
�
Abstract. In this paper, second order algorithms, such as

Levenberg Marquardt algorithm [1][2], are recommended
for neural network training. Being different from traditional
computation in second order algorithms, the proposed
method simplifies Hessian matrix computation, by removing
Jacobian matrix computation and storage. Matrix
multiplications are replaced by vector operations. The
proposed computation not only makes the training process
faster, but also reduces the memory cost significantly. Based
upon the improvement, second order algorithms can be
applied for application with unlimited number of patterns.

Keywords: Neural network training, Levenberg
Marquardt algorithm

I. INTRODUCTION

EURAL networks can be very powerful for nonlinear

signal processing [3][4], if they are trained well. The

well-trained neural networks should not only correctly

match the training patterns, but also properly handle the

patterns which are not applied for training. Dissatisfaction

in either condition makes the trained neural networks

useless.

In order to secure the generalization ability, the

networks should be as simple as possible [5]. With first

order algorithms, such as the error back propagation

(EBP) algorithm [6], it is often not possible to train those

simple (close to optimal) networks. Instead, an excessive

number of neurons are required to match the training

patterns with small errors. This “success” is misleading

because such networks will be over-fitted and perform

poorly in processing new patterns which were not used for

training.

It is well-known that second order algorithms, such as

Levenberg Marquardt (LM) algorithm, are much faster

than EBP algorithm. For the same problem, LM algorithm

can also find solutions with much smaller number of

neurons than that required for EBP algorithm. Therefore,

it is reasonable to consider LM algorithm as a potentially

better choice than EBP algorithm to find well-trained

networks.

Hao Yu: 468 Broun Hall, Auburn University, Auburn, AL. 36849-

5201 USA. Phone: +1-334-498-0953. Email: hzy0004@auburn.edu.

This issue will be illustrated with the example below.

Let us consider the peak surface [7] as the required surface

(Fig. 1a) and let us use equally spaced 10×10=100
patterns (Fig. 1b) to train neural networks. The quality of

trained networks is evaluated using errors computed for

equally spaced 37×37=1,369 patterns. In order to make a

valid comparison between training and verification error,

the sum squared error (SSE), as defined in (4), is divided

by 100 and 1,369 respectively.

(a)

(b)

Fig. 1 Surface matching problem: (a) Required 2-D surface

with 37×37=1,369 points, used for verification; (b) 10×10=100
training patterns extracted in equal space from (a), used for

training

As the training results shown in Table I, using the

neuron by neuron (NBN) algorithm [8][9], which is an

improved LM algorithm for training arbitrarily connected

neural networks, it was possible to find the acceptable

Bogdan M. Wilamowski: 420 Broun Hall, Auburn University,

Auburn, AL. 36849-5201 USA. Phone: +1-334-844-1629. Email:

wilam@ieee.org.

Fast and Efficient and Training of Neural

Networks

Hao Yu and Wilamowski

Auburn University, Auburn, Alabama, US

hzy0004@auburn.edu, wilam@ieee.org

N

175
978-1-4244-7562-9/10/$26.00 ©2010 IEEE

solution (Fig. 2) with 8 neurons (52 weights).

Unfortunately, with EBP algorithm, it was not possible to

find acceptable solutions in 100 trials within 1,000,000

iterations each. Fig. 3 shows the best result out of the 100

trials with EBP algorithm. When the network size was

significantly increased from 8 to 13 neurons (117

weights), EBP algorithm was able to reach the similar

training error as with LM algorithm, but the network lost

its ability to response correctly for new patterns (between

training points). Please notice that indeed with enlarged

number of neurons (13 neurons), EBP algorithm was able

to train network to a small error SSETrain=0.0018, but as

one can see from Fig. 4, the result is unacceptable with

verification error SSEVerify=0.4909.

TABLE I

TRAINING RESULTS OF PEAK SURFACE PROBLEM

Neurons Success Rate Average Iteration Average Time (s)

EBP LM EBP LM EBP LM

8 0% 5% Failing 222.5 Failing 0.33

9 0% 25% Failing 214.6 Failing 0.58

10 0% 61% Failing 183.5 Failing 0.70

11 0% 76% Failing 177.2 Failing 0.93

12 0% 90% Failing 149.5 Failing 1.08

13 35% 96% 573,226 142.5 624.88 1.35

14 42% 99% 544,734 134.5 651.66 1.76

15 56% 100% 627,224 119.3 891.90 1.85

For EBP algorithm, learning constant is 0.0005 and momentum

is 0.5; maximum iteration is 1,000,000 for EBP algorithm and

1,000 for LM algorithm; desired error=0.5; all neurons are in

FCC networks; there are 100 trials for each case.

Fig. 2 The best training result in 100 trials, using LM

algorithm, 8 neurons in FCC network (52 weights); maximum

training iteration is 1,000; SSETrain=0.0044, SSEVerify=0.0080 and

training time=0.37 s

Fig. 3 The best training result in 100 trials, using EBP

algorithm, 8 neurons in FCC network (52 weights); maximum

training iteration is 1,000,000; SSETrain=0.0764, SSEVerify=0.1271

and training time=579.98 s

Fig. 4 The best training result in 100 trials, using EBP

algorithm, 13 neurons in FCC network (117 weights); maximum

training iteration is 1,000,000; SSETrain=0.0018, SSEVerify=0.4909

and training time=635.72 s

From the presented example, one may notice that often

in simple (close to optimal) networks, EBP algorithm

can’t converge to required training error (Fig. 3). When

the size of networks increase, EBP algorithm can reach the

required training error, but trained networks lose their

generalization ability and can’t process new patterns well

(Fig. 4). On the other hand, second order algorithms, such

as LM algorithm, works not only significantly faster but it

can find good solutions with close to optimal networks

(Fig. 2).

The comparison results above illustrate a significant

advantage of LM algorithm training small and medium

size patterns. However, for problems with large number of

patterns, such as parity-16 problem (65536 patterns), LM

algorithm will have to use excessive memory for Jacobian

matrix storage and multiplication.

In the proposed modification of LM algorithm, Jacobian

matrix needs not to be stored and Jacobian matrix

multiplication was replaced by vector operations.

Therefore, the proposed algorithm can be used for

problems with basically unlimited number of training

patterns. Also, the proposed improvement accelerates

training process.

In section II of this paper, computational fundamentals

of LM algorithm are introduced to address the memory

problem. Section III describes the improved computation

for both quasi Hessian matrix and gradient vector in

details. Section IV gives some experimental results on

memory and training time comparison between the

traditional computation and the improved computation.

II. COMPUTATIONAL FUNDAMENTALS

Derived from EBP algorithm and Newton method, the

update rule of Levenberg Marquardt algorithm is [10]

� � eJIJJw TT 1�
��� 	 (1)

176

where w is weight vector, I is identity matrix, � is

combination coefficient, (P×M)×N Jacobian matrix J and

(P×M)×1 error vector e are defined as

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

N

PMPMPM

N

PPP

N

PPP

N

MMM

N

N

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

�

����

�

�

����

�

����

�

�

21

2

2

2

1

2

1

2

1

1

1

1

2

1

1

1

12

2

12

1

12

11

2

11

1

11

J

�

�

�

�

�

PM

P

P

M

e

e
e

e

e
e

�

�

�

2

1

1

12

11

e (2)

where P is the number of training patterns, M is the

number of outputs and N is the number of weights.

Elements in error vector e are calculated by

pmpmpm ode �� (3)

where dpm and opm are the desired output and actual output

respectively, at network output m when training pattern p.

Traditionally, Jacobian matrix J is calculated and stored

at first; then Jacobian matrix multiplications are performed

for weight updating using (1). For small and median size

patterns training, this method may work smoothly.

However, for large-sized patterns, there is a memory

limitation for Jacobian matrix J storage.

For example, the pattern recognition problem in MNIST

handwritten digit database [12] consists of 60,000 training

patterns, 784 inputs and 10 outputs. Using only the

simplest possible neural network with 10 neurons (one

neuron per each output), the memory cost for the entire

Jacobian matrix storage is nearly 35 gigabytes. This huge

memory requirement cannot be satisfied by any 32-bit

Windows compliers, where there is a 3 gigabytes

limitation for single array storage. At this point, with

traditional computation, one may conclude that Levenberg

Marquardt algorithm cannot be used for problems with

large number of patterns.

III. IMPROVED COMPUTATION

In the following derivation, sum squared error (SSE) is

used to evaluate the training process.

� � ��
� �

�
P

p

M

m
pmeE

1 1

2w (4)

where epm is the error at output m obtained by training

pattern p, defined by (3).

The Hessian matrix can be found by

�

�

�

�

�

�

��

�

��

�

��

�

�

�

��

�

��

�

��

�

�

�

�

2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

NNN

N

N

w
E

ww
E

ww
E

ww
E

w
E

ww
E

ww
E

ww
E

w
E

�

����

�

�

H (5)

Combining (4) and (5), elements of Hessian matrix H
can be obtained as

��
� �

�
�

�

�

�
�

�

�

��

�
�

�

�

�

�
�

��

� P

p

M

m
pm

ji

pm

j

pm

i

pm

ji
e

ww
e

w
e

w
e

ww
E

1 1

22

2 (6)

where i and j are weight indexes.

Equation (6) can be approximated as [10][11]

ij

P

p

M

m j

pm

i

pm

ji
q

w
e

w
e

ww
E

��
�

�

�

�
�

�

�

�

�

�

�
�

��

� ��
� �1 1

2

2 (7)

where qij is the element of quasi hessian matrix in row i
column j.

Combining (3) and (7), quasi Hessian matrix Q can be

calculated as an approximation of Hessian matrix

JJQH T2�� (8)

Gradient vector g is defined as
T

Nw
E

w
E

w
E

�

�

�

�

�

�

�

�

�

�
� �

21

g (9)

Inserting (4) into (9), elements of gradient can be

calculated as

��
� �

�
�
�

�
�
�
�

�

�

�
�

�

�
�

P

p

M

m
pm

i

pm

i
i e

w
e

w
Eg

1 1

2 (10)

From (2) and (10), the relationship between gradient

vector g and Jacobian matrix J can be described by

eJg T2� (11)

Combining (8), (11) and (1), the update rule of

Levenberg Marquardt algorithm can be rewritten

gIQw
2

1

2

1
1�

�
�

�
�
�

�
��� 	 (12)

or

� � gIQw 1���� 	 (13)

One may notice that the sizes of quasi Hessian matrix Q
and gradient vector g are only proportioned to number of

weights in networks, but not associated with the number

of training patterns and outputs.

In order to avoid computation and storage of large

Jacobian matrix J in (1), the quasi Hessian matrix Q and

gradient vector g must be computed directly.

A. Improved quasi Hessian matrix computation
Let us introduce quasi Hessian sub matrix qpm

177

�

�

�

�

��
�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�

�
��
�

�

�

�

�

2

21

2

2

212

121

2

1

N

pmpm

N

pmpm

N

pm

N

pmpmpmpmpm

N

pmpmpmpmpm

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

�

����

�

�

pmq (14)

Using (7) and (14), quasi Hessian matrix Q can be

calculated as the sum of sub matrix qpm

��
� �

�
P

p

M

m
pm

1 1

2 qQ (15)

By introducing vector jpm

�

�

�

�

�

�

�

�

�

�
�

N

pmpmpm

w
e

w
e

w
e

�

21
pmj (16)

sub matrix qpm in (14) can be also written in the vector

form

pm
T
pmpm jjq � (17)

One may notice that for the computation of sub matrix

qpm, only N elements of vector jpm need to be calculated

and stored. All the sub matrixes can be calculated for each

pattern p and output m separately, and summed together,

so as to obtain quasi Hessian matrix Q.

Considering the independence among all patterns and

outputs, there is no need to store all the quasi Hessian sub

matrix qpm. Each sub matrix can be summed to a

temporary matrix after its computation. Therefore, during

the direct computation of quasi Hessian matrix Q using

(15), only memory for N elements is required, instead of

that for the whole Jacobian matrix with P×M×N elements

(2).

From (14), one may notice that all the sub matrixes qpm

are symmetrical. With this property, only upper or lower

triangular elements of those sub matrixes need to be

calculated. Therefore, during the improved quasi Hessian

matrix Q computation, multiplication operations in (17)

and sum operations in (15) can be both reduced to half

approximately. As is known, binary multiplication often

costs several times executing periods more than data

copying. Therefore, this simplification is supposed to

perform a much more efficient computation.

B. Improved gradient vector computation
Gradient sub vector �pm is introduced as

pm

N

pm

pm

pm

pm
N

pm

pm
pm

pm
pm

pm e

w
e

w
e
w

e

e
w
e

e
w
e

e
w

e

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

2

1

2

1

�
 (18)

Combining (10) and (18), gradient vector g can be

calculated as the sum of gradient sub vector �pm

��
� �

�
P M

m
pm

1 1

2

p

�g (19)

Using the same vector jpm defined in (16), gradient sub

vector can be calculated using

pmpmpm ej� � (20)

Similarly, gradient sub vector �pm can be calculated for

each pattern and output separately, and summed to a

temporary vector. After training all patterns and outputs,

the temporary vector is the required gradient. Since the

same vector jpm is calculated during quasi Hessian matrix

computation above, there is only an extra scalar epm need

to be stored.

C. Simplified �epm/�wi computation
One may notice that the key point of the proposed

computation above for quasi Hessian matrix Q and

gradient vector g is to calculate vector jpm defined in (16)

for each pattern and output. This vector is equivalent of

one row of Jacobian matrix J.

The elements of vector jpm can be calculated by

i

pj

pj

pm

i

pmpm

i

pm

w
etn

net
o

w
do

w
e

�

�

�

�
�

�

��
�

�

�)(
 (21)

where d is the desired output and o is the actual output.

netpj is the sum of weighted inputs at neuron j described as

�� ipipj wxnet (22)

where xpi and wi are the inputs and related weights

respectively at neuron j.
Inserting (21) and (22) into (16), vector jpm can be

calculated by

� �

�

�

�

�
� ���

ipp
p

pm xx
net
o

11

1
1pmj

� �

�

�

�

�
���

ipjpj
pj

pm xx
net
o

1
 (23)

where xpji is the ith input for neuron j, when training

pattern p.

Generally, for the problem with P patterns and M
outputs, the improved computation can be organized as the

pseudo code shown in Fig. 5.

% Initialization
Q=0;

g =0
% Improved computation
for p=1:P % Number of patterns

% Forward computation
…

 for m=1:M % Number of outputs
 % Backward computation
 …
 calculate vector jpm; % Eq. (23)
 calculate sub matrix qpm; % Eq. (17)
 calculate sub vector �pm; % Eq. (20)

Q=Q+qpm; % Eq. (15)
 g=g+�pm; % Eq. (19)
 end;

end;

178

Fig. 5 Pseudo code of the improved computation for quasi

Hessian matrix and gradient vector

With the improved computation, both quasi Hessian

matrix Q and gradient vector g can be computed directly,

without Jacobian matrix storage and multiplication.

During the process, only a temporary vector jpm with N
elements needs to be stored (23); in other words, the

memory cost for Jacobian matrix storage is reduced by

P×M times. In the MINST problem mentioned in section

II, the memory cost for the storage of Jacobian elements

could be reduced from more than 35 gigabytes to nearly

30.7 kilobytes. Therefore, it is possible to train those huge

patterns with LM algorithm.

The same quasi Hessian matrices and gradient vectors

are obtained in both traditional computation (8 and 11)

and the proposed computation (15 and 19). Therefore, the

proposed computation does not affect the success rate.

IV. EXAMPLES

Several experiments are designed to test the memory

and time efficiencies of the improved computation,

comparing with traditional computation. They are divided

into two parts: (A) Memory comparison and (B) Time

comparison.

A. Memory comparison
Three problems, each of which has a huge number of

patterns, are selected to test the memory cost of both the

traditional computation and the improved computation.

LM algorithm is used for training and the test results are

shown Tables II and III. In order to make a more precise

comparison, memory cost for program code and input files

were not used in the comparison.

TABLE II

MEMORY COMPARISON FOR PARITY PROBLEMS

Parity-N Problems Parity 14 Parity 16
Patterns 16,384 65,536

Structures* 15 neurons 17 neurons

Jacobian matrix 5,406,720 27,852,800

Weight vector sizes 330 425

Average iteration 99.2 166.4

Success Rate 13% 9%

Algorithms Actual memory cost
Traditional LM 79.21Mb 385.22Mb

Improved LM 3.41Mb 4.30Mb

*All neurons are in fully connected cascade networks

TABLE III

MEMORY COMPARISON FOR MINST PROBLEM

Problem MINST
Patterns 60,000

Structures 784=1 single layer network*

Jacobian matrix sizes 47,100,000

Weight vector sizes 785

Algorithms Actual memory cost
Traditional LM 385.68Mb

Improved LM 15.67Mb

*In order to perform efficient matrix inversion during training,

only one of ten digits is classified each time.

From the test results in Tables II and III, it is clear that

memory cost for training is significantly reduced in the

improved computation.

B. Time comparison
Parity-N problems are presented to test the training time

for both traditional computation and the improved

computation using LM algorithm. The structures used for

testing are all fully connected cascade networks. For each

problem, the initial weights and training parameters are

the same.

TABLE IV

TIME COMPARISON FOR PARITY PROBLEMS

Parity-N Problems N=9 N=11 N=13 N=15
Patterns 512 2,048 8,192 32,768

Neurons 10 12 14 16

Weights 145 210 287 376

Average Iterations 38.5 59.0 68.1 126.1

Success Rate 58% 37% 24% 12%

Algorithms Averaged training time (s)
Traditional LM 0.8 68.0 1508.5 43,417.1

Improved LM 0.3 22.1 173.8 2,797.9

From Table IV, one may notice that the improved

computation can not only handle much larger problems,

but also computes much faster than the traditional one,

especially for large-sized patterns training. The larger the

pattern size is, the more time efficient the improved

computation will be.

Obviously, the simplified quasi Hessian matrix

computation is the one reason for the improved computing

speed (nearly two times faster for small problems).

Significant computation reductions obtained for larger

problems are most likely due to the simpler way of

addressing elements in vectors, in comparison to

addressing elements in huge matrices.

With the presented experimental results, one may notice

that the improved computation is much more efficient than

traditional computation for training with Levenberg

Marquardt algorithm, not only on memory requirements,

but also training time.

Another experiment, two-spiral problem, was used to

test the efficiency of LM algorithm implemented with the

proposed computation, comparing with EBP algorithm.

The two-spiral problem is considered as a good

evaluation of training algorithms [7]. Depending on

training algorithms, different numbers of neurons are

required for successful training (See Tables V).

Table V presents the training results of the two-spiral

problem using different number of neurons in fully

connected cascade (FCC) networks. LM algorithm with

the proposed implementation can solve the two-spiral

179

problem, using 8 neurons (52 weights) in about 290

iterations (Fig .6a). EBP algorithm can solve it in about

400,000 iterations, but only if when the number of

neurons is increased to 12 (102 weights). The result (the

best one in 100 trials), shown in Fig. 6b, is not as good as

the result (Fig. 6a) from LM algorithm with a much

simpler architecture. One can conclude that EBP algorithm

is only successful if an excessive number of neurons is

used.

TABLE V

TRAINING RESULTS OF TWO-SPIRAL PROBLEM

Neurons Success rate Average number

of iterations

Average time (s)

EBP LM EBP LM EBP LM

8 0% 13% Failing 287.7 Failing 0.88

9 0% 24% Failing 261.4 Failing 0.98

10 0% 40% Failing 243.9 Failing 1.57

11 0% 69% Failing 231.8 Failing 1.62

12 63% 80% 410,254 175.1 633.9 1.70

13 85% 89% 335,531 159.7 620.3 2.09

14 92% 92% 266,237 137.3 605.3 2.40

15 96% 96% 216,064 127.7 601.0 2.89

16 98% 99% 194,041 112.0 585.7 3.82

For EBP algorithm, learning constant is 0.005 and momentum is

0.5; maximum iteration is 1,000,000 for EBP algorithm and

1,000 for LM algorithm; desired error=0.01; all neurons are in

FCC networks; there are 100 trials for each case.

(a)

(b)

Fig. 6 Best results of two-spiral problem in 100 trails: (a) 8

neurons in FCC network (52 weights), using LM algorithm and

training time=0.82 s; (b) 12 neurons in FCC network (102

weights), using EBP algorithm and training time=694.32 s

The experimental results of the two-spiral problem

show that second order algorithms are not only much

faster but they can train reduced size networks which can’t

be handled by EBP algorithm.

V. CONCLUSION

In this paper, an improved Hessian matrix computation

was presented to solve the memory limitation in second

order algorithms. The proposed method does not require to

store and to multiply large Jacobian matrix. As a

consequence, memory requirement for quasi Hessian

matrix and gradient vector computation is decreased by

(P×M) times, where P is the number of patterns and M is

the number of outputs. An additional benefit of memory

reduction is also a significant reduction in computation

time. Based on the proposed computation, calculating

process of quasi Hessian matrix is further simplified using

its symmetrical property. Therefore, the training speed of

the improved algorithm becomes much faster than

traditional computation.

Second order algorithms are much more efficient than

EBP algorithm. EBP algorithm can solve problems only

when excessive number of neurons is used, where the

networks lose their generalization ability (example in

section I).

The method presented in this paper solved the problem

of training neural networks using second order algorithms

with basically unlimited number of training patterns.

The method was implemented in neural networks

trainer (NBN 2.09), and the software can be downloaded

from website [13]:

http://www.eng.auburn.edu/~wilambm/nnt/index.htm

REFERENCES

[1] K. Levenberg, “A method for the solution of certain problems in

least squares”. Quarterly of Applied Machematics, 5, pp. 164-168,

1944.

[2] Wu, J.-M., “Multilayer Potts Perceptrons with Levenberg–

Marquardt Learning”. IEEE Trans. on Neural Networks, vol. 19, no.

12, pp. 2032-2043, Feb 2008.

[3] C. Alzate, J. A. K. Suykens, "Kernel Component Analysis Using an

Epsilon-Insensitive Robust Loss Function," IEEE Trans. on Neural
Networks, vol. 19, no. 9, pp. 1583-1598, Sept 2008.

[4] H. Deng, H.-X. Li, Y.-H. Wu, "Feedback-Linearization-Based

Neural Adaptive Control for Unknown Nonaffine Nonlinear

Discrete-Time Systems," IEEE Trans. on Neural Networks, vol. 19,

no. 9, pp. 1615-1625, Sept 2008.

[5] B. M. Wilamowski, “Neural Network Architectures and Learning

Algorithms: How Not to Be Frustrated with Neural
Networks,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp.

56-63, Dec. 2009.

[6] Werbos P. J., “Back-propagation: Past and Future”. Proceeding of
International Conference on Neural Networks, San Diego, CA, 1,

343-354, 1988.

[7] Sheng Wan, L.E. Banta, "Parameter Incremental Learning

Algorithm for Neural Networks," IEEE Trans. on Neural Networks,

vol. 17, no. 6, pp. 1424-1438, June 2006.

[8] Wilamowski, B.M. Cotton, N.J. Kaynak, O. Dundar, G.,

“Computing Gradient Vector and Jacobian Matrix in Arbitrarily

Connected Neural Networks”, IEEE Trans. on Industrial
Electronics, vol. 55, no. 10, pp. 3784-3790, Oct. 2008.

[9] Hao Yu and B. M. Wilamowski, “Efficient and reliable training of

neural networks”, in Proc. 2nd IEEE Human System Interaction
Conf. HSI 2009, Catania, Italy, May 21-23, 2009, pp. 109-115.

180

[10] Hagan, M.T. Menhaj, M.B., “Training feedforward networks with

the Marquardt algorithm”. IEEE Trans. on Neural Networks, vol. 5,

no. 6, pp. 989-993, Nov. 1994.

[11] Jian-Xun Peng, Kang Li, G.W. Irwin, "A New Jacobian Matrix for

Optimal Learning of Single-Layer Neural Networks," IEEE Trans.
on Neural Networks, vol. 19, no. 1, pp. 119-129, Jan 2008.

[12] L.J. Cao, S.S. Keerthi, Chong-Jin Ong, J.Q. Zhang, U.

Periyathamby, Xiu Ju Fu, H.P. Lee, "Parallel sequential minimal

optimization for the training of support vector machines," IEEE
Trans. on Neural Networks, vol. 17, no. 4, pp. 1039- 1049, April

2006.

[13] Hao Yu and B. M. Wilamowski, “C++ Implementation of Neural

Networks Trainer”, 13-th International Conference on Intelligent
Engineering Systems, INES-09, Barbados, April 16-18, 2009.

181

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

