
.

978-1-4244-3960-7/09/ $25.00 2009 IEEE 109

HSI 2009 Catania, Italy, May 21-23, 2009

Abstract — This paper introduces a neural network

training tool, NBN 2.0, which is developed based on neuron by
neuron computing method [1][2]. Error backpropagation
(EBP) algorithm, Levenberg Marquardt (LM) algorithm and
its improved versions are implemented in two different
computing methods, traditional forward-backward
computation and newly developed forward-only computation.
The software can handle not only conventional multilayer
perceptron (MLP) networks, but also arbitrarily connected
neuron (ACN) networks. Several examples are presented to
explain how to use this tool for neural network training. The
software is developed based on Visual Studio platform using
C++ language and it is available for everyone on the website.

Keywords — neural networks, training tool

I. BACKGROUND
RTIFICIAL neural networks (ANN) are used in many
industrial applications, such as nonlinear control

[3][4], system analysis and diagnosis [5][6], VLSI design
[7][8] and data classification [9]. It is easy to demonstrate
that they can surpass human capabilities to recognize
complex patterns [10][11].

Error backpropagation (EBP) algorithm [12] is the most
popular training method, however, it is not an efficient one
because of its slow convergence and low training stability.
Based on EBP algorithm, lots of improvements are
developed for better training [13][14], and some of them,
such as momentum [15], Quickprop [16] and Resilient EBP
[17] work well.

Although complex computation for Jacobian/Hessian
matrix is necessary during training process, Levenberg
Marquardt (LM) algorithm [18] is considered as one of the
most efficient algorithms for small and median sized
patterns training. Also, there are many good improved
algorithms [19] based on LM algorithm for better training.

Most of neural network training software which uses LM
algorithm (e.g. MATLAB Neural Network Toolbox) is not
able to train neural networks with arbitrary connections
between neurons. This deficiency was overcome by the
NBN algorithm [1].

Like EBP algorithm, multilayer perceptron (MLP)
networks are broadly accepted in practical applications
because they could be realized easily by programming.
However, MLP networks are not efficient for neural
topology design. Some arbitrarily connected neuron

networks, such as MLP with full connections among layers
(MLP-FCL) and fully connected neuron (FCN) networks
often cost less neurons than MLP networks to solve the
same problems. For example, for parity-5 problem, it needs
at least 6 neurons for the standard MLP network to get a
solution (Fig. 1(a)), while, for MLP-FCL and FCN
networks, only 3 neurons are required (Fig. 1(b) and (c)).
For efficient training, MLP-FCL and FCN networks are
wiser choices, but they also require more challenging
computation.

(a) 5=5=1 MLP network (b) 5=2=1 MLP-FCL network

(c) 3 neurons in FCN network

Fig. 1. The least neurons required in different neural

network structures for parity-5 problem.

In this paper, the software NBN 2.0 is introduced as a

powerful training tool. It contains EBP algorithm, LM
algorithm, neuron by neuron (NBN) algorithm [1][2] and a
new algorithm. Besides conventional forward-backward
computation, a newly developed forward-only [20]
(without error backpropagation process) computation is
also implemented in the software. Based on the neuron by
neuron computing scheme, this tool can handle arbitrarily
connected neuron (FCN) networks.

In section II of this paper, the detailed information of
NBN 2.0 is described, and section III presents several
practical applications with the NBN 2.0.

Efficient and Reliable Training of Neural
Networks

Hao Yu†, Bogdan M. Wilamowski, Fellow, IEEE †
†Electrical and Computer Engineering, Auburn University, Alabama, US

hzy0004@auburn.edu wilam@ieee.org

A

.

110

II. DESCRIPTION OF NBN 2.0
The NBN 2.0 is developed based on Visual Studio 6.0

using C++ language. Its main interface is shown in Fig. 2.In
the following part of this section, detailed instructions
about the software are presented.

Fig. 2. The user interface of NBN 2.0.

A. Description of files
The software is made up of 6 types of files, including

executing files, parameter file (unique), topology files,
training pattern files, training result files and training
verification files.
• Executing files
Executing files contain three files: files

“FauxS-TOON.ssk” and “skinppwtl.dll” for interface
design; file “NBN 2.0 exe” for running the software. Also,
other files, such as user instruction and accessory tools
(Matlab code “PlotFor2D.m” for 2-D plotting), are
included.
• Parameter file
This file is named “Parameters.dat” and it is necessary

for running the software. It contains initial data of
important parameters shown in Table 1.

There are two ways to set those parameters: (1) Edit the
parameter file manually, according to the descriptions of
parameters in Table 1; (2) All those parameters can be
edited in the user interface, and they will be saved in the
parameter file automatically once training is executed, as
the initial values for next time of running the software.
• Topology files
Topology files are named “*.in”, and they are mainly

used to construct the neural network topologies for training.
Topology files consist of four parts: topology design,
weight initialization (optional), neuron type instruction and
training data specification.

The topology design is aimed to create neural structures.
The general command is “n [b] [type] [a1 a2 … an]”, which
means inputs/neurons indexed with a1, a2 …, an are
connected to neuron b with a specified neural type (bipolar,
unipolar or linear). Fig. 3 presents the topology commands
for the neural networks shown in Fig. 1.

The weight initialization part is used to specify initial
weights for training and this part is optional. If there is no

weight initialization in the topology file, the software will
generate initial weights randomly (from -1 to 1) before
training. The general command is “w [wbias] [w1 w2 … wn]”,
corresponding to the topology design. Fig. 4 shows the
example of weight initialization for parity-3 problem with 2
neurons in FCN network.

TABLE 1: PARAMETERS FOR TRAINING

Parameters Descriptions
algorithm Index of algorithms in the combo box
alpha Learning constant for EBP
scale Parameter for LM/NBN
mu Parameter for LM/NBN
max mu Parameter for LM/NBN (fixed)
min mu Parameter for LM/NBN (fixed)
max error Maximum error
ITE_FOR_EBP Maximum iteration for EBP
ITE_FOR_LM Maximum iteration for LM/NBN
ITE_FOR_PO Maximum iteration for the new Alg.
momentum Momentum for EBP
po alpha Parameter for the improved NBN
po beta Parameter for the improved NBN
po gama Parameter for the improved NBN
training times Training times for automatic running

 (a) 5=5=1 MLP network of Fig. 1(a)

(b) 5=2=1 MLP-FCL network of Fig. 1(b)

(c) 3 neurons FCN network of Fig. 1(c)

Fig. 3. Topology design for networks shown in Fig. 1; all

neurons are bipolar neurons.

Fig. 4. Weight initialization for parity-3 problem with 2

neurons in FCN network.
In the neuron type instruction part, three different types

of neurons are defined. They are bipolar (“mbip”), unipolar
(mu) and linear (“mlin”). Bipolar neurons have positive or
negative outputs, while unipolar neurons only have positive
outputs. The outputs of both bipolar and unipolar neurons

.

111

are no more than 1. If the desired outputs are larger than 1,
linear neurons are considered to be the output neurons. The
general command is “.model [mbip/mu/mlin]
fun=[bip/uni/lin], gain=[value], der=[value]”. Table 2
presents the three types of neurons used in the software.

TABLE 2: THREE TYPES OF NEURONS IN THE

SOFTWARE
Neuron
Types

Activation Functions

bipolar netdernetgainnetfb ×+×=)tanh()(

unipolar
netder

e
netf netgainu ×+

+
= ×−1

1)(

linear netgainnetfl ×=)(

From Table 2, it can be seen that “gain” and “der” are

parameters of activation functions. Parameter “der” is
introduced to adjust the slope of activation function (for
unipolar and bipolar), which is a trick we used in the
software to avoid training process entering the saturation
region, where slope is approching to zero.

The training data specification part is used to set the
name of training pattern file, in order to get correct training
data. The general command is “datafile=[file name]”.
• Training pattern files
The training pattern files include input patterns and

related desired outputs. In a training pattern file, the number
of rows is equal to the number of patterns, while the number
of columns is equal to the sum of the number of inputs and
the number of outputs. However, only with the data in
training pattern file, one can’t tell the number of inputs and
the number of outputs, so the neural topology should be
considered together in order to decide those two parameters
(Fig. 5). The training pattern files are specified in the
topology files as mentioned above, and it should have the
same route as related topology files.

Fig. 5. Get the number of inputs and the number of

outputs from the data file and topology.

As described in Fig. 5, the number of inputs is obtained

from the first command line of topology design and it is
equal to the index of the first neuron minus 1. After that, the
number of outputs is calculated by the number of columns
in training pattern files minus the number of inputs.
• Training result files
Training result files are used to store the training

information and results. Once the “save data” function is

enabled in the software, important information for current
training, such as training algorithm, training pattern file,
topology, parameters, initial weights, result weights and
training results will be saved after the training is finished.
The name of the training result file is generated
automatically according to the starting time and the format
is “date_time_result.txt”.
• Training verification files
Training verification files are generated by the software

when the verification function is triggered. The result
weights from the current training will be verified, by
computing the actual outputs of related patterns. The name
of training verification file is also created by the system
time when the verification starts and it is
“date_time_verification.txt”.

B. Interface instruction
As shown in Fig. 2, the user interface consists of 6 areas:

(1) Plotting area; (2) Training information area; (3) Plot
modes setting area; (4) Execute modes setting area; (5)
Control area; (6) Parameter setting area; (7) Verification
area; (8) Command consoler area.
• Plotting area
This area is used to depict the sum squared error (SSE)

during training. The log scaled vertical axis presents SSE
values from 0.0001 to 10000, while the horizontal axis,
which is linearly scaled automatically with the coefficient
at the bottom of plotting area (“×[value]” in Fig. 2), shows
the number of iterations cost for training.
• Training information area
Instantaneous training data are presented in this area,

including SSE and cost iterations for current training,
average iteration and time spent in solving the same
problems, and the success rate for multiple times training.
• Plot modes setting area
Three plot modes are available in this software, multi

curves, one curve and delayed curve. In multi curves mode,
all the training curves will be plotted together and updated
instantaneously. In one curve mode, only current training is
plotted, while other curves will be erased. The delayed
curve mode is only used in automatic training for multiple
times; during the training process, there is no plotting,
while all the curves will be presented together after the
whole training process is finished. This function is
designed for training process which needs huge iterations
and costs time for plotting.
• Execute modes setting area
This area is used to control training mode, either training

one time or automatic training for several times, either
saving the training results or not.

If it is set to run automatically, the train will not stop
unless it reaches the required training times or the “Stop to
Train” button is clicked. The default training times is 100
and it can be changed through command consoler.

If it is set to save training data, all the important
information, such as algorithm type, topology, training
parameters, initial weights, result weights and training
results (SSE and cost iteration) will be saved in training
result files.

.

112

• Control area
The combo box is used to select training algorithms.

There are 6 choices: (1) “EBP”; (2) “LM”; (3) “NBN”; (4)
“EBP, forward-only”; (5) “NBN, forward-only”; (6) “NBN,
improved”.

Button “Load Data File” is used to choose a topology file
for training; button “Set Parameters” is used to set training
parameters for the selected training algorithm; button “Start
To Train/Stop To Train” helps control the training process;
button “Clear Plotting” is used to erase the current plotting
in the plotting area.
• Parameter setting area
This area is used to set training related parameters, such

as training times for automatic training, maximum error for
convergent judgment and maximum iteration. All the
settings will be saved in the parameter file once training is
executed, and they will be loaded as the initial values for
the next time using the software.
• Verification area
This area is used for training results verification, by

calculating the actual outputs for each pattern with the
result weights. The verifying patterns can be training
patterns, testing patterns or user created patterns for 2-D
situation. Training patterns are from the data file for current
training (Fig. 6), while testing patterns are loaded from data
files having the same format as the training data file. For the
case of 2-D inputs, the patterns are generated from selected
range of each input with a certain number of points (see
two-spiral problem verification).

The verification results can be easily uploaded by Matlab,
MS Excel, Origin, or other software for analysis. For 2-D
input patterns, the verification data can be plotted in Matlab
by the accessory tool included in the software, named as
“PlotFor2D.m”.

Fig. 6. A list of verification results of parity-3 problem

by training patterns; the first 3 columns are inputs; the
fourth column is the desired output; the fifth column is the
actual output; the sixth column is the error from desired
output minus related actual output.

The verification can be also for networks with multiple

outputs, and the results are presented in the format: “input
columns desired output one actual output one error
one desired output two actual output two error
two ….”.

Verification results will be stored in training verification
files as introduced above and they will appear as pop-up
windows automatically.
• Command consoler area
The list box is used to show the important information or

hints for users’ operations. It is also a command consoler.

Most of the operations can be achieved by related
commands. Table 3 presents the available commands and
their functions.

TABLE 3: AVAILABLE COMMANDS AND

RELATED FUNCTIONS
Commands Functions
help list all the available commands and

instructions
clr clear the content of the list box
cc clear all the curves in plotting area
sus suspend training and save current

status
res resume training with the status at

suspending point
tra start/stop training
sav data saving control
aut automatic training control
pm= select plotting mode, e.g. pm=2 (one

curve mode)
load load input file
para set training parameters for selected

algorithm, e.g. para
info show current training setting
iw show current iw value (used for

debug)
topo show current topology
alpha? / alpha= get/set learning constant, e.g. alpha=1
mom? / mom= get/set momentum, e.g. mom=0.001
tt? / tt= get/set training times for automatic

training, e.g. tt?
me? / me= get/set maximum error, e.g. me=0.01
mi? / mi= get/set maximum iteration, e.g.

mi=100
th? / th= get/set parameter for the “NBN,

improved” algorithm

C. Implemented algorithms
As introduced above, there are 6 available algorithms in

the software for training. The following part is going to
introduce the characteristics and limitations for each
algorithm.

EBP: This is EBP algorithm with traditional
forward-backward computation; for EBP algorithm, it may
work a little bit faster than forward-only computation. Now
it is only used for standard MLP networks. EBP algorithm
converges slowly, but it can be used for huge patterns
training.

LM: This is LM algorithm with traditional
forward-backward computation; for LM (and NBN)
algorithm, the improved forward-only computation
performs faster training than forward-backward
computation for networks with multiple outputs. Now it is
also only used for standard MLP networks. LM (and NBN)
algorithm converges much faster than EBP algorithm for
small and media sized patterns training. For huge patterns
(huge Jacobian matrix, we have solved this problem) and
huge networks (huge Hessian matrix), it may work slower
than EBP algorithm.

NBN: This is NBN algorithm with forward-backward
computation. NBN algorithm is developed based on LM

.

113

algorithm, but it can handle arbitrarily connected neuron
(ACN) networks, also, the convergence is improved [1][2].

EBP, forward-only: This is EBP algorithm with
forward-only computation. It can work on arbitrarily
connected neuron networks.

 NBN, forward-only: This is NBN algorithm with
forward-only computation. It can handle arbitrarily
connected neuron networks and, as mentioned above, it
works faster than “NBN” algorithm, especially for
networks with multiple outputs.

NBN, improved: This is a newly developed second
order algorithm, implemented with forward-only
computation, so it can handle arbitrarily connected neuron
networks. In this algorithm, Hessian matrix is inverted only
one time per iteration, so this algorithm is supposed to
compute faster than LM (and NBN) algorithm which may
have several times Hessian matrix inversion per iteration.
The train ability (convergence) is also improved in this
algorithm. Furthermore, a local minima detector is
implemented in this algorithm. When the detector
diagnoses that the training is trapped in local minima, all
the weights will be regenerated randomly for further
training.

III. PRACTICAL APPLICATIONS
Let us use the two-spiral problem as an example to

illustrate how to use the software for neural network
training. Other practical applications are also presented
followed.

A. Two-spiral problem
Two-spiral problem is considered as an efficient

evaluation of both training algorithms and neural structures
[21]. This problem is aimed to separate two groups of
twisted points, as shown in Fig. 7.

Fig. 7. Two-spiral problem; it’s aimed to separate red

points from black points.

The first step is to generate the training pattern file.

Two-spiral data can be obtained by the code shown in Fig.
8.

Fig. 8. Left: C++ code to generate two-spiral patterns; right:
part of two-spiral data (10 in 194 patterns totally).

The second step is to create the topology file. For a better
explanation, two different topologies are designed as: 8
neurons in FCN networks (Fig. 9(a)) and 16 neurons in
2=5=5=5=1 MLP networks (Fig. 9(b)). All neurons are
bipolar because the desired outputs are 1 or -1.

(a) 8 neurons in FCN network

(b) 16 neurons in MLP network

Fig. 9. Different neural structures and related topologies

design for two-spiral problem.

The third step is to train the two-spiral patterns with the

designed topologies. “NBN, improved” algorithm is used
for the topology in Fig. 9(a), while “NBN” is used for Fig.
9(b). After loading topology file and setting related
parameters, the training can begin.

The last step is to do verification for the training results.
Since two-spiral problem has 2 inputs, the “Created 2-D
Patterns” can be used for verification. Fig. 10 presents the
plotting in Matlab (using “PlotFor2D.m”) with the
verification results, by setting the ranges of X and Y both
from -6.5 to 6.5, and 1300 points for each dimension.

.

114

(a) (b)

(c) (d)

Fig. 10.Verification results of two-spiral problem using

different training structures and algorithms: (a) 8 neurons in
FCN network, “NBN, improved” algorithm; (b) 16 neurons
in 2=5=5=5=1 MLP network, “NBN” algorithm; (c) 16
neurons in 2=5=5=5=1 MLP-FCL network, “EBP,
forward-only” algorithm; (d) 15 neurons in FCN network,
“NBN, forward-only” algorithm.

B. Function approximation
With the function described by (1), 25 points (x, y and z)

are picked out from 0 to 4 as the training data saved in
training pattern file. The purpose of the training is to set up
a neural network with outputs approximating to the results
(z values) of (1) if the inputs (x and y) are the same. A
training result from the smallest topology for this problem
is presented in Fig. 11.

() 922 10)3(5.0)4(15.0exp4 −+−−−−= yxz (1)

(a) Desired surface, depicted by (1)

(b) Approximated surface, SSE = 0.24997

Fig. 11. Training results of the function approximation

problem.
With the training results above, one may notice that the

trained neural network in Fig. 11(b) can perform a very

similar computation which it is done by function (1).
Therefore, in the case that there are not specified equations,
but only data, a proper approximation can be made by
neural networks trained with the given data.

C. Parity-N problems
Parity-N problems are aimed to associate n-bit binary

input data with their parity bits. It is also considered to be
one of the most difficult problems in neural network
training, although it has been solved analytically [22]. Fig.
12 shows the verification of parity-2 problem (also called
XOR problem). Experimental results for more complex
parity-N problems are presented in Table 4, using fully
connected neural networks with “NBN, improved”
algorithm.

Fig. 12. Verification of the parity-two problem, with

2500 points from -1 to 1.

TABLE 4: TRAINING RESULTS OF PARITY-N
PROBLEMS

Parity-N
(neurons)

4(3) 6(4) 8(5) 10(6) 12(8)

Cost
Iterations

10.5 23.6 41.4 43.2 78.3

Compute
Time (ms)

166 373 758 1636 23943

Success
Rate

1.00 1.00 1.00 1.00 1.00

Parameter settings: maximum error – 0.1; maximum
iteration – 500; training times – 100; local minima detector
– enabled with accuracy level 2.

D. Error correction
Error correction is an extension of parity-N problems for

multiple parity bits. In Fig. 13, the left side is the input data,
made up of signal bits and their parity bits, while the right
side is the related corrected signal bits and parity bits as
outputs, so number of inputs is equal to the number of
outputs.

.

115

Fig. 13. Using neural networks to solve error correction

problems; errors in input data can be corrected by well
trained neural networks.

For the example, the problem consists of 4-bit signal

with its 3-bit parity bits as inputs, 7 outputs and 128
patterns (16 correct patterns and 112 patterns with errors).
Error patterns with one incorrect bit must be corrected.
Using 29 neurons in fully connected neural network, with
“NBN” algorithm, the training can converge in 84.2
averaged iterations and the success rate is nearly 36%.

With the trained neural network, all the patterns with one
bit error are corrected successfully.

E. Image association
A simple example is presented to illustrate how to use

NBN 2.0 for image association problems. Fig. 14 shows the
digit images, each of which is made up of 56 pixels (8×7).
The purpose is to associate images with related digits. The
training patterns can be generated as the color of pixels, e.g.
“1” is used for black, while “-1” for white. Therefore, in
this problem, there are 56 inputs and 10 outputs. Using
“NBN, forward-only” algorithm, with the topology 56=10
MLP network, the training is converged in 5 iterations, and
the associations are all correct.

Fig. 14. Digit images with 8×7 pixels from 0 to 9.

IV. CONCLUSION
In this paper, the software NBN 2.0 is introduced for

neural network training. This software contains both first
order and second order training algorithms, which are
implemented by traditional forward-backward computation
and a newly developed forward-only computation
respectively. It can handle not only MLP networks, but also
ACN networks well. With the detailed instructions and
several examples presented in the paper, one can get
familiar with this useful tool for neural network training.
The NBN 2.0 is available at:

http://www.eng.auburn.edu/users/wilambm/nnt/
And also, all the data of the examples presented in this
paper are included in the software package.

REFERENCES
[1] B. M. Wilamowski, N. Cotton, J. Hewlett, O. Kaynak, “Neural

network trainer with second order learning algorithms”. Proc.
International Conference on Intelligent Engineering Systems, June
29 2007-July 1 2007, pp. 127-132.

[2] Wilamowski, B.M. Cotton, N.J. Kaynak, O. Dundar, G., “Computing
Gradient Vector and Jacobian Matrix in Arbitrarily Connected
Neural Networks”, IEEE Trans. on Industrial Electronics, vol. 55,
no. 10, pp. 3784-3790, Oct. 2008.

[3] J. A. Farrell, M. M. Polycarpou, "Adaptive Approximation Based
Control: Unifying Neural, Fuzzy and Traditional Adaptive
Approximation Approaches, " IEEE Trans. on Neural Networks, vol.
19, no. 4, pp. 731-732, April 2008.

[4] G. Colin, Y. Chamaillard, G. Bloch, G. Corde, "Neural Control of
Fast Nonlinear Systems—Application to a Turbocharged SI Engine
With VCT," IEEE Trans. on Neural Networks, vol. 18, no. 4, pp.
1101-1114, April 2007.

[5] S. Khomfoi, L. M. Tolbert, “Fault diagnostic system for a multilevel
inverter using a neural network”. IEEE Trans. Power Electron., vol.
22, no. 3, pp. 1062-1069, May 2007.

[6] J. F. Martins, V. Ferno Pires, A. J. Pires, “Unsupervised
neural-network-based algorithm for an on-line diagnosis of
three-phase induction motor stator fault”. IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 259-264, Feb. 2007.

[7] K. Cameron, A. Murray, "Minimizing the Effect of Process
Mismatch in a Neuromorphic System Using
Spike-Timing-Dependent Adaptation," IEEE Trans. on Neural
Networks, vol. 19, no. 5, pp. 899-913, May 2008.

[8] G. Indiveri, E. Chicca, R. Douglas, "A VLSI array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity," IEEE Trans. on Neural Networks, vol. 17, no. 1, pp.
211-221, Jan 2006.

[9] M. Kyperountas, A. Tefas, I. Pitas, "Weighted Piecewise LDA for
Solving the Small Sample Size Problem in Face Verification," IEEE
Trans. on Neural Networks, vol. 18, no. 2, pp. 506-519, Feb 2007.

[10] Jafarzadegan, M. , Mirzaei, H. , “A new ensemble based classifier
using feature transformation for hand recoognition”, Human System
Interactions, 2008 Conference on, pp. 749-754, May, 2008.

[11] Mroczek, T. , Paja, W. , Piatek, L. , Wrzesie, M. ,”Classification and
synthesis of medical images in the domain of melanocytic skin
lesions”, Human System Interactions, 2008 Conference on, pp.
705-709, May, 2008.

[12] Werbos P. J., “Back-propagation: Past and Future”. Proceeding of
International Conference on Neural Networks, San Diego, CA, 1,
343-354, 1988.

[13] Yinyin Liu, J.A. Starzyk, Zhen Zhu, "Optimized Approximation
Algorithm in Neural Networks Without Overfitting," IEEE Trans. on
Neural Networks, vol. 19, no. 6, pp. 983-995, June 2008.

[14] S. Ferrari, M. Jensenius, "A Constrained Optimization Approach to
Preserving Prior Knowledge During Incremental Training," IEEE
Trans. on Neural Networks, vol. 19, no. 6, pp. 996-1009, June 2008.

[15] V.V. Phansalkar, P.S. Sastry, "Analysis of the back-propagation
algorithm with momentum," IEEE Trans. on Neural Networks, vol.
5, no. 3, pp. 505-506, March 1994.

[16] Fok Hing Chi Tivive, A. Bouzerdoum, "Efficient training algorithms
for a class of shunting inhibitory convolutional neural networks,"
IEEE Trans. on Neural Networks, vol. 16, no. 3, pp. 541-556, March
2005.

[17] M. Riedmiller, H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm”. Proc.
International Conference on Neural Networks, San Francisco, CA,
1993, pp. 586-591.

[18] K. Levenberg, “A method for the solution of certain problems in least
squares”. Quarterly of Applied Machematics, 5, pp. 164-168, 1944.

[19] A. Toledo, M. Pinzolas, J.J. Ibarrola, G. Lera, "Improvement of the
neighborhood based Levenberg-Marquardt algorithm by local
adaptation of the learning coefficient," IEEE Trans. on Neural
Networks, vol. 16, no. 4, pp. 988-992, April 2005.

[20] Bogdan M. Wilamowski, Hao Yu, “Neural Network Learning
without Backpropagation”. (unpublished)

[21] J. R Alvarez-Sanchez, “Injecting knowledge into the solution of the
two-spiral problem”. Neural Compute and Applications, Vol. 8, pp.
265-272, 1999.

[22] Wilamowski, B.M. Hunter, D. Malinowski, A., “Solving parity-N
problems with feedforward neural networks”. Proc. 2003 IEEE
IJCNN, 2546-2551, IEEE Press, 2003.

