj LM algorithm
or the proposed LM algorithm is used (assuming the same
initial weights). In other words, the proposed algorithm has
the same success rate and the same number of iterations as
those obtained by the Hagan and Menhaj LM algorithm. The
difference is that the proposed algorithm can handle also other
than MLP architectures and in many cases (especially with
multiple outputs) computation time is shorter.

One may notice that the FCC networks are much more
efficient than other networks to solve the two-spiral problem,
with as few as eight neurons. The proposed LM algorithm is
also more efficient than the well-known cascade correlation
algorithm, which requires 12–19 hidden neurons in FCC
architectures to converge [21].

B. Train Neural Networks with Generalization Abilities

To compare generalization abilities, FCC networks, which
proved to be the most efficient in Example 1, are applied
for training. These architectures can be trained by both the
EBP algorithm and the proposed LM algorithm. The slow

TABLE IV

TRAINING RESULTS OF THE TWO-SPIRAL PROBLEM WITH THE PROPOSED

IMPLEMENTATION OF THE LM ALGORITHM, USING MLP NETWORKS

WITH TWO HIDDEN LAYERS; MAXIMUM ITERATION IS 1000; DESIRED

ERROR = 0.01; THERE ARE 100 TRIALS FOR EACH CASE

Hidden Success Average number Average
neurons rate iterations time (s)

12 Failing — —
14 13% 474.7 5.17
16 33% 530.6 8.05
18 50% 531.0 12.19
20 63% 567.9 19.14
22 65% 549.1 26.09
24 71% 514.4 34.85
26 81% 544.3 52.74

TABLE V

TRAINING RESULTS OF THE TWO-SPIRAL PROBLEM WITH THE PROPOSED

IMPLEMENTATION OF LM ALGORITHM, USING FCC NETWORKS;

MAXIMUM ITERATION IS 1000; DESIRED ERROR = 0.01; THERE ARE

100 TRIALS FOR EACH CASE

Hidden Success Average number Average
neurons rate (%) iterations time (s)

7 13 287.7 0.88
8 24 261.4 0.98
9 40 243.9 1.57

10 69 231.8 1.62
11 80 175.1 1.70
12 89 159.7 2.09
13 92 137.3 2.40
14 96 127.7 2.89
15 99 112.0 3.82

convergence of EBP algorithm is not the issue in this ex-
periment. Generalization abilities of networks trained with
both algorithms are compared. The Hagan and Menhaj LM
algorithm was not used for comparison here because it cannot
handle FCC networks.

Let us consider the peak surface [20] as the required surface
[Fig. 10(a)] and let us use equally spaced 10 × 10 = 100
patterns [Fig. 10(b)] to train neural networks. The quality
of trained networks is evaluated using errors computed for
equally spaced 37 × 37 = 1369 patterns. In order to make
a valid comparison between training and verification errors,
the SSE, as defined in (1), is divided by 100 and 1369,
respectively.

For EBP algorithm, the learning constant is 0.0005 and
momentum is 0.5, maximum iteration is 1 000 000 for EBP
algorithm and 1000 for LM algorithm, desired error = 0.5,
there are 100 trials for each case. The proposed version of
LM algorithm is used in this experiment.

The training results are shown in Table VI. One may notice
that it is possible to find the acceptable solution (Fig. 11)
with eight neurons (52 weights). Unfortunately, with EBP
algorithm, it was not possible to find acceptable solutions in
100 trials within 1 000 000 iterations each. Fig. 12 shows the
best result out of the 100 trials with EBP algorithm. When the
network size was significantly increased from 8 to 13 neurons
(117 weights), EBP algorithm was able to reach the similar
training error as with LM algorithm, but the network lost its
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Fig. 10. Surface matching problem. (a) Required 2-D surface with
37 × 37 = 1369 points, used for verification. (b) 10 ×10 = 100 training
patterns extracted in equal space from (a), used for training.

TABLE VI

TRAINING RESULTS OF PEAK SURFACE PROBLEM USING

FCC ARCHITECTURES

Neurons Success rate Average Average
iteration time (s)

EBP (%) LM (%) EBP LM EBP LM

8 0 5 Failing 222.5 Failing 0.33

9 0 25 Failing 214.6 Failing 0.58

10 0 61 Failing 183.5 Failing 0.70

11 0 76 Failing 177.2 Failing 0.93

12 0 90 Failing 149.5 Failing 1.08

13 35 96 573 226 142.5 624.88 1.35

14 42 99 544 734 134.5 651.66 1.76

15 56 100 627 224 119.3 891.90 1.85

generalization ability to respond correctly for new patterns
(between training points). Note that with a larger number of
neurons (13 neurons), the EBP algorithm was able to train the
network to a small error SSET rain = 0.0018, but as one can
see from Fig. 13, the result is unacceptable with verification
error SSEV eri f y = 0.4909.

From the presented examples, one can see that often in
simple (close to optimal) networks, the EBP algorithm cannot
converge to the required training error (Fig. 12). When the
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Fig. 11. Best training result in 100 trials, using LM algorithm, eight
neurons in FCC network (52 weights); maximum training iteration is 1000;
SSETrain = 0.0044, SSEV eri f y = 0.0080, and training time = 0.37 s.
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Fig. 12. Best training result in 100 trials, using EBP algorithm, eight neurons
in FCC network (52 weights); maximum training iteration is 1 000 000;
SSETrain = 0.0764, SSEV eri f y = 0.1271, and training time = 579.98 s.

size of networks increases, the EBP algorithm can reach
the required training error, but trained networks lose their
generalization ability and cannot process new patterns well
(Fig. 13). On the other hand, the proposed version of LM
algorithm in this paper works not only significantly faster but
can also find good solutions with close to optimal networks
(Fig. 11).

C. Computational Speed

Several problems are presented to test the computation
speed of both the Hagan and Menhaj LM algorithm, and the
proposed LM algorithm. The testing of time costs is divided
into forward part and backward part separately. In order to
compare with the analytical results in Section IV, the MLP
networks with one hidden layer are used for training.

1) ASCII Codes to Image Conversion: This problem is to
associate 256 ASCII codes with 256 character images, each
of which is made up of 7 × 8 pixels (Fig. 14). So there
are 8-bit inputs (inputs of parity-8 problem), 256 patterns,
and 56 outputs. In order to solve the problem, the structure,
i.e., 112 neurons in 8-56-56 MLP network, is used to train
those patterns using LM algorithm. The computation time is
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Fig. 13. Best training result in 100 trials, using EBP algorithm, 13 neurons
in FCC network (117 weights); maximum training iteration is 1 000 000;
SSET rain = 0.0018, SSEV eri f y = 0.4909, and training time = 635.72 s.

TABLE VII

COMPARISON FOR ASCII CHARACTERS RECOGNITION PROBLEM

Computation methods Time cost (ms/iteration) Relative
Forward Backward time (%)

Traditional 8.24 1028.74 100.0
Forward-only 61.13 0.00 5.9

TABLE VIII

COMPARISON FOR ERROR CORRECTION PROBLEM

Problems Computation Time cost (ms/iteration) Relative
methods Forward Backward time (%)

8-bit signal
Traditional 40.59 468.14 100.0

Forward-only 175.72 0.00 34.5

presented in Table VII. The analytical result is 5.83%, as
shown in Table III.

Testing data in Table VII shows that, for this multiple
outputs problem, the forward-only computation is much more
efficient than traditional computation, in LM training.

2) Error Correction: Error correction is an extension of
parity-N problems [14], [15] for multiple parity bits. In
Fig. 15, the left side is the input data, made up of signal
bits and their parity bits, while the right side is the related
corrected signal bits and parity bits as outputs. The number of
inputs is equal to the number of outputs.

The error correction problem in the experiment has 8-bit
signal and 4-bit parity bits as inputs, 12 outputs, and 3328
patterns (256 correct patterns and 3072 patterns with errors),
using 42 neurons in a 12-30-12 MLP network (762 weights).
Error patterns with one incorrect bit must be corrected. Both
traditional computation and the forward-only computation
were performed with the LM algorithm. The testing results
are presented in Table VIII. The analytical result is 36.96% as
shown in Table III.

Compared to the traditional forward-backward computation
in LM algorithm, again, the forward-only computation has
a considerably improved efficiency. With the trained neural
network, all the patterns with one bit error are corrected
successfully.

Fig. 14. First 90 images of ASCII characters.

signal
bits

parity
bits

corrected
signal
bits

corrected
parity
bits

Neural
Networks

Fig. 15. Using neural networks to solve an error correction problem. Errors
in input data can be corrected by well-trained neural networks.

TABLE IX

COMPARISON FOR FORWARD KINEMATICS PROBLEM

Computation methods
Time cost (ms/iteration) Relative
Forward Backward time (%)

Traditional 0.307 0.771 100.0
Forward-only 0.727 0.00 67.4

3) Forward Kinematics: Neural networks are successfully
used to solve many practical problems in the industry, such
as control problems, compensation nonlinearities in objects
and sensors, which are issues of identification of parame-
ters that cannot be directly measured, and sensorless control
[22]–[24].

Forward kinematics is an example of these types of practical
applications [25], [26]. The purpose is to calculate the position
and orientation of robot’s end effector as a function of its joint
angles.

In this experiment, 224 patterns are applied for training the
MLP network 3-7-3 (59 weights) using the LM algorithm. The
comparison of cost between the forward-only computation and
traditional computation is shown in Table IX. In 100 trials with
different starting points, the experiment got 22.2% success rate
and the average iteration cost for converge was 123.4. The
analytical result is 88.16% as shown in Table III.

The presented experimental results match the analysis in
Section III well, for networks with multiple outputs, the
forward-only computation is more efficient than the traditional
backpropagation computation.
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VI. CONCLUSION

One of the major features of the proposed algorithm is that
it can be easily adapted to train arbitrarily connected neural
networks and not just MLP topologies. This is very important
because neural networks with connections across layers are
much more powerful than commonly used MLP architectures
[14], [27], [15]. For example, if the number of neurons in the
network is limited to eight, then popular MLP topology with
one hidden layer is capable of solving only parity-7 problem.
If the same eight neurons are connected in FCC, then with
this network parity-255 problem can be solved [27].

It was shown (Figs. 12 and 13) that, in order to secure
training convergence with first-order algorithms, an excessive
number of neurons much be used, and this results in a failure
of the generalization abilities of the neural network. This was
the major reason for frustration in industrial practice when
neural networks were trained to small errors but would respond
very poorly for patterns not used for training. The presented
computation for second-order algorithms can be applied to
train arbitrarily connected neural networks, so it is capable of
training neural networks with reduced number of neurons and
as consequence has good generalization abilities (Fig. 11).

The proposed method of computation gives identical num-
ber of training iterations and success rates as the Hagan
and Menhaj implementation of the LM algorithm, since the
same Jacobian matrices are obtained from both methods. By
removing backpropagation process, the proposed method is
much simpler than traditional forward and backward procedure
to calculate the elements of the Jacobian matrix. The whole
computation can be described by a regular table (Fig. 7) and a
general formula (22). Additionally, for networks with multiple
outputs, the proposed method is less computationally intensive
and faster than traditional forward and backward computations
[12], [2].

The algorithm was implemented in the neural networks
trainer (NBN 2.10), and the software can be downloaded from
http://www.eng.auburn.edu/users/wilambm/nnt/.
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