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Abstract

Advantages and disadvantages of various neural architectures are compared. It is shown that ncural
networks with connections across layers are significantly more powertul than popular MLP - Multi
Layer Preceptron architectures. The most powerlul arc FCC Fully Connected Cascade (FCC) archi-
tectures. Unfortunately, most advanced training algorithms were developed only for popular MLP
topologics and other much more powerful topologics are scldom used. The newly developed second
order algorithm NBN is not only very tast and powerful. but it can train any neural network topolo-
gics. With the NBN algorithm it is possible to train close to optimal architectures which were not
possible to train before.

1. INTRODUCTION

The error back propagation (EBP) algorithm |1, 2] can be regarded as one of the most
significant breakthroughs in neural network training. The EBP algorithm is widely used
today; however, it is also known as an inefficient algorithm because of its slow conver-
gence. Many improvements |3-5] have been made o overcome the disadvantages ol the
EBP algorithm and some of them. such as momentum [6] and RPROP algorithm [7]. work
rclatively well. But as long as the first order algorithms are used. improvements are not
dramatic. Second order algorithms |8, 9] such as the Newton algorithm, Levenberg
Marquardt (LM) algorithm [10, 11], or the Ncuron by Neuron (NBN)) algorithm |12, 13|
using the Hessian matrix perform betler estimations on both step sizes and dircctions, and
they can converge much faster than [irst order algorithms. By combining the training speed
ol the Newton algorithm and the stability of steepest descent method, the LM algorithm
[10, 11] is regarded as one of the most cfficient algorithms for ncural networks training:.
but it has several limitations. It cannot train other than MLP topologies and since the size of
a Jacobian matrix is proportional to the number ol patterns it can be used only for relatively
small problems because it requires complex computation of Jacobian/Hessian matrixes and
several matrix inversions at cach iteration step. Also, second order algorithms use the back-
propagation process to compute Jacobian matrixes [ 12—14]. In this case, the backpropaga-
tion is repeated for every pattern and every network output.
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Besides training algorithms. neural network topology also affects training cfficiency.
Compared with multilayer pereeptron (MLP) networks, other networks, such as fully con-
nected cascade (FCC) networks and bridged MLP (BMLP) networks with connections
across layers, are found to be more efficient in solving problems [12]. Neural networks with
connections across layers are more powerful, but they require more challenging computa-
tion processes.

2. WHY SECOND ORDER ALGORITHMS ARE IMPORTANT

It is well-known that sccond order algorithms are much faster, but it is not common
knowledge that networks should be as simple as possible to properly handle new patterns
(not used for training). With lirst order algorithms, such as the EBP algorithm. it is often
not possible o train those simple (close o optimal) networks. With excessive number of
nceurons, cven first order algorithms can train the neural networks (o very small errors, but
this “success” 1s misleading because such networks will not be able to properly process new
patterns, which were not used for traintng. This issuc will be illustrated in this scction with
a couple of examples.

The two-spiral problem is considered as a good evaluation of training algorithms [15].
Depending on a neural network architecture, different numbers of neurons are required for
successful training. For example. using standard MLP networks with one hidden layer, 34
ncurons are required for the two-spiral problem | 16]. while with an FCC architecture it can
be solved with only 8 neurons. Sccond order algorithms are not only much faster but they
can train reduced size networks which cannot be handled by the EBP algorithm (sce Tables
2.1 and 3.1). Another important fact s that it is much casier Lo train networks with an ex-
cessive number of neurons.

Table 2.1

Training results of two-spiral problem

Success Rate Average lteration Average Time
Neurons (s)

—

EBP NBN EBP NBN EBP NBN

8 0% 13% / 287.7 / 0.88

— L
9 o | 2w / 261.4 / 098 |
1

10 0% 40% / 243.9 / 1.57
| A I

11 0% 69% / 231.8 / 1.62

12 63% 80% 410,254 1751 633.91 1.70

13 85% 89% 335,531 159.7 620.30 2.09

14 92% 92% 266,237 137.3 605.32 2.40

15 96% 96% 216,064 127.7 601.08 2.89

16 98% 99% 194,041 112.0 585.74 3.82

Table 2.1 presents the training results of the two-spiral problem using ditferent number
of neurons in FCC networks. Results presented in Tables 2.1 and 3.1 were obtained with
the following parameters. For the EBP algorithm, the Iearning constant is 0.005 (largest o
avoiding oscillation) and the momentum is 0.5; the maximum iteration is 1.000.000 for the
EBP algorithm and 1,000 for the NBN algorithm: the desired crror = 0.01: all ncurons are
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in FCC networks: there are 100 trials for cach case. The NBN algorithi can solve the (wo-
spiral problem using 8 neurons (52 weights) in nearly 290 iterations (Fig. la). The EBP
algorithm can solve the two-spiral problem only when larger networks are used. When the
number ol neurons is increased to 12 (102 weighs), the EBP algorithm can solve it in about
400.000 1tcrations. The result (the best one in 100 trials), shown in Fig. 1(b), is not as good
as the result (Fig. 1a) from the NBN algorithm with a much simpler architecture. One can
conclude that the EBP algorithm is only successlul if excessive number of neurons is used.

a) b)

Fig. 1. Best results of two-spiral problem in 100 trails: a) 8 ncurons in FCC network (52 weights),
using NBN algorithm and training time = 0.82 s: b) 12 neurons in FCC network (102 weights).
using EBP algorithm and training time = 694.32 5

3. GENERALIZATION ABILITIES

[t is relatively casy (o find ncural network architectures so that they can be trained o
very small errors. However, it is more important to lind an architecture which alter training
will respond correctly to patterns which were not used for training. Let us illustrate this
problem using another example. Let us consider a peak surface | 13| shown in Fig. 2a as the
required surface and let us use equally spaced 10x10 = 100 patterns (Fig. 2b) in training
ncural networks. The quality of trained networks is evaluated using crrors computed for
cqually spaced 37x37 = 1,369 patterns. In order to make a valid comparison between the
training and verification crror, the SSE. as defined in (1), is divided by 100 and 1.369, re-
spectively.

Fig. 2 Surface matching problem: a) Required 2-1D surface with 37x37 = 1,369 points. used for
verification: b) 10x 10 = 100 training patterns extracted in cqual space from (a). used for training
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Training Results of peak surface problem

Table 3.1

Success Rate

Average lteration

Average Time

Neurons (s)

EBP NBN EBP NBN EBP NBN
8 0% 5% / 2005 / 0.33
9 0% 25% / 214.6 / 0.58
10 0% 61% / 183.5 / 0.70
11 0% 76% / 177.2 / 0.93
12 0% 90% | 1495 / 1.08
13 35% 96% 573,226 1425 624.88 1.35
14 42% 99% 544,734 134.5 651.66 1.76
15 56% 100% 627,224 119.3 891.90 1.85

The training results shown in Table 3.1, point out that using the NBN algorithm. which
can handle arbitrarily connected neural networks, then, it was possible to find the accept-
able solution (Fig. 3a), SSEqq, =0.0044 and SSEyeiy = 0.0080, with 8 ncurons (52
weights). Unfortunately, with the EBP algorithm, it was not possible to find acceptable
solutions in 100 trials within 1,000,000 itcrations cach. The best result out of the 100 trials
with 1,000,000 itcrations cach was SSEqpy,, = 0.0764 and SSEyi =0.1271. When the
network size was signilicantly increased from 8 to 13 neurons (117 weights), the EBP algo-
rithm was able to reach the similar training error as with the NBN algorithm, but the net-
work lost its ability to respond correctly to new patterns (between training points). Please
notice that indeed with an enlarged number ol neurons, the EBP algorithm was able to train
the network (o the small error SSE ;. = 0.0018, but as one can sce from Fig. 3b. the result
is unaceeptable with the verification error SSEy.ip, = 0.4909.

b)

Fig. 3 Training results using 100 trials with: a) NBN algorithm, 8 ncurons in FCC network
(52 weights); maximum training iteration is 1,000; SSEy,, = 0.0044, SSEy,,y = 0.0080 and training
time = .37 s; b) EBP algorithm, 13 ncurons in FCC network (117 weights): maximum training
itcration is 1,000.000; SSE = 0.0018. SSEy iy = 0.4909 and training time = 635.72 s

From the above analysis, one may notice that in order to sustain neural network gener-
alization abilities the network should have as few neurons/weights as possible. This prob-
lem 1s very similar to function approximation by polynomials. If too high order of polyno-
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mial i1s used then crrors for training points but values between points cannot be cvaluated
correctly. In the example in Fig. 4 only 5-th, 6-th, and 7-th order ol polynomials are giving
adcquatce results, while higher order polynomials can be tuned to smaller errors for given
points. They are useless to predict evaluated new points which were not used for training.

Q 1 2 3 4 K 6 ! 8 9 i0

Fig. 4. Polynomial approximation to data points

When a reduced number of neurons are used the EBP algorithm cannot converge to
the required training error. When the size of networks increase, the EBP algorithm can
reach the required training crror, but trained networks lose their generalization ability and
cannot process new patterns well (Fig. 3b). On the other hand. sccond order algorithms,
such as the NBN algorithm, work not only significantly faster but they can [ind good solu-
tions with close o optimal networks (Fig. 3a).

a) b) c)

Input3 v‘.:\",;yi
A
7l
s
2
;,gw

Inputd
Input?

+ 1

Fig. 5. Smallest neural networks required for Parity-7 probleni.
a) MLP — Multi Layer Perceptron with one hidden layer: by BMLP — Bridged Multi Layer Perceptron
with one hidden layer: ¢) FCC - Fully Connected Cascade network
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4. POWERFUL NEURAL NETWORK ARCHITECTURES

Parity-N problems are commonly used benchmarks [or neural networks and they can
be used (o compare the power ol dilferent neural network architectures. Fig. S shows vari-
ous ncural network topologies, which can be used to solve the Parity-7 problem [17]. Fig. 6
shows abilites of dilferent network topologics for solution ol a Parity-N problem using a
different number of neurons

For example, with 7 neurons in the MLP topology with onc hidden layer the largest
problem which can be solved is the Pairty-6 (6=6=1). With the same 7 ncurons using the
BMPL and also one hidden layer, it is possible to solve the Parity-13 problem using the
(13=6=1) (opology. With thc BMLP with two hidden layers (31=3=3=1} it is possible to
solve the Parity-31 problem. With the BMLP with three hidden layers (53=2=2=2=1) it is
possible to solve the Parity-53 problem. When the FCC topology is used, then with 7 neu-
rons it is possible o solve as large a problem as the Parity-127 once using the
(127=1=1=1=1=1=1=1) topology. Onc may withdraw the conclusion that with the BMLP
architectures the capabilitics of neural networks rapidly increase with the depth of the net-
work and that the FCC architecture is the most powerful. Unfortunately, most rescarchers
ar¢ using MLP networks with one hidden layer which is the least powerlul architecture.
One reason why more powerlul architectures are not used is that the very powerful LM
learning algorithm was developed for MLP architectures.
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Fig. 6. Abilities of solving Parity-N problems as function of number of neurons

5. TRAINING ALGORITHMS

As onc can sce from the example shown in Scction 2 the EBP algorithm cannot con-
verge to the required training crror unless a significant number of ¢xcessive neurons are
used. When the size ol networks increase. the EBP algorithm can reach the required train-
ing crror, but trained networks lose their generalization ability and cannot process new
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patterns well (Fig. 3b). The newly developed NBN algorithm works not only significantly
laster than the EBP onc (or even faster than the LM algorithm) but it can find good solu-
tions with close to optimal networks which are very difficult o train (Fig. 3a).

The NBN algorithm eliminates most deficiencics of the LM algorithm and it can be
used to train neural networks with arbitrarily connected neurons (not just the MLP architec-
ture). It does not require it to compulte and to store large Jacobians so it can train problems
with basically an unlimited number ol patierns | 13]. Error derivatives are computed only in
the forward pass, so the backward computation process is not needed. It is equally fast. but
in the case of networks with multiple outputs faster than the LM algorithms, it can train
feed forward networks which are impossible to train with other algorithms,

6. CONCLUSIONS

It is much casicr (o train neural networks where the number of neurons is larger than the
required onc. However. with a smaller number of neurons the neural network has much
better generalization abilities. This means it will respond correctly o patterns not used for
training. I too many neurons are used, then the network can be over-trained on the training
patterns, but it will fail on patterns never used in training. With a smaller number of ncu-
rons, the network cannot be trained to very small errors, but it may produce much better
approximations for new patterns. The most common mistake made by many rescarchers is
that in order to speed up the training process and to reduce the training crrors they use neu-
ral networks with larger number of neurons than required. Such networks would perform
very poorly for new patterns not used for training | 18].
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EFEKTYWNE ARCHITEKTURY SIECI NEURONOWYCH
I ZAAWANSOWANE ALGORYTMY UCZENIA

Streszczenie

W pracy poréwnano zalety 1 wady roznych topologii sicei neuronowych. Pokazano z¢ sicel neurono-
we 7 polaczeniami poprzez warstwy sg znacznic bardziej efektywne niz popularne topologic MLP.
Najbardzicj efektywne sa topologic FCC. Nicstety wigkszo$¢ zaawansowanych algorytmow uczenia
zostato zaimplementowanych tylko dla popularnych topologii MLP i inne bardzicj clektywne topolo-
gic sa rzadko uzywane. Niedawno opracowany drugiego rz¢du algoryum jest nie tylko bardzo szybki
i clektywny, ale réwnicz umozliwia uczenic dowolnych topologii sicct ncuronowych. NBN potrafi
uczy¢ zblizone do optymalnych architektury sieci ncuronowych, ktdrych niec mozna byto uczyc¢ po-
przednio. :



GDANSK UNIVERSITY OF TECHNOLOGY
FACULTY OF ETI ANNALS

INFORMATION TECHNOLOGIES

VOLUME 18

Gdansk 2010



EDITORIAL COMMITTEE

Gdansk University of Technology
Faculty of ETI Annals

Editors
Alicja Konczakowska, Lech Hasse

Under the auspices of
DEAN OF ETI FACULTY GDANSK UNIVERSITY OF TECHNOLOGY

Each paper of this Scientific Annals
have been peer positively reviewed by three independent reviewers

© Copyrighy by Wydziat ETI Politechniki Gdanskiegj
Gdansk 2010

ISBN 978-83-60779-02-6

Painting and binding: EXPOL P. Rybinski, J. Dabek, Sp. Jawna
ul. Brzeska 4, 87-800 Wioctawek, tel.: 54 232 37 23





