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Abstract. In this paper, second order algorithms, such as 

Levenberg Marquardt algorithm [1][2], are recommended 
for neural network training. Being different from traditional 
computation in second order algorithms, the proposed 
method simplifies Hessian matrix computation, by removing 
Jacobian matrix computation and storage. Matrix 
multiplications are replaced by vector operations. The 
proposed computation not only makes the training process 
faster, but also reduces the memory cost significantly. Based 
upon the improvement, second order algorithms can be 
applied for application with unlimited number of patterns. 

Keywords: Neural network training, Levenberg 
Marquardt algorithm 

I. INTRODUCTION

EURAL networks can be very powerful for nonlinear 

signal processing [3][4], if they are trained well. The 

well-trained neural networks should not only correctly 

match the training patterns, but also properly handle the 

patterns which are not applied for training. Dissatisfaction 

in either condition makes the trained neural networks 

useless.

In order to secure the generalization ability, the 

networks should be as simple as possible [5]. With first 

order algorithms, such as the error back propagation 

(EBP) algorithm [6], it is often not possible to train those 

simple (close to optimal) networks. Instead, an excessive 

number of neurons are required to match the training 

patterns with small errors. This “success” is misleading 

because such networks will be over-fitted and perform 

poorly in processing new patterns which were not used for 

training. 

It is well-known that second order algorithms, such as 

Levenberg Marquardt (LM) algorithm, are much faster 

than EBP algorithm. For the same problem, LM algorithm 

can also find solutions with much smaller number of 

neurons than that required for EBP algorithm. Therefore, 

it is reasonable to consider LM algorithm as a potentially 

better choice than EBP algorithm to find well-trained  

networks. 
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This issue will be illustrated with the example below. 

Let us consider the peak surface [7] as the required surface 

(Fig. 1a) and let us use equally spaced 10×10=100
patterns (Fig. 1b) to train neural networks. The quality of 

trained networks is evaluated using errors computed for 

equally spaced 37×37=1,369 patterns. In order to make a 

valid comparison between training and verification error, 

the sum squared error (SSE), as defined in (4), is divided 

by 100 and 1,369 respectively. 

(a)

(b)

Fig. 1 Surface matching problem: (a) Required 2-D surface 

with 37×37=1,369 points, used for verification; (b) 10×10=100 
training patterns extracted in equal space from (a), used for 

training

As the training results shown in Table I, using the 

neuron by neuron (NBN) algorithm [8][9], which is an 

improved LM algorithm for training arbitrarily connected 

neural networks, it was possible to find the acceptable 
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solution (Fig. 2) with 8 neurons (52 weights). 

Unfortunately, with EBP algorithm, it was not possible to 

find acceptable solutions in 100 trials within 1,000,000 

iterations each. Fig. 3 shows the best result out of the 100 

trials with EBP algorithm. When the network size was 

significantly increased from 8 to 13 neurons (117 

weights), EBP algorithm was able to reach the similar 

training error as with LM algorithm, but the network lost 

its ability to response correctly for new patterns (between 

training points). Please notice that indeed with enlarged 

number of neurons (13 neurons), EBP algorithm was able 

to train network to a small error SSETrain=0.0018, but as 

one can see from Fig. 4, the result is unacceptable with 

verification error SSEVerify=0.4909.

TABLE I 

TRAINING RESULTS OF PEAK SURFACE PROBLEM

Neurons Success Rate Average Iteration Average Time (s) 

EBP LM EBP LM EBP LM 

8 0% 5% Failing 222.5 Failing 0.33 

9 0% 25% Failing 214.6 Failing 0.58 

10 0% 61% Failing 183.5 Failing 0.70 

11 0% 76% Failing 177.2 Failing 0.93 

12 0% 90% Failing 149.5 Failing 1.08 

13 35% 96% 573,226 142.5 624.88 1.35 

14 42% 99% 544,734 134.5 651.66 1.76 

15 56% 100% 627,224 119.3 891.90 1.85 

For EBP algorithm, learning constant is 0.0005 and momentum 

is 0.5; maximum iteration is 1,000,000 for EBP algorithm and 

1,000 for LM algorithm; desired error=0.5; all neurons are in 

FCC networks; there are 100 trials for each case. 

Fig. 2 The best training result in 100 trials, using LM 

algorithm, 8 neurons in FCC network (52 weights); maximum 

training iteration is 1,000; SSETrain=0.0044, SSEVerify=0.0080 and 

training time=0.37 s 

Fig. 3 The best training result in 100 trials, using EBP 

algorithm, 8 neurons in FCC network (52 weights); maximum 

training iteration is 1,000,000; SSETrain=0.0764, SSEVerify=0.1271

and training time=579.98 s 

Fig. 4 The best training result in 100 trials, using EBP 

algorithm, 13 neurons in FCC network (117 weights); maximum 

training iteration is 1,000,000; SSETrain=0.0018, SSEVerify=0.4909

and training time=635.72 s

From the presented example, one may notice that often 

in simple (close to optimal) networks, EBP algorithm 

can’t converge to required training error (Fig. 3).  When 

the size of networks increase, EBP algorithm can reach the 

required training error, but trained networks lose their 

generalization ability and can’t process new patterns well 

(Fig. 4). On the other hand, second order algorithms, such 

as LM algorithm, works not only significantly faster but it 

can find good solutions with close to optimal networks 

(Fig. 2). 

The comparison results above illustrate a significant 

advantage of LM algorithm training small and medium 

size patterns. However, for problems with large number of 

patterns, such as parity-16 problem (65536 patterns), LM 

algorithm will have to use excessive memory for Jacobian 

matrix storage and multiplication. 

In the proposed modification of LM algorithm, Jacobian 

matrix needs not to be stored and Jacobian matrix 

multiplication was replaced by vector operations. 

Therefore, the proposed algorithm can be used for 

problems with basically unlimited number of training 

patterns. Also, the proposed improvement accelerates 

training process. 

In section II of this paper, computational fundamentals 

of LM algorithm are introduced to address the memory 

problem. Section III describes the improved computation 

for both quasi Hessian matrix and gradient vector in 

details. Section IV gives some experimental results on 

memory and training time comparison between the 

traditional computation and the improved computation. 

II. COMPUTATIONAL FUNDAMENTALS 

Derived from EBP algorithm and Newton method, the 

update rule of Levenberg Marquardt algorithm is [10] 

� � eJIJJw TT 1�
��� 	                  (1) 
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where w is weight vector, I is identity matrix, � is 

combination coefficient, (P×M)×N Jacobian matrix J and 

(P×M)×1 error vector e are defined as 
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where P is the number of training patterns, M is the 

number of outputs and N is the number of weights. 

Elements in error vector e are calculated by 

pmpmpm ode ��                         (3) 

where dpm and opm are the desired output and actual output 

respectively, at network output m when training pattern p.

Traditionally, Jacobian matrix J is calculated and stored 

at first; then Jacobian matrix multiplications are performed 

for weight updating using (1). For small and median size 

patterns training, this method may work smoothly. 

However, for large-sized patterns, there is a memory 

limitation for Jacobian matrix J storage. 

For example, the pattern recognition problem in MNIST 

handwritten digit database [12] consists of 60,000 training 

patterns, 784 inputs and 10 outputs. Using only the 

simplest possible neural network with 10 neurons (one 

neuron per each output), the memory cost for the entire 

Jacobian matrix storage is nearly 35 gigabytes. This huge 

memory requirement cannot be satisfied by any 32-bit 

Windows compliers, where there is a 3 gigabytes 

limitation for single array storage. At this point, with 

traditional computation, one may conclude that Levenberg 

Marquardt algorithm cannot be used for problems with 

large number of patterns. 

III. IMPROVED COMPUTATION

In the following derivation, sum squared error (SSE) is 

used to evaluate the training process. 

� � ��
� �

�
P

p

M

m
pmeE

1 1

2w                         (4) 

where epm is the error at output m obtained by training 

pattern p, defined by (3). 

The Hessian matrix can be found by 
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Combining (4) and (5), elements of Hessian matrix H
can be obtained as 
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where i and j are weight indexes. 

Equation (6) can be approximated as [10][11] 
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where qij is the element of quasi hessian matrix in row i
column j.

Combining (3) and (7), quasi Hessian matrix Q can be 

calculated as an approximation of Hessian matrix 

JJQH T2��                         (8) 

Gradient vector g is defined as 
T

Nw
E

w
E

w
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Inserting (4) into (9), elements of gradient can be 

calculated as 
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From (2) and (10), the relationship between gradient 

vector g and Jacobian matrix J can be described by 

eJg T2�                           (11) 

Combining (8), (11) and (1), the update rule of 

Levenberg Marquardt algorithm can be rewritten 

gIQw
2

1

2

1
1�

�
�

�
�
�

�
��� 	               (12) 

or

� � gIQw 1���� 	                  (13) 

One may notice that the sizes of quasi Hessian matrix Q
and gradient vector g are only proportioned to number of 

weights in networks, but not associated with the number 

of training patterns and outputs.  

In order to avoid computation and storage of large 

Jacobian matrix J in (1), the quasi Hessian matrix Q and 

gradient vector g must be computed directly.  

A. Improved quasi Hessian matrix computation 
Let us introduce quasi Hessian sub matrix qpm
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Using (7) and (14), quasi Hessian matrix Q can be 

calculated as the sum of sub matrix qpm
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� �

�
P

p
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m
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1 1

2 qQ                       (15) 

By introducing vector jpm
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sub matrix qpm in (14) can be also written in the vector 

form 

pm
T
pmpm jjq �                       (17) 

One may notice that for the computation of sub matrix 

qpm, only N elements of vector jpm need to be calculated 

and stored. All the sub matrixes can be calculated for each 

pattern p and output m separately, and summed together, 

so as to obtain quasi Hessian matrix Q.

Considering the independence among all patterns and 

outputs, there is no need to store all the quasi Hessian sub 

matrix qpm. Each sub matrix can be summed to a 

temporary matrix after its computation. Therefore, during 

the direct computation of quasi Hessian matrix Q using 

(15), only memory for N elements is required, instead of 

that for the whole Jacobian matrix with P×M×N elements 

(2).

From (14), one may notice that all the sub matrixes qpm

are symmetrical. With this property, only upper or lower 

triangular elements of those sub matrixes need to be 

calculated. Therefore, during the improved quasi Hessian 

matrix Q computation, multiplication operations in (17) 

and sum operations in (15) can be both reduced to half 

approximately. As is known, binary multiplication often 

costs several times executing periods more than data 

copying. Therefore, this simplification is supposed to 

perform a much more efficient computation. 

B. Improved gradient vector computation 
Gradient sub vector �pm is introduced as 
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Combining (10) and (18), gradient vector g can be 

calculated as the sum of gradient sub vector �pm
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� �

�
P M

m
pm

1 1

2

p

�g                       (19) 

Using the same vector jpm defined in (16), gradient sub 

vector can be calculated using 

pmpmpm ej� �                       (20) 

Similarly, gradient sub vector �pm can be calculated for 

each pattern and output separately, and summed to a 

temporary vector. After training all patterns and outputs, 

the temporary vector is the required gradient. Since the 

same vector jpm is calculated during quasi Hessian matrix 

computation above, there is only an extra scalar epm need 

to be stored. 

C. Simplified �epm/�wi computation 
One may notice that the key point of the proposed 

computation above for quasi Hessian matrix Q and 

gradient vector g is to calculate vector jpm defined in (16) 

for each pattern and output. This vector is equivalent of 

one row of Jacobian matrix J.

The elements of vector jpm can be calculated by 
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where d is the desired output and o is the actual output.

netpj is the sum of weighted inputs at neuron j described as 

�� ipipj wxnet                       (22) 

where xpi and wi are the inputs and related weights 

respectively at neuron j.
Inserting (21) and (22) into (16), vector jpm can be 

calculated by 
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where xpji is the ith input for neuron j, when training 

pattern p.

Generally, for the problem with P patterns and M
outputs, the improved computation can be organized as the 

pseudo code shown in Fig. 5. 

% Initialization 
Q=0;

g =0
% Improved computation 
for p=1:P % Number of patterns

% Forward computation 
… 

   for m=1:M           % Number of outputs 
      % Backward computation 
      … 
      calculate vector jpm;             % Eq. (23) 
      calculate sub matrix qpm; % Eq. (17) 
      calculate sub vector �pm; % Eq. (20) 

Q=Q+qpm; % Eq. (15) 
    g=g+�pm; % Eq. (19)
   end; 

end;
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Fig. 5 Pseudo code of the improved computation for quasi 

Hessian matrix and gradient vector 

With the improved computation, both quasi Hessian 

matrix Q and gradient vector g can be computed directly, 

without Jacobian matrix storage and multiplication. 

During the process, only a temporary vector jpm with N
elements needs to be stored (23); in other words, the 

memory cost for Jacobian matrix storage is reduced by 

P×M times. In the MINST problem mentioned in section 

II, the memory cost for the storage of Jacobian elements 

could be reduced from more than 35 gigabytes to nearly 

30.7 kilobytes. Therefore, it is possible to train those huge 

patterns with LM algorithm. 

The same quasi Hessian matrices and gradient vectors 

are obtained in both traditional computation (8 and 11) 

and the proposed computation (15 and 19). Therefore, the 

proposed computation does not affect the success rate. 

IV. EXAMPLES

Several experiments are designed to test the memory 

and time efficiencies of the improved computation, 

comparing with traditional computation. They are divided 

into two parts: (A) Memory comparison and (B) Time 

comparison. 

A. Memory comparison 
Three problems, each of which has a huge number of 

patterns, are selected to test the memory cost of both the 

traditional computation and the improved computation. 

LM algorithm is used for training and the test results are 

shown Tables II and III. In order to make a more precise 

comparison, memory cost for program code and input files 

were not used in the comparison. 

TABLE II 

MEMORY COMPARISON FOR PARITY PROBLEMS 

Parity-N Problems Parity 14 Parity 16 
Patterns 16,384 65,536

Structures* 15 neurons 17 neurons 

Jacobian matrix  5,406,720 27,852,800 

Weight vector sizes 330 425 

Average iteration 99.2 166.4 

Success Rate 13% 9%

Algorithms Actual memory cost  
Traditional LM 79.21Mb 385.22Mb 

Improved LM 3.41Mb 4.30Mb 

*All neurons are in fully connected cascade networks 

TABLE III 

MEMORY COMPARISON FOR MINST PROBLEM 

Problem MINST 
Patterns 60,000

Structures 784=1 single layer network* 

Jacobian matrix sizes 47,100,000 

Weight vector sizes 785

Algorithms Actual memory cost
Traditional LM 385.68Mb 

Improved LM 15.67Mb 

*In order to perform efficient matrix inversion during training, 

only one of ten digits is classified each time. 

From the test results in Tables II and III, it is clear that 

memory cost for training is significantly reduced in the 

improved computation. 

B. Time comparison 
Parity-N problems are presented to test the training time 

for both traditional computation and the improved 

computation using LM algorithm. The structures used for 

testing are all fully connected cascade networks. For each 

problem, the initial weights and training parameters are 

the same. 

TABLE IV 

TIME COMPARISON FOR PARITY PROBLEMS 

Parity-N Problems N=9 N=11 N=13 N=15 
Patterns 512 2,048 8,192 32,768 

Neurons 10 12 14 16 

Weights 145 210 287 376 

Average Iterations 38.5 59.0 68.1 126.1 

Success Rate 58% 37% 24% 12% 

Algorithms Averaged training time (s) 
Traditional LM 0.8 68.0 1508.5 43,417.1 

Improved LM 0.3 22.1 173.8 2,797.9 

From Table IV, one may notice that the improved 

computation can not only handle much larger problems, 

but also computes much faster than the traditional one, 

especially for large-sized patterns training. The larger the 

pattern size is, the more time efficient the improved 

computation will be. 

Obviously, the simplified quasi Hessian matrix 

computation is the one reason for the improved computing 

speed (nearly two times faster for small problems). 

Significant computation reductions obtained for larger 

problems are most likely due to the simpler way of 

addressing elements in vectors, in comparison to 

addressing elements in huge matrices. 

With the presented experimental results, one may notice 

that the improved computation is much more efficient than 

traditional computation for training with Levenberg 

Marquardt algorithm, not only on memory requirements, 

but also training time. 

Another experiment, two-spiral problem, was used to 

test the efficiency of LM algorithm implemented with the 

proposed computation, comparing with EBP algorithm. 

The two-spiral problem is considered as a good 

evaluation of training algorithms [7]. Depending on 

training algorithms, different numbers of neurons are 

required for successful training (See Tables V). 

Table V presents the training results of the two-spiral 

problem using different number of neurons in fully 

connected cascade (FCC) networks. LM algorithm with 

the proposed implementation can solve the two-spiral 
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problem, using 8 neurons (52 weights) in about 290 

iterations (Fig .6a). EBP algorithm can solve it in about 

400,000 iterations, but only if when the number of 

neurons is increased to 12 (102 weights). The result (the 

best one in 100 trials), shown in Fig. 6b, is not as good as 

the result (Fig. 6a) from LM algorithm with a much 

simpler architecture. One can conclude that EBP algorithm 

is only successful if an excessive number of neurons is 

used.

TABLE V 

TRAINING RESULTS OF TWO-SPIRAL PROBLEM 

Neurons Success rate Average number 

of iterations 

Average time (s) 

EBP LM EBP LM EBP LM 

8 0% 13% Failing 287.7 Failing 0.88 

9 0% 24% Failing 261.4 Failing 0.98 

10 0% 40% Failing 243.9 Failing 1.57 

11 0% 69% Failing 231.8 Failing 1.62 

12 63% 80% 410,254 175.1 633.9 1.70 

13 85% 89% 335,531 159.7 620.3 2.09 

14 92% 92% 266,237 137.3 605.3 2.40 

15 96% 96% 216,064 127.7 601.0 2.89 

16 98% 99% 194,041 112.0 585.7 3.82 

For EBP algorithm, learning constant is 0.005 and momentum is 

0.5; maximum iteration is 1,000,000 for EBP algorithm and 

1,000 for LM algorithm; desired error=0.01; all neurons are in 

FCC networks; there are 100 trials for each case. 

(a)

(b)

Fig. 6 Best results of two-spiral problem in 100 trails: (a) 8 

neurons in FCC network (52 weights), using LM algorithm and 

training time=0.82 s; (b) 12 neurons in FCC network (102 

weights), using EBP algorithm and training time=694.32 s 

The experimental results of the two-spiral problem 

show that second order algorithms are not only much 

faster but they can train reduced size networks which can’t 

be handled by EBP algorithm.

V. CONCLUSION

In this paper, an improved Hessian matrix computation 

was presented to solve the memory limitation in second 

order algorithms. The proposed method does not require to 

store and to multiply large Jacobian matrix. As a 

consequence, memory requirement for quasi Hessian 

matrix and gradient vector computation is decreased by 

(P×M) times, where P is the number of patterns and M is 

the number of outputs. An additional benefit of memory 

reduction is also a significant reduction in computation 

time. Based on the proposed computation, calculating 

process of quasi Hessian matrix is further simplified using 

its symmetrical property. Therefore, the training speed of 

the improved algorithm becomes much faster than 

traditional computation. 

Second order algorithms are much more efficient than 

EBP algorithm. EBP algorithm can solve problems only 

when excessive number of neurons is used, where the 

networks lose their generalization ability (example in 

section I). 

The method presented in this paper solved the problem 

of training neural networks using second order algorithms 

with basically unlimited number of training patterns. 

The method was implemented in neural networks 

trainer (NBN 2.09), and the software can be downloaded 

from website [13]: 

http://www.eng.auburn.edu/~wilambm/nnt/index.htm

REFERENCES

[1] K. Levenberg, “A method for the solution of certain problems in 

least squares”. Quarterly of Applied Machematics, 5, pp. 164-168, 

1944.

[2] Wu, J.-M., “Multilayer Potts Perceptrons with Levenberg–

Marquardt Learning”. IEEE Trans. on Neural Networks, vol. 19, no. 

12, pp. 2032-2043, Feb 2008. 

[3] C. Alzate, J. A. K. Suykens, "Kernel Component Analysis Using an 

Epsilon-Insensitive Robust Loss Function," IEEE Trans. on Neural 
Networks, vol. 19, no. 9, pp. 1583-1598, Sept 2008. 

[4] H. Deng, H.-X. Li, Y.-H. Wu, "Feedback-Linearization-Based 

Neural Adaptive Control for Unknown Nonaffine Nonlinear 

Discrete-Time Systems," IEEE Trans. on Neural Networks, vol. 19, 

no. 9, pp. 1615-1625, Sept 2008. 

[5] B. M. Wilamowski, “Neural Network Architectures and Learning 

Algorithms: How Not to Be Frustrated with Neural 
Networks,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 

56-63, Dec. 2009. 

[6] Werbos P. J., “Back-propagation: Past and Future”. Proceeding of 
International Conference on Neural Networks, San Diego, CA, 1, 

343-354, 1988. 

[7] Sheng Wan, L.E. Banta, "Parameter Incremental Learning 

Algorithm for Neural Networks," IEEE Trans. on Neural Networks,

vol. 17, no. 6, pp. 1424-1438, June 2006. 

[8] Wilamowski, B.M. Cotton, N.J. Kaynak, O. Dundar, G., 

“Computing Gradient Vector and Jacobian Matrix in Arbitrarily 

Connected Neural Networks”, IEEE Trans. on Industrial 
Electronics, vol. 55, no. 10, pp. 3784-3790, Oct. 2008. 

[9] Hao Yu and B. M. Wilamowski, “Efficient and reliable training of 

neural networks”, in Proc. 2nd IEEE Human System Interaction 
Conf.  HSI 2009, Catania, Italy, May 21-23, 2009, pp. 109-115. 

180



[10] Hagan, M.T.   Menhaj, M.B., “Training feedforward networks with 

the Marquardt algorithm”. IEEE Trans. on Neural Networks, vol. 5, 

no. 6, pp. 989-993, Nov. 1994. 

[11] Jian-Xun Peng, Kang Li, G.W. Irwin, "A New Jacobian Matrix for 

Optimal Learning of Single-Layer Neural Networks," IEEE Trans. 
on Neural Networks, vol. 19, no. 1, pp. 119-129, Jan 2008. 

[12] L.J. Cao, S.S. Keerthi, Chong-Jin Ong, J.Q. Zhang, U. 

Periyathamby, Xiu Ju Fu, H.P. Lee, "Parallel sequential minimal 

optimization for the training of support vector machines," IEEE 
Trans. on Neural Networks, vol. 17, no. 4, pp. 1039- 1049, April 

2006.

[13] Hao Yu and B. M. Wilamowski, “C++ Implementation of Neural 

Networks Trainer”,  13-th International Conference on Intelligent 
Engineering Systems, INES-09,  Barbados, April 16-18, 2009. 

181



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


