
Nicholas J. Cotton and Bogdan M. Wilamowski
Electrical and Computer Engineering Auburn University

Auburn, AL 36849 United States
cottonj@ieee.org, wilam@ieee.org

Abstract—This paper describes a method of linearizing the
nonlinear characteristics of many sensors using an embedded
neural network. The proposed method allows for complex neural
networks with very powerful architectures to be embedded on a
very inexpensive 8-bit microcontroller. In order to accomplish
this unique training software was developed as well as a cross
compiler. The Neuron by Neuron process was as developed in
assembly language to allow the fastest and shortest code on the
embedded system. The embedded neural network also required
an accurate approximation for hyperbolic tangent to be used as
the neuron activation function. This process was then
demonstrated on a robotic arm kinematics problem.

Keywords-component; Neural Networks, Embedded, Nonlinear
Sensor Compenstatoin, Microcontroller.

I. INTRODUCTION
One common cause of nonlinearity in otherwise linear

control systems is the sensors. By linearizing the sensors the
system as a whole becomes easier to control and often a simple
PID controller is adequate. The nonlinear compensations can
be performed using neural networks imbedded in inexpensive
microcontrollers. Another advantage of the proposed approach
is to convert the sensor outputs to a digital format that can
easily be transmitted relatively long distances without
distortion.

Sensors can be divided into three categories:

1. Linear sensors where output signal is proportional to
measured value.

2. Nonlinear Sensors where output is nonlinear function of
the measured value. Examples of such nonlinear sensor
are a thermostat or capacitive sensors measuring distance
between plates.

3. So called sensorless measurement where measured vales
are estimated indirectly. One example of such sensorless
sensors measurement estimation of torque and position of
the rotor in an inductive motor by measuring electrical
parameters on the output terminals of the motor [6,7]. A
more complex example of this approach is the
measurement of the parameters of the "Oil Well Diagnosis
by Sensing Terminal Characteristics of the Induction
Motor" by measuring the characteristics of the electrical
motor driving the oil well [5].

The sensors the second and third category require relatively
advanced signal conversion. In the case of the second type
only nonlinear transformations of one parameter are usually

required. This linearization has been accomplished using
neural networks for multiple applications [8,9]

In the case of the "sensorless" approach a complex
nonlinear transformation of several variables are needed. Such
complex transformations cannot be done with look-up-tables
(LUT) because for multi dimensional transformations the size
of the LUT would be too large to be practical. Also fuzzy
systems have difficulties to transform several variables and
transformations are not smooth enough to be useful. Such
nonlinear transformations can be done efficiently using neural
networks, but their practical implementation face another
challenge. Until now neural networks are mostly implemented
on computers with significant computational abilities to solve
many types of real world problems[1-4]. Many people have
put neural networks on FPGAs, DSPS, or high end embedded
processors such as the ARM cores[2][4].

In this paper it is shown that it is possible to implement
relatively complex neural networks on one of the simplest
microcontrollers available the PIC microcontroller made by
Microchip. Such implementation was possible because of
several improvements. . In order to fully utilize the power of
neural networks, particularly powerful architectures were used
with arbitrarily connected neurons. In order to automate the
process a new Training tool and cross compiler was developed
for fast and efficient assembly code generation. Assembly
language implementation of the Neuron by Neuron approach
which allows for faster and shorter code. Next is the pseudo
floating point calculations which allow for integer computation
complexity to be used for high accuracy computation. Also a
new implementation of the activation function which allows for
fast and accurate methods of calculations of hyperbolic tangent
(tanh) was produced. Finally, an example calculation of the
position of a robotic arm based on simulated sensor data.

II. ABITRARILY CONNECTED NETWORKS
Neural networks are most powerful in certain

configurations. It has been shown that fully connected
networks are easier to train and produce better results with
smaller networks [13-16].

Fully connected networks are extremely powerful
compared to the most common multi layer perceptron (MLP)
networks. A great example of this is where a double spiral
problem was solved using MLP networks with 35 to 38
neurons [12]. The same problem has been solved with as few
as 8 neurons with a fully connected architecture shown in
Figures 1 and 2. This is why fully connected networks are

Compensation of Sensors Nonlinearity with
Neural Networks

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.170

1210

chosen over MLP networks. Most all sensor linearization
problems are far less complicated than this double spiral
problem. This particular problem is considered a very difficult
problem to solve with neural networks [10,11].

In order to effectively train arbitrarily connected neural
networks a new training software was developed in Matlab. It
allows the user to train networks with any feed forward
architecture. It trains using the Neuron By Neuron method as
described previously. Other training tools such as Matlab's
Neural Network Toolbox does not allow connections across
the layers. This Neuron by Neuron method uniquely allows
networks to be trained more efficiently. This has resulted in
the ability to solve very difficult problems such as the double
spiral problem on inexpensive 8-bit microcontrollers. These
microcontrollers cost less than two dollars and do not even
have a divide function yet they are able to handle complex
neural networks.

Figure 1. Double Spiral problem trained with 8 neurons fully
connected architecture shown in figure 2.

Figure 2. Fully connected eight neuron architecture for
solving double spiral problem.

III. NEURON BY NEURON PROCESS IN ASSEMBLY
Assembly language was chosen for the embedded neural

network to optimize for faster and more memory efficient
code. In order to automate the process of converting the
neural network architectures from a text file used for training
to assembly language a Matlab Cross compiler was created.
The networks are trained in Matlab using the Neural Network

Trainer (NNT) as described in section XX. NNT was
modified to incorporate a cross compiler that generates
assembly and C text files to for easy programming of the
Microcontroller. This process allows any neural network
architecture to be trained and implemented in the hardware
system in a matter of minutes with no room for human error.
The actual assembly calculations only need to follow the
forward calculation process. The training and initial floating
point values are calculated in Matlab prior to being
programmed to the microcontroller to speed up the process.

This process of forward calculations is a unique method
compared to most neural network implementations because it
is uses the Neuron By Neuron method described in [15]. This
method requires special modifications due to the fact that
assembly language is used with very limited memory
resources. The process is written so that each neuron is
calculated individually in a series of nested loops see Figure 3.
The number of calculations for each loop and values for each
node are all stored in two simple arrays in memory. The
assembly language code does not require any modification to
change network’s architecture. The only change that is
required is to update these two arrays that are loaded into
program memory. These arrays contain the architecture and
the weights of the network.

Topology Array [8-bits]
[Input Scale; Number of Neurons; Weight Scale (1);
Number of Connections(1), Output Node(1),
Connection(1a), Connection(1b),…Connection(1n);
Weight Scale (2), Number of Connections(2), Output
Node(2), Connection(2a), Connection(2b),…
Connection(2n);… Weight Scale (n), Number of
Connections(n), Output Node(n), Connection(na),
Connection(nb),…Connection(nn);]

Weight Array [16 bits]
[Number of Weights; Weight(1);Weight(2);…Weight(n)];

The arrays automatically generated by the NNT as

described in Section Error! Bookmark not defined.. The
forward calculation steps through each node of network
without regard for the complexity of the network. Similar to a
netlist in Spice, the topology array has the running list of
connections and allowing the user to make as many cross layer
connections as desired only limited by the total number of
weights.

As seen in Figure the network starts with an initialization
block that configures the microcontroller by setting up the
hardware for inputs and outs. Next the tables for the network
are initialized. The weights are stored in ROM or off chip
and are loaded into RAM for faster calculations. Finally there
are numerous constants that are configured such as scale
values and saturated neuron values.

After the initialization block, the Main Loop begins. This
loop is an infinite loop that keeps the network sampling new
inputs and then starting the forward calculations. With the

1211

next input sampled the network resets pointers and index
values and enters the Network Loop.

The Network Loop is essentially a for loop that executes the
number of times as the number of neurons. The Network is
responsible for the architecture of the network as well as the
output of the network. It reads the scale factors and neuron
connections and sets the corresponding values for the Neuron
loop.

The neuron loop begins with all of its indexes and pointers
correctly initialized and it simply begins calculations. This
loop is only responsible for calculating the output of a single
neuron without information about the rest of the network. It
begins by checking to see if the current connection is the bias
connection or a standard input connection. Once the Net
Value is calculated it passes the information to the Activation
function. The process of the individual calculation can be
seen in more detail in Section 4.2. The Activation Function
details can be seen in Section 5.

After the Activation Function is finished the Network loop
determines when all neurons have been calculated. Once they
are finished it removes the scale factor and sends the output.
The process is then repeated indefinitely. The details of the
pseudo floating point arithmetic is shown in Figure 3.

IV. PSEUDO FLOATING ARITHMETIC
The first method was to use 16 bits to represent the weights,

nodes, and inputs for the neural network. These 16-bits are all
significant digits in this pseudo floating point protocol. This
16 bits consisted of an 8-bit signed integer and an 8-bit
fraction fractional part. The nonconventional part of this
floating point routine is the way the exponent and mantissa are
stored. Essentially all sixteen bits are the mantissa and the
exponent for the entire neuron is stored elsewhere. This has
several advantages. It allows more significant digits for every
weight using less memory. This pseudo floating point
protocol is tailored directly around the needs of the neural
network forward calculations. This solution requires the
analysis of the weights of each neuron and scales them
accordingly and assigns an exponent for the entire neuron. A
similar process is used for the inputs so the entire range will
share a single scale factor. This scaling is done off chip before
programming in order to save valuable processing time on
each and every forward calculation.

Scaling does two things, first it prevents overflow by
keeping the numbers within operating regions, and secondly
automatically filters out inactive weights. For example if a
neuron has weights that are several orders of magnitudes
larger than others it will automatically round the smallest
weights to zero. These weights being zero allow the
calculations to be optimized unlike using traditional floating
point arithmetic. However, if all of the weights are the same
magnitude they are all scaled to values that allow maximum
precision and significant digits. In other words, the weights
are stored in a manner that minimizes error on a system with
limited accuracy. Thus far, all of these decisions for scaling
the weights are made before the network is programmed to the
microcontroller. This process has been automated for ease of

use. The Neural Network Trainer [15] was modified to
automatically scale the weights and inputs after it trains the
network. The largest weight is scaled to be as close to but not
exceeding 127 which is the largest positive number that can be
represented using this protocol. As a consequence of the
scaling the largest weight uses all 16-bits of the mantissa.

1212

Figure 3 Block diagram of Neural Network forward
calculations using the nested loop structure for cross layer
connected networks.

The Neuron calculations go through several steps in order to

process the pseudo floating point arithmetic. The first step is
the net value calculation which is shown in Figure .

Weight PF[16]

Weight PF[16]
Weight PF[16]

Input PF[16]

Input PF[16]

1·

Input Scale=

Weight Scale=
Scales

∑
=

⋅=
inputs

n
nn winNet

0
]32[

X-bits=[X]

wS

inS

inS

Figure 4. PF stands for Pseudo Floating point number. The
Numbers in brackets refer to the number of bits that represent
that particular value.

The inputs are multiplied by the corresponding weights and

the result is stored in the 32-bit Net register. This is
essentially a multiply and accumulate register designed for this
particular stage. It is very important to keep all 32-bits in this
stage for adding and subtracting. Without the 32-bits of
precision at this step it would be very easy for an overflow to
occur during the summing process that would not be present in
the final net value.

The next stage is to turn the pseudo floating point number
into a fixed point number this process can be seen in the figure
5.

N
inw SSN

Net) (PFNet FP =

+=
|Net[16]|

Net[16]Sign =

⎩
⎨
⎧

<
≥

=
4Net[32] Net[32]
4Net[32] 4

Net[16]

Figure 5. Pre Activation Function Routine. The
transformation between a pseudo floating point number to a
fixed point number that the activation function can use.

The next step is to convert the pseudo floating point number
into a fixed point number that the activation function can
correctly handle. First, the weight scale and input scale are
summed. If the two factors exactly cancel then there is no

1213

scaling needed however if not the formula shown in Figure 5
is used. This raised to the N power is always the same as shift
by N because the way the scale factors are calculated as
described in Section Error! Reference source not found..
This makes the scaling process very fast opposed to having to
actually execute the multiplication instructions. Next, the sign
of the net value is stored and the absolute value of net is used
for the next steps. The net value is then examined and a
decision is made. If the net value is too large then the tanh is
approximately saturated and the appropriate output is
assigned. However if the now fixed point number is within
the operating range it is clipped to 16-bits and sent to the
activation function. The activation function is detailed in the
following section.

V. ACTIVATION FUNCTION
A Soft activation function was needed for the neural

network. The most common activation function is tanh and
the definition is shown below.

xx

xx

ee
ee

−

−

+
−

 (1)

The pure definition tanh was not a reasonable solution for

several reasons. Mainly the exponents would be very difficult
to calculate accurately with the limited hardware in a timely
fashion. Also the floating point division would also be very
time consuming without any hardware such hardware. The
next possible activation function was to use Elliott’s function
shown in Equation 3.

1+n
n

(2)

This activation function was also rejected. The Elliot
function does approach one hyperbolically but not at the same
rate as tanh and therefore is not interchangeable. Networks
with the Elliot approach are less powerful that those with tanh.
This means the networks would have to be trained using the
Elliott function which was not desirable. The other pitfall
with the Elliott function is that it requires division. Without
dedicated hardware division will be too slow of a process for
the final solution. The solution chosen was a second order
approximation of tanh.

Several features were added to the activation function
besides simply calculating a second order approximation of
tanh. One of these features analyze the inputs to the activation
function and convert negative numbers to positive to make the
internal calculations faster and reducing the number of values
that must be stored in the lookup table. The sign is then
restored at the end of the activation function. Another feature
that is added is a check for numbers that when calculated will
round to either extreme. In this case the second order
approximation is skipped and the neuron is put into saturation.
These features that incase the second order approximation can
be seen in better detail in Figure .

Scale)Input ()32(22 LogLog −

Figure 6. Logical block diagram of the activation function.

 The routine requires that 30 values be stored in program

memory. This is not simply a lookup table for tanh because a
much more precise value is required. The tanh equivalent of
25 numbers between zero and four are stored. These numbers,
which are the end points of the linear approximation, are
rounded off to 16-bits of accuracy. Then a point between
each pair from the linear approximation is stored. These
points are the peaks of a second-order polynomial that crosses
at the same points as the linear approximations. Based on the
four most significant bits that are input into the activation
function, a linear approximation of tangent hyperbolic is
selected. The remaining bits of the number are used in the
second-order polynomial. The coefficients for this polynomial
were previously indexed by the integer value in the first step.

1214

The approximation of tanh is calculated by reading the
values of yA, yB and Δy from memory and then the first linear
approximation is calculated using yA and yB.

()
x

xyyyxy AB
A Δ

⋅−+=
2

)(1 (3)

The next step is the second-order function that corrects most
of the error that was introduced by the linearization of the
tangent hyperbolic function.

()()22
22)(xxx

x
yxy Δ−−Δ

Δ
Δ= (4)

or

()
22

2)(
x

xxxyxy
Δ

−Δ⋅⋅Δ= (5)

In order to utilize 8-bit hardware multiplication, the size of

Δx was selected as 128. This way the division operation in
both equations can be replaced by the right shift operation.
Calculation of y1 requires one subtraction, one 8-bit
multiplication, one shift right by 7 bits, and one addition.
Calculation of y2 requires one 8-bit subtraction, two 8-bit
multiplications and shift right by 14-bits.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Figure 7. Example of linear approximations and parabolas
between 0 and 4. Only 4 divisions were used for
demonstration purposes.

Ideally this activation function would work without any

modification, but when the neurons are operating in the linear
region (when the net values are between -1 and 1) the
activation function is not making full use of the available bits
for calculating the outputs. This generates significant error.
Similarly to the weights and the inputs, a work-around is used
for the activation function. Pseudo floating point arithmetics
is then incorporated. When the numbers are stored in the
lookup table they are scaled by 32 because the largest number
stored is 4. The net value is also scaled by 32 and if its
magnitude is greater than 4, the activation function is skipped
and a 1 or -1 is output. After multiplying two numbers that

have been scaled, the product is shifted to remove the square
of the scale. Once the activation function is finished the
numbers are scaled back to the same factor that was used to
scale the inputs.

VI. APPLICATION
The two link planar manipulator was used as a practical

application for this embedded neural network. The particular
aspect is shown for sensing the position of a robotic arm given
sensor data of the joints. In this example the embedded neural
network will calculate the x and y position of the arm based on
the data read from sensors at the joints. This is known as
forward kinematics. This system we will assume that the
sensors are linear potentiometers. The x and y position of the
arm is very nonlinear. The position can be calculated by
equations XX and XX. In other words we will have a two
input and two output nonlinear system. For this experiment
we will assume that R1 and R2 are fixed length arms.
However, this same procedure could be adopted for varying
length arms by simply retraining the neural network with four
inputs rather than two. The robotic arm simulated can be seen
in Figure 8. Two arm planar manipulator with variables
shown.Figure 8.

Figure 8. Two arm planar manipulator with variables shown.

The process is tested with hardware in the loop. In other
words, the sensor data is transmitted via the serial port from
Matlab to the microcontroller. The microcontroller then
calculates the arm position and transmits this data via the
serial port back to Matlab. The reason for this is to give a
more accurate test of the results. In this test system the
accuracy of the sensors can be avoided. Also the position of
the arm would have to be measured by hand and this
measurement would also introduce error into the final results.
The error produced by the system is less than the predicted by
many sensors and measuring techniques.

The first step of the process was to generate neural network
training data. The following equation was used to calculate
the x and y position based on alpha and beta.

1215

)sin(2)sin(1
)cos(2)cos(1

BetaalphaRalphaRy
BetaalphaRalphaRx

+⋅+⋅=
+⋅+⋅=

(4)

The neural network was then trained using this data. The

trained network was ran in Matlab to confirm that it functions
correctly. Matlab generates a set of test patterns of a user
selectable size and transmits these values to the
microcontroller via the serial port and reads the results.
Matlab is then used to test the output patterns and calculate the
error. This process will introduce error in two places. First
there will be the error created by using a neural network
approximation opposed to the original equations. Then there
is the error introduced between the ideal neural network and
the network on the microcontroller. The sum of these two
errors has a max value of less than two percent at any single
point for the given surfaces.

10
20

30
40

10

20

30

40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Ideal NN

Figure 9. Output x of two output system generated by ideal
neural network.

10
20

30
40

10

20

30

40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Pic Output

Figure 10. Output x of two output system generated by
embedded neural network.

Figures 11 and 12 show the ideal neural network and the

output of the microcontroller for the y component of the
forward kinematics problem.

10
20

30
40

10
20

30
40

-0.5

0

0.5

Ideal NN Graph 2

Figure 11. Output y of two output system generated by ideal
neural network.

10
20

30
40

10
20

30
40

-0.5

0

0.5

PIC output 2

Figure 22. Error between the embedded neural network and
ideal neural network surface of output y.

VII. CONCLUSION
In this paper, a novel method of linearizing sensor data for

nonlinear control problems using neural networks at the
embedded level. It has been shown with the correct neural
network architectures even very difficult problems can be
solved with a just a few neurons. When using the NBN
training method these networks can be easily trained. Then by
using the NBN forward calculation method networks with any
architecture can be used at the embedded level. For very
inexpensive and low end microcontrollers a novel floating
point algorithm has been developed and optimized for neural
networks. The second order approximation of tanh in
conjunction with the pseudo floating point routines allow
almost any neural network to be embedded in a simple low
cost microcontroller.

1216

REFERENCES

[1] Bose, B. K., "Neural Network Applications in Power Electronics and
Motor Drives—An Introduction and Perspective," Industrial
Electronics, IEEE Transactions on , vol.54, no.1, pp.14-33, Feb. 2007

[2] Zhuang, H.; Low, K.; Yau, W., "A Pulsed Neural Network With On-
Chip Learning and Its Practical Applications," Industrial Electronics,
IEEE Transactions on , vol.54, no.1, pp.34-42, Feb. 2007

[3] Martins, J. F.; Santos, P. J.; Pires, A. J.; Luiz Eduardo Borges da Silva;
Mendes R. V., "Entropy-Based Choice of a Neural Network Drive
Model," Industrial Electronics, IEEE Transactions on , vol.54, no.1,
pp.110-116, Feb. 2007

[4] Bhim Singh; Vishal Verma; Jitendra Solanki, "Neural Network-Based
Selective Compensation of Current Quality Problems in Distribution
System," Industrial Electronics, IEEE Transactions on , vol.54, no.1,
pp.53-60, Feb. 2007

[5] Wilamowski, B.M.; Kaynak, O., "Oil well diagnosis by sensing terminal
characteristics of the induction motor," Industrial Electronics, IEEE
Transactions on , vol.47, no.5, pp.1100-1107, Oct 2000

[6] Abu-Rub, H.; Schmirgel, H.; Holtz, J., "Sensorless Control of Induction
Motors for Maximum Steady-State Torque and Fast Dynamics at Field
Weakening," Industry Applications Conference, 2006. 41st IAS Annual
Meeting. Conference Record of the 2006 IEEE , vol.1, no., pp.96-103, 8-
12 Oct. 2006

[7] Holtz, J., "Initial Rotor Polarity Detection and Sensorless Control of PM
Synchronous Machines," Industry Applications Conference, 2006. 41st
IAS Annual Meeting. Conference Record of the 2006 IEEE , vol.4, no.,
pp.2040-2047, 8-12 Oct. 2006

[8] Dempsey, G.L.; Alt, N.L.; Olson, B.A.; Alig, J.S., "Control sensor
linearization using a microcontroller-based neural network," Systems,
Man, and Cybernetics, 1997. 'Computational Cybernetics and
Simulation'., 1997 IEEE International Conference on , vol.4, no.,
pp.3078-3083 vol.4, 12-15 Oct 1997

[9] Bashyal, S.; Venayagamoorthy, G.K.; Paudel, B., "Embedded neural
network for fire classification using an array of gas sensors," Sensors
Applications Symposium, 2008. SAS 2008. IEEE , vol., no., pp.146-148,
12-14 Feb. 2008

[10] Chen, S.; Wu, Y.; Alkadhimi, K., "A two-layer learning method for
radial basis function networks using combined genetic and regularised
OLS algorithms," Genetic Algorithms in Engineering Systems:
Innovations and Applications, 1995. GALESIA. First International
Conference on (Conf. Publ. No. 414) , vol., no., pp.245-249, 12-14 Sep
1995

[11] Ampazis, N.; Perantonis, S.J., "Two highly efficient second-order
algorithms for training feedforward networks," Neural Networks, IEEE
Transactions on , vol.13, no.5, pp. 1064-1074, Sep 2002

[12] Jian-Xun Peng; Kang Li; Irwin, G.W., "A New Jacobian Matrix for
Optimal Learning of Single-Layer Neural Networks," Neural Networks,
IEEE Transactions on , vol.19, no.1, pp.119-129, Jan. 2008

[13] Wilamowski, B.M., "Neural network architectures and learning
algorithms," Industrial Electronics Magazine, IEEE , vol.3, no.4, pp.56-
63, Dec. 2009

[14] Wilamowski, B. M.; Cotton, N.; Hewlett, J.; Kaynak, O., "Neural
Network Trainer with Second Order Learning Algorithms," Intelligent
Engineering Systems, 11th International Conference on , vol., no.,
pp.127-132, June 29 2007-July 1 2007.

[15] Wilamowski, B. M.; Cotton, N. J.; Kaynak, O.; Dundar, G., "Method of
computing gradient vector and Jacobean matrix in arbitrarily connected
neural networks," Industrial Electronics, 2007. ISIE 2007. IEEE
International Symposium on , vol., no., pp.3298-3303, 4-7 June 2007.

[16] Wilamowski, B.M.; Iplikci, S.; Kaynak, O.; Efe, M.O., "An algorithm
for fast convergence in training neural networks," Neural Networks,
2001. Proceedings. IJCNN '01. International Joint Conference on ,
vol.3, no., pp.1778-1782 vol.3, 2001

1217

