
How Not to Be Frustrated with Neural Networks

BOGDAN M. WILAMOWSKI

N
eural networks are very

powerful as nonlinear signal

processors, but obtained re-

sults are often far from satis-

factory. The purpose of this

article is to evaluate the rea-

sons for these frustrations and

show how to make these neural networks suc-

cessful. The following are the main challenges of

neural network applications:

1) Which neural network architectures should

be used?

2) How large should a neural network be?

3) Which learning algorithms are most suitable?

The multilayer perceptron (MLP) architec-

ture (Figure 1) is unfortunately the preferred

neural network topology of most researchers

[1], [2]. It is the oldest neural network architec-

ture, and it is compatible with all training soft-

wares. However, it will be shown in the latter

part of this article that MLP architectures

seldom give positive results. The MLP topology

is less powerful than other topologies such as

bridged multilayer perceptron (BMLP), where

connections across layers are allowed (marked

as dotted lines in Figure 2).

Both MLP and BMLP architectures, as shown in

Figures 1 and 2, have four layers, three input

nodes, four neurons in the first hidden layer, three

neurons in the second hidden layer, and one neu-

ron in the output layer. Shorthand notation for

Digital Object Identifier 10.1109/MIE.2009.934790
© PHOTODISC

56 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009 1932-4529/09/$26.00&2009IEEE

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

these topologies are 3-4-3-1 and

3¼4¼3¼1, where ‘‘¼’’ characters

replace ‘‘-’’ characters if the neural net-

work has connections across layers. A

comparison of several neural network

architectures is given in the section

‘‘Comparison of Neural Architectures.’’

After neural network architecture

is chosen, the next question is how

large a neural network to be used. As

will be demonstrated in the section

‘‘Use Minimum Network Size,’’ it is

much easier to secure training con-

vergence of larger neural networks,

but this success is often misleading,

because neural networks with an

excessive number of neurons do not

have good interpolation abilities and

cannot properly handle new pat-

terns that were not used in the train-

ing process.

The error-back propagation (EBP)

algorithm [3], [4] is the most popular

learning algorithm, but it is very slow

and seldom gives adequate results.

The EBP training process requires

100–1,000 times more iterations than

the more advanced algorithms such

as Levenberg–Marquardt (LM) [5],

[6] or neuron by neuron (NBN) [7],

[8] algorithms. What is most impor-

tant is that the EBP algorithm is not

only slow but often it is not able to

find solutions for close-to-optimum

neural networks. The section ‘‘Case

Study’’ describes and compares sev-

eral learning algorithms.

Comparison of Neural
Architectures
There are several neural network archi-

tectures such as radial basis function

(RBF), counterpropagation, or learning

vector quantization (LVQ) networks

[2], [9] that can be used for rapid proto-

typing. It is very easy to train them, but

they require a large number of neurons

(equal to the number of patterns or

number of clusters). Also, in most

cases, these architectures require addi-

tional signal-normalization processes.

More recently, support vector machine

(SVM) techniques [10] are often used

to replace neural networks. In this

presentation, we will focus on classical

feed-forward neural networks with sig-

moidal activation functions. In this

traditional approach, neural network

topologies/architectures are, in most

cases, selected by a trial-and-error

process. Often, success depends on a

lucky guess; hence, the search process

is started with larger architecture, and

the network is pruned in a more or less

organized way [11]. Unfortunately, most

pruning algorithms are dealing with

MLP architectures, and these archi-

tectures have limited abilities for neu-

ral signal processing. This section will

show the advantages of other than

MLP architectures.

The most common test bench for

neural networks is the parity-N prob-

lem. Parity-N is considered to be the

most difficult set of patterns for neu-

ral network training. The simplest

parity-2 problem is also known as the

exclusive-OR (XOR) problem. The

larger the N , the more difficult it is to

solve it. Even though parity-N prob-

lems are very complicated, it is possi-

ble to theoretically find neural

network architectures and weight

solutions [12]. Of course, depending

on the neural network topology,

+1 +1+1

1

2

3

4

5

6

7

84

9

10

11

MLP 3-3-4-1

FIGURE 1 – The MLP-type architecture 3-3-4-1 (without connections across layers).

BMLP 3=3=4=1 7

8

11

9

10

+1+1+1

1

4

52

3

6

FIGURE 2 – The BMLP architecture 3¼3¼4¼1 (with connections across layers marked by
dotted lines).

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 57

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

different numbers of neurons and

weights are required to solve the

same problem using neural networks

with bipolar activation functions. Fig-

ures 3–5 show several neural network

topologies for the parity-8 problem.

In the case of the most popular MLP

architecture with one hidden layer

(Figure 1), there are at least nine neu-

rons required and 8 3 9þ 9¼ 81

weights (Figure 3). For BMLP topology

(Figure 2), where connections across

layers are allowed, the same prob-

lem can be solved with only five

neurons, and the total number of

weights is 4 3 9þ 8þ 4þ 1¼ 49 (Fig-

ure 4). For a fully connected cas-

cade (FCC) architecture (Figure 6),

only four neurons are required, and

the total number of weights is 9þ
10þ 11þ 12¼ 42. For unipolar acti-

vation functions, neural network

topologies would be identical, except

that different values should be used

for threshold-controlling weights [12].

If a larger problem is considered,

such as, for example, a parity-17 prob-

lem, the MLP architecture needs

18 neurons, the BMLP architecture

with connections across hidden layers

needs nine neurons, and the FCC archi-

tecture needs only five neurons. The

minimum number of neurons required

for parity-N problems are given by (1)–

(3). In these equations, nn is the mini-

mum number of neurons, and nw is

the number of weights.

For traditional MLP architectures

(Figure 3),

nn ¼ N þ 1 and

nw ¼ nn2 ¼ (N þ 1)2: (1)

For BMLP architectures with addi-

tional connection through hidden

layer (Figure 4),

nn ¼ N

2

� �
þ 1 and

nw ¼ nn(N þ 2)� 1: (2)

Weights = +1

+1

+1

+1

+1

–6.5

–6.5
–4

–2

4

FCC 8=1=1=1=1

3

2

1

–6.5

–8

–6.5

FIGURE 5 –Bipolar neural network for parity-8 problem in an FCC architecture.

All Weights = 1 1

2

3

4

5

9

6

7

8
+1

+1

MLP 8-8-1

–7;–5;–3;–1;1;3;5;7

1

–1

–1

1

–1

1

–1

1

–1

FIGURE 3 –Bipolar neural network for the parity-8 problem with
MPL neural network with one hidden layer.

All Weights = 1
1

2

3

5

4
+1

+1

–2

–2

–2

–2

–0.5

BMLP 8=4=1
–6.5;–2.5;1.5;5.5

FIGURE 4 –Bipolar neural network for parity-8 problem with one
hidden layer direct connections between output neuron and inputs
of the network (BMLP).

58 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

For FCC architectures (Figure 5),

nn ¼ log2 (N þ 1)d e and

nw ¼ nn N þ 0:5þ nn

2

� �
: (3)

Table 1 shows the minimal number

of neurons/weights required for differ-

ent parity problems using various

neural network architectures. One

can easily conclude from Table 1 that

the FCC architecture (Figure 5) can

solve parity-N problems with the low-

est number of neurons and weights.

There is another advantage of

architectures with connections across

layers (Figures 4 and 5). With these

additional connections, neural net-

works are more transparent for signal

propagation, and they are easier to

train. In typical MLP architectures,

the forward and backward propagat-

ing signals must pass more nonlinear

elements (neurons) than in other net-

work topologies. Unfortunately, it is

much easier to write the training soft-

ware for simple MLP architecture

than for arbitrarily connected neural

networks. For example, the very pop-

ular MATLAB Neural Network Tool-

box [13] is not able to handle

arbitrarily connected feed-forward

neural network architectures. For

more efficient neural network archi-

tectures, it is often difficult to find the

training software. The exceptions are

as follows:

n the Stuttgart Neural Network Sim-

ulator (SNNS) [14] that uses first-

order algorithms such as EBP and

its derivatives

n the NBN [8], [15] (where both first-

and second-order learning meth-

ods are implemented).

The NBN algorithm [7] is an im-

proved version of the LM algorithm

[6], where a second-order algorithm is

used for arbitrarily connected feed-

forward neural networks. The network

topology is entered to the system in a

similar way as in the SPICE program.

The node numbering is organized in

the following way: First, node num-

bers are reserved for input nodes

and then for output nodes of neurons

in natural order in feed-forward direc-

tion. The last nodes are associated

with network outputs. Each line has a

node number of a neuron, name of

the model of activation function, and

the list of all input nodes. Table 2

shows the topology files for the

networks of Figures 1 and 2. Both net-

works use the bipolar activation func-

tion with a gain of three and the same

data training set in trainingset.dat.

file. The training set consists of only

numerical data, with the number of

rows equal to the number of pat-

terns, and the first columns are asso-

ciated with inputs and the remaining

columns are for outputs. The node

number of the first neuron n1 indi-

cates that the number of inputs in the

training set is (n1� 1). More detailed

instructions can be found in [8] and

[15]. Table 2 shows the sample topol-

ogy files.

One may notice that if the number

of neurons is held constant and all

TABLE 1–NUMBER OF NEURONS/WEIGHTS REQUIRED FOR DIFFERENT PARITY
PROBLEMS USING NEURAL NETWORK ARCHITECTURES.

ARCHITECTURE PARITY-3 PARITY-7 PARITY-15 PARITY-31 PARITY-63

MLP 4/16 8/64 16/256 32/1024 64/4096

BMLP 3/14 5/44 9/152 17/560 33/2144

FCC 2/9 3/27 4/70 5/170 6/399

TABLE 2–TOPOLOGY FILES OF NEURAL NETWORKS OF FIGURES 1 AND 2.

/TOPOLOGY OF FIGURE 1 //TOPOLOGY OF FIGURE 2

n4 mbip 1 2 3 n4 mbip 1 2 3

n5 mbip 1 2 3 n5 mbip 1 2 3

n6 mbip 1 2 3 n6 mbip 1 2 3

n7 mbip 4 5 6 n7 mbip 1 2 3 4 5 6

n8 mbip 4 5 6 n8 mbip 1 2 3 4 5 6

n9 mbip 4 5 6 n9 mbip 1 2 3 4 5 6

n10 mbip 4 5 6 n10 mbip 1 2 3 4 5 6

n11 mbip 7 8 9 10 n11 mbip 1 2 3 4 5 6 7 8 9 10

.model mbip fun¼bip, gain¼3 .model mbip fun=bip, gain=3

datafile¼trainingset.dat datafile¼trainingset.dat

+1 FCC 2=1=1=1=1=1=1

FIGURE 6 –An FCC topology with two inputs and six neurons.

+1 BMLP 2=1=2=2=1

FIGURE 7 – The BMLP topology with two inputs and six neurons.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 59

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

possible feed-forward connections

are implemented that there is only

one possible cascade topology. An

example is the FCC network with two

inputs and six neurons, as shown in

Figure 6. An abbreviated description

of FCC architecture, shown in Figure

6, is 2¼1¼1¼1¼1¼1¼1, which indi-

cates two inputs and six neuron

layers with one neuron in each layer.

Another benefit of the FCC topology

is that it is relatively easy to find an

optimal size for the neural network,

without searching through large

number of possibilities given by MLP

or BMLP topologies. For a limited

number of neurons, FCC neural net-

works are the most powerful archi-

tectures, but this does not mean that

they are the only suitable architec-

tures. Often, similar results can be

obtained with slightly simplified

architectures, as in removing

some weights from FCC net-

works. For example, if the two

weights marked by red dot-

ted lines in Figure 6 are re-

moved, then the FCC 2¼1¼1¼
1¼1¼1¼1 architecture is con-

verted to a BMLP 2¼1¼2¼2¼1

architecture, as shown in Fig-

ure 7. This BMLP architecture

(Figure 7) will be only slightly

less powerful than the FCC

architecture (Figure 6), but it

has other significant advan-

tages. The signal has to be

propagated by fewer layers, and

as a result, the network is more

transparent for training. The

traditional MPL topology does

not have any advantages other

than that it is easier to find the

training software.

Use Minimum
Network Size
It is not enough to develop a

neural network so that it

properly responds to all train-

ing patterns. The main purpose

of practical usage of neural networks

is to be able to receive a close-to-

optimum answer for all patterns that

were never used in training. There-

fore, to verify the quality of the devel-

oped neural networks, different

patterns are used for training and

verification. If errors obtained with

verification patterns are satisfactory,

then the neural network architecture

is acceptable. In the case of having

only a limited number of patterns to

check the suitability of neural net-

work size and architecture, it is a rel-

atively tedious process. In the first

step, all but one pattern is used for

training, and then the error for the

pattern that was not used for training

is evaluated. This process is re-

peated until all patterns are excluded

from training, and their errors are

evaluated.

The method of selecting the best

architecture by removing one train-

ing instance at a time is very time

consuming, especially if many neural

network architectures must be tried

and efficient training algorithms are

not used. Many researchers are often

frustrated when a neural network can

be trained well on the training pat-

terns and then perform poorly on

verification patterns. It means that

the neural network lost its generaliza-

tion abilities.

The major hint is that with a

smaller number of neurons, the neural

network should have better general-

ization abilities. If too many neurons

are used, then the network can be

overtrained on the training patterns,

but it will fail on patterns never used

in training. With a smaller number of

neurons, the network cannot be

trained to very small errors, but it

may produce much better results for

new patterns. The training error for

neural networks is often defined as

mean square error (MSE)

Error ¼ 1

N

XN

i¼1

(di � oi)
2, (4)

where N is the number of pat-

terns and di and oi are the

desired and actual output for

the ith pattern.

As it was discussed in the

section ‘‘Comparison of Neural

Architectures,’’ the FCC topol-

ogy (Figure 6) seems to be the

most powerful and, for a given

number of neurons, there is

always a unique, precisely

defined, FCC architecture. In

the case of other neural net-

work architectures, such as

MLP, there are always many

possible topologies with which

to experiment. With FCC archi-

tectures, the choices are

limited, and the best neural net-

work structure can be found

very quickly. The only question

then is how many neurons have

to be used to achieve the best

results and, typically, only two

to four trials are enough to find

the best solution.

–10
–5

0
5

10

–10
–5

0
5

10
–10

–5

0

5

10

–10
–5

0
5

10

–10
–5

0
5

10
–10

–5

0

5

10

(a)

(b)

FIGURE 8 –Control surface of the TSK fuzzy controller:
(a) required control surface; (b) 8*6¼ 48 defuzzification rules.

For optimum performance, neural networks

should have as few neurons as possible.

60 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

Case Study
Let us try to find the best neural

network architecture to replace a

fuzzy controller. Figure 8 shows

the required control surface and

the defuzzification rules for the

Takagi, Sugeno, Ken (TSK) fuzzy

controller [16], [17]. Figure 9

shows the control surface ob-

tained with TSK fuzzy controllers

using trapezoidal and triangular

membership functions.

To train the developed neural

controller, we may use the TSK

defuzzification rules as the train-

ing patterns. Let us select an FCC

neural network architecture and

try to find solutions for using dif-

ferent number of neurons. Figure

10(a) shows the results of a neural

network with three neurons (12

weights), and Figure 10(b) shows

the results with four neurons and

18 weights. However, when the

size of the network increases (Fig-

ure 11), the results become worse

instead of better, even though

learning errors decrease with the

increase of neural network size.

One may notice that the best

results were obtained with a

four-neuron architecture [Figure

10(b)]. With more neurons, we

are obviously able to reduce the

training error, but the neural net-

work loses its generalization abil-

ity. One may notice that for all

training patterns [Figure 8(b)] a

very small error was obtained (1.1

E�05), but between training points,

the eight-neuron cascade architec-

ture produces undesirable results,

as one can see on Figure 11(b). It is

less noticeable, but even with a

five-neuron architecture [Figure

11(a)], results are not as good as

with the four-neuron architecture

[Figure 10(b)]. The conclusion is

that for optimum performance,

neural networks should have as

few neurons as possible.

Which Learning Algorithms
Should Be Used?
Neural network training software

can be found and used with little

effort. What many people are not

aware of is that not all popular

algorithms can train every neural

network. Surprisingly, the most

popular EBP algorithm [3], [4]

cannot handle more complex

problems, while other more ad-

vanced algorithms [6], [7] can.

Let us use the parity-3 problem

with a simple two-neuron FCC

architecture to illustrate the prop-

erties of first- and second-order

algorithms. Figure 12 shows the

training error as a function of the

number of iterations. One may

notice the asymptotical character

of EBP [Figure 12(a)], which may

not let the process converge to

very small errors. The NBN algo-

rithm can train neural networks

1,000 times faster than the EBP

algorithm. With large neural net-

works, the advantages of NBN

algorithm diminish, because for

every iteration, it has to invert

the square matrices of size equal

to the number of weights. The

practical limit for NBN or LM algo-

rithms on PC computers is about

500 weights in the network.

One of the most difficult

problems for neural networks,

besides parity-N problems, is the

Wieland two-spiral problem,

where two interlacing spirals

have to be separated. The two-

spiral problem has an advantage,

because it can be easily visual-

ized. Using the cascade correla-

tion algorithm/architecture, this

problem can be solved by the

FCC topology, using 16–20 neu-

rons [18]. When the recently

developed NBN algorithm [7],

[8] is used, the same problem

can be solved with as little as

eight neurons and 52 weights [8]

(Figure 13). The NBN algorithm

can easily handle feed-forward

neural networks with arbitrarily

connected neurons [19], which

was not possible with the origi-

nally developed LM algorithm

[6], [11]. Note that, using the

popular EBP algorithm, with the

same FCC topology and 12 neu-

rons [twice as many weights

(102) is required to solve the

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

(a)

(b)

10
5

0
–5

–

10
–5

0
5

10
5

0
–5

1000
–5

0
5

FIGURE 9 –Control surface of the TSK fuzzy controller
with equally spaced membership function 8 in x direc-
tion and 6 in y direction: (a) trapezoidal membership
functions, (b) triangular membership functions.

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

(a)

(b)

FIGURE 10 –Control surface obtained with neural
networks: (a) three neurons in cascade (12 weights)
training error¼ 0.21049; (b) four neurons in cascade
(18 weights) training error¼ 0.049061.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 61

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

same two-spiral problem (Figure

14)]. The processing overhead to

solve the two-spiral problem

with EBP is about 300,000 itera-

tions in about 6 min (Figure 14).

There are, of course, countless

numbers of improvements to the

EBP algorithm, such as momen-

tum [20], resilient error-back

propagation (RPROP) algorithm

[21], adaptive learning rate [22]

and as long as the first-order

gradient method is used, these

improvements are not dramatic.

In comparison, the NBN algo-

rithm reached the solution with

fewer than 300 iterations and

fewer than 1 s (Figure 13).

One may draw the conclusion

that advanced algorithms such as

the NBN can not only find a solu-

tion more than 100 –1,000 times

faster but also solve problems for

which the EBP algorithm is not

very useful. Interestingly, not all

learning algorithms are able to

train neural networks with minimal

number of neurons. Please note

that the popular EBP algorithm

was unable to find a solution for

smaller than the 12-neuron net-

work, while the NBN was able to

train the two-spiral problem with

as few as eight neurons. The con-

clusion is that with a better learn-

ing algorithm the same problem

can be solved with much smaller

neural networks, and as discussed

in the sections ‘‘Use Minimum Net-

work Size’’ and ‘‘Case Study’’ for

not losing generalization abilities,

the neural network should be as

small as possible.

To be successful in the devel-

opment of a good neural net-

work, one has to follow several

golden rules:

1) When possible, use neural net-

work architectures with con-

nections across layers, such

as FCC or BMLP architectures.

Such networks are not only

more powerful but also easier

to train (assuming that proper

training software is used).

2) To prevent overtraining, try

to use networks with a mini-

mum number of neurons. The

problem is that for these reduced

networks an advanced learning

algorithm must be used, as first-

order algorithms may not have

the ablility to train them.

3) The EBP is not only very slow,

but it may have the ability to find

an optimal solution for the archi-

tecture with a reduced number

of neurons.

4) Second-order algorithms such as

LM and NBN have difficulties

handling very large neural net-

works, because at each iteration,

they have to invert a nw 3 nw

matrix, where nw is the number

of weights. From a practical

viewpoint, this is not a signifi-

cant limitation, as to be success-

ful, the smallest possible neural

networks should be used any-

way. When the NBN algorithm is

used, then 500 weights would be a

practical upper limit in current

Windows-based computers.

5) Finally, the powerful second-order

LM algorithm adopted in the

1.0 E +01

1.0 E +01

1.0 E –00

1.0 E –00

1.0 E –01

1.0 E –01

1.0 E –02

1.0 E –02

1.0 E –03

1.0 E –03

1.0 E –04

1.0 E –04

0 1 2 3 4 5
Iteration (× 1,000)

(a)

6 7 8 9 10

0 1 2 3 4 5
Iteration (× 1)

(b)

6 7 8 9 10

FIGURE 12 – Training error as the function of number of iterations, using ten trials to the
desired error of 10�4: (a) EBP algorithm (1% success rate, average solution time of 4.2 s,
and average 4,188.3 iterations); (b) NBN algorithm (98% success rate, average solution
time of 2.4 ms, and average 5.73 iterations).

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

10
5

0
–5

–10

–10
–5

0
5

10
–10

–5

0

5

10

(a)

(b)

FIGURE 11 –Control surface obtained with neural
networks: (a) five neurons in cascade (25 weights)
training error¼ 0.023973; (b) eight neurons in cascade
(52 weights) training error¼ 1.118 E�005.

62 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

popular MATLAB Neural Network

Toolbox [13] can handle only MLP

topologies, without connections

across layers, and these topologies

are far from optimal. The NBN

algorithm does not have this limi-

tation, and very fast Cþþ version

can be downloaded from [15].

The importance of the proper learn-

ing algorithm was emphasized, because

with advanced learning algorithms, we

can train those networks that cannot

be trained with simple algorithms.

When simple training algorithms such

as EBP are used, neural networks with a

larger number of neurons must be used

to fulfill the task. As a consequence, an

EBP algorithm neural network learns

the training patterns, but it loses the

generalization abilities. In other words,

the neural network may give incorrect

answers for patterns that were not used

in the training set.

Biography
Bogdan M. Wilamowski (wilam@

ieee.org) received his M.S., Ph.D., and

D.Sc. degrees in 1966, 1970, 1977,

respectively. He was with the Techni-

cal University of Gdansk, Poland,

University of Wyoming, and Univer-

sity of Idaho. Since 2003, he has been

professor and director of the Ala-

bama Microelectronics Science and

Technology Center at Auburn Univer-

sity. He also works for WSliZ, Rzes-

zów, Poland. He is the author of four

textbooks, more than 300 refereed

publications, and holds 27 patents.

He has been involved in the neural

networks research area since 1966.

He was the cofounder of the IEEE

Neural Networks Society and IEEE

Computational Intelligence Society.

He was associate editor for IEEE

Transactions on Neural Networks, Jour-

nal of Intelligent and Fuzzy Systems,

and Journal of Computing. He is cur-

rently the editor-in-chief of IEEE

Transactions on Industrial Electronics.

He is a Fellow of the IEEE.

References
[1] B. K. Bose, ‘‘Neural network applications

in power electronics and motor drives-—
An introduction and perspective,’’ IEEE
Trans. Ind. Electron., vol. 54, no. 1, pp. 14–
33, Feb. 2007.

[2] B. M. Wilamowski, ‘‘Neural networks and
fuzzy systems for nonlinear applications,’’
in Proc. 11th INES 2007–11th Int. Conf. Intel-
ligent Engineering Systems, Budapest, Hun-
gary, June 29–July 1, 2007, pp. 13–19.

[3] D. E. Rumelhart, G. E. Hinton, and R. J.
Wiliams, ‘‘Learning representations by
back-propagating errors,’’ Nature, vol. 323,
pp. 533–536, Oct. 9, 1986.

[4] S. E. Fahlman, ‘‘Faster-learning variations
on back-propagation: An empirical study,’’
in 1988 Connectionist Models Summer
School, T. J. Sejnowski, G. E. Hinton, and
D. S. Touretzky, Eds. San Mateo, CA: Mor-
gan Kaufmann, 1988.

[5] K. Levenberg, ‘‘A method for the solution
of certain problems in least squares,’’
Quart. Appl. Math., vol. 2, pp. 164–168, 1944.

[6] M. T. Hagan and M. Menhaj, ‘‘Training
feedforward networks with the Marquardt
algorithm,’’ IEEE Trans. Neural Networks,
vol. 5, no. 6, pp. 989–993, 1994.

[7] B. M. Wilamowski, N. J. Cotton, O. Kaynak,
and G. Dundar, ‘‘Computing gradient vec-
tor and Jacobian matrix in arbitrarily con-
nected neural networks,’’ IEEE Trans. Ind.
Electron., vol. 55, no. 10, pp. 3784–3790,

Oct. 2008.
[8] H. Yu and B. M. Wilamowski, ‘‘Efficient

and reliable training of neural networks,’’
in Proc. 2nd Conf. Human System Interac-
tion, Catania, Italy, May 21–23, 2009,
pp. 109–115.

[9] B. M. Wilamowski, ‘‘Special neural network
architectures for easy electronic implemen-
tations,’’ in Proc. Int. Conf. Power Engineering,
Energy and Electrical Drives 2009, Lisbon,
Portugal, Mar. 18–20, 2009, pp. 17–22.

[10] C. Cortes and V. Vapnik, ‘‘Support-vector

networks,’’ Mach. Learn., vol. 20, no. 3,
pp. 273–297, 1995.

[11] N. Fanieh, F. Fanieh, B. W. Jervis, and M.
Cheriet, ‘‘The combined statistical step-
wise and iterative neural network Pruning
algorithm,’’ Intell. Automat. Soft Comput.,
vol. 15, no. 4, pp. 573–589, 2009.

[12] B. Wilamowski, D. Hunter, and A. Malinow-
ski, ‘‘Solving parity-n problems with feed-

forward neural network,’’ in Proc. IJCNN’03
Int. Joint Conf. Neural Networks, Portland,
OR, July 20–23, 2003, pp. 2546–2551.

[13] MATLAB Neural Network Toolbox
[Online]. Available: http://www.mathworks.
com/products/neuralnet/

[14] Stuttgart Neural Network Simulator SNNS
[Online]. Available: http://www.ra.cs.uni-
tuebingen.de/SNNS/

[15] NNT-—Neural Network Trainer [Online].
Available: http://www.eng.auburn.edu/
~wilambm/nnt/

[16] M. Sugeno and G. T. Kang, ‘‘Structure
identification of fuzzy model,’’ Fuzzy Sets
Syst., vol. 28, no. 1, pp. 15–33, 1988.

[17] T. Takagi and M. Sugeno, ‘‘Fuzzy identifica-
tion of systems and its application to mod-
eling and control,’’ IEEE Trans. Syst., Man,
Cybern., vol. 15, no. 1, pp. 116–132, 1985.

[18] S. E. Fahlman and C. Lebiere, ‘‘The cas-
cade-correlation learning architecture,’’ in
Advances in Neural Information Processing
Systems 2, D. S. Touretzky, Ed. San Mateo,
CA: Morgan Kaufmann, 1990, pp. 524–532.

[19] H. Yu and B. M. Wilamowski, ‘‘Efficient
and reliable training of neural networks,’’
in Proc. 2nd IEEE Human System Interaction
Conf., HSI 2009, Catania, Italy, May 21–23,
2009, pp. 109–115.

[20] V. V. Phansalkar and P. S. Sastry, ‘‘Analy-
sis of the back-propagation algorithm with
momentum,’’ IEEE Trans. Neural Networks,
vol. 5, no. 3, pp. 505–506, Mar. 1994.

[21] M. Riedmiller and H. Braun, ‘‘A direct
adaptive method for faster backpropaga-
tion learning: The RPROP algorithm,’’ in

Proc. Int. Conf. Neural Networks, San Fran-
cisco, CA, 1993, pp. 586–591.

[22] C.-T. Kim and J.-J. Lee, ‘‘Training two-lay-
ered feedforward networks with variable
projection method,’’ IEEE Trans. Neural
Networks, vol. 19, no. 2, pp. 371–375, Feb.
2008.

1

0

–1

–5

0

5 –5

0

5

FIGURE 13 – Solution of the two-spiral problem with NBN algorithm
[4] using FCC architecture with eight neurons and 52 weights. To
reach the solution, 244 iterations and 0.913 s were required.

1

0

–1

–5

0

5
–5

0

5

FIGURE 14 – Solution of the two-spiral problem with EBP algorithm
using an FCC architecture with 16 neurons and 168 weights. To
reach the solution, 308,325 iterations and 342.7 s were required.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 63

Authorized licensed use limited to: Auburn University. Downloaded on January 12, 2010 at 13:56 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

