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Abstract — This paper introduces a neural network 

training tool, NBN 2.0, which is developed based on neuron by 
neuron computing method [1][2]. Error backpropagation 
(EBP) algorithm, Levenberg Marquardt (LM) algorithm and 
its improved versions are implemented in two different 
computing methods, traditional forward-backward 
computation and newly developed forward-only computation. 
The software can handle not only conventional multilayer 
perceptron (MLP) networks, but also arbitrarily connected 
neuron (ACN) networks. Several examples are presented to 
explain how to use this tool for neural network training. The 
software is developed based on Visual Studio platform using 
C++ language and it is available for everyone on the website.    
 

Keywords — neural networks, training tool 
 

I. BACKGROUND 
RTIFICIAL neural networks (ANN) are used in many 
industrial applications, such as nonlinear control 

[3][4], system analysis and diagnosis [5][6], VLSI design 
[7][8] and data classification [9]. It is easy to demonstrate 
that they can surpass human capabilities to recognize 
complex patterns [10][11].  

Error backpropagation (EBP) algorithm [12] is the most 
popular training method, however, it is not an efficient one 
because of its slow convergence and low training stability. 
Based on EBP algorithm, lots of improvements are 
developed for better training [13][14], and some of them, 
such as momentum [15], Quickprop [16] and Resilient EBP 
[17] work well. 

Although complex computation for Jacobian/Hessian 
matrix is necessary during training process, Levenberg 
Marquardt (LM) algorithm [18] is considered as one of the 
most efficient algorithms for small and median sized 
patterns training. Also, there are many good improved 
algorithms [19] based on LM algorithm for better training. 

Most of neural network training software which uses LM 
algorithm (e.g. MATLAB Neural Network Toolbox) is not 
able to train neural networks with arbitrary connections 
between neurons. This deficiency was overcome by the 
NBN algorithm [1]. 

Like EBP algorithm, multilayer perceptron (MLP) 
networks are broadly accepted in practical applications 
because they could be realized easily by programming. 
However, MLP networks are not efficient for neural 
topology design. Some arbitrarily connected neuron 

networks, such as MLP with full connections among layers 
(MLP-FCL) and fully connected neuron (FCN) networks 
often cost less neurons than MLP networks to solve the 
same problems. For example, for parity-5 problem, it needs 
at least 6 neurons for the standard MLP network to get a 
solution (Fig. 1(a)), while, for MLP-FCL and FCN 
networks, only 3 neurons are required (Fig. 1(b) and (c)). 
For efficient training, MLP-FCL and FCN networks are 
wiser choices, but they also require more challenging 
computation. 

 

   
(a) 5=5=1 MLP network     (b) 5=2=1 MLP-FCL network 
 

 
(c) 3 neurons in FCN network 

 
Fig. 1. The least neurons required in different neural 

network structures for parity-5 problem. 
 
In this paper, the software NBN 2.0 is introduced as a 

powerful training tool. It contains EBP algorithm, LM 
algorithm, neuron by neuron (NBN) algorithm [1][2] and a 
new algorithm. Besides conventional forward-backward 
computation, a newly developed forward-only [20] 
(without error backpropagation process) computation is 
also implemented in the software. Based on the neuron by 
neuron computing scheme, this tool can handle arbitrarily 
connected neuron (FCN) networks. 

In section II of this paper, the detailed information of 
NBN 2.0 is described, and section III presents several 
practical applications with the NBN 2.0.   
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II. DESCRIPTION OF NBN 2.0 
The NBN 2.0 is developed based on Visual Studio 6.0 

using C++ language. Its main interface is shown in Fig. 2.In 
the following part of this section, detailed instructions 
about the software are presented. 

 

 
Fig. 2. The user interface of NBN 2.0. 

A. Description of files 
The software is made up of 6 types of files, including 

executing files, parameter file (unique), topology files, 
training pattern files, training result files and training 
verification files. 
• Executing files 
Executing files contain three files: files 

“FauxS-TOON.ssk” and “skinppwtl.dll” for interface 
design; file “NBN 2.0 exe” for running the software.  Also, 
other files, such as user instruction and accessory tools 
(Matlab code “PlotFor2D.m” for 2-D plotting), are 
included. 
• Parameter file 
This file is named “Parameters.dat” and it is necessary 

for running the software. It contains initial data of 
important parameters shown in Table 1.  

There are two ways to set those parameters: (1) Edit the 
parameter file manually, according to the descriptions of 
parameters in Table 1; (2) All those parameters can be 
edited in the user interface, and they will be saved in the 
parameter file automatically once training is executed, as 
the initial values for next time of running the software.  
• Topology files 
Topology files are named “*.in”, and they are mainly 

used to construct the neural network topologies for training. 
Topology files consist of four parts: topology design, 
weight initialization (optional), neuron type instruction and 
training data specification. 

The topology design is aimed to create neural structures. 
The general command is “n [b] [type] [a1 a2 … an]”, which 
means inputs/neurons indexed with a1, a2 …, an are 
connected to neuron b with a specified neural type (bipolar, 
unipolar or linear). Fig. 3 presents the topology commands 
for the neural networks shown in Fig. 1. 

The weight initialization part is used to specify initial 
weights for training and this part is optional. If there is no 

weight initialization in the topology file, the software will 
generate initial weights randomly (from -1 to 1) before 
training. The general command is “w [wbias] [w1 w2 … wn]”, 
corresponding to the topology design. Fig. 4 shows the 
example of weight initialization for parity-3 problem with 2 
neurons in FCN network. 

 
TABLE 1: PARAMETERS FOR TRAINING 

Parameters Descriptions 
algorithm Index of algorithms in the combo box 
alpha Learning constant for EBP 
scale Parameter for LM/NBN 
mu Parameter for LM/NBN 
max mu Parameter for LM/NBN (fixed) 
min mu Parameter for LM/NBN (fixed) 
max error Maximum error 
ITE_FOR_EBP Maximum iteration for EBP 
ITE_FOR_LM Maximum iteration for LM/NBN 
ITE_FOR_PO Maximum iteration for the new Alg. 
momentum Momentum for EBP 
po alpha Parameter for the improved NBN 
po beta Parameter for the improved NBN 
po gama Parameter for the improved NBN 
training times Training times for automatic running 
 

 
 (a) 5=5=1 MLP network of Fig. 1(a) 

 

 
(b) 5=2=1 MLP-FCL network of Fig. 1(b) 

 

 
(c) 3 neurons FCN network of Fig. 1(c) 

 
Fig. 3. Topology design for networks shown in Fig. 1; all 

neurons are bipolar neurons. 
 

 
Fig. 4. Weight initialization for parity-3 problem with 2 

neurons in FCN network. 
In the neuron type instruction part, three different types 

of neurons are defined. They are bipolar (“mbip”), unipolar 
(mu) and linear (“mlin”). Bipolar neurons have positive or 
negative outputs, while unipolar neurons only have positive 
outputs. The outputs of both bipolar and unipolar neurons 
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are no more than 1. If the desired outputs are larger than 1, 
linear neurons are considered to be the output neurons. The 
general command is “.model [mbip/mu/mlin] 
fun=[bip/uni/lin], gain=[value], der=[value]”. Table 2 
presents the three types of neurons used in the software. 

 
TABLE 2: THREE TYPES OF NEURONS IN THE 

SOFTWARE 
Neuron 
Types 

Activation Functions 

bipolar netdernetgainnetfb ×+×= )tanh()(
 

unipolar 
netder

e
netf netgainu ×+

+
= ×−1

1)(

 
linear netgainnetfl ×=)(  

 
From Table 2, it can be seen that “gain” and “der” are 

parameters of activation functions. Parameter “der” is 
introduced  to adjust the slope of activation function (for 
unipolar and bipolar), which is a trick we used in the 
software to avoid training process entering the saturation 
region, where slope is approching to zero. 

The training data specification part is used to set the 
name of training pattern file, in order to get correct training 
data. The general command is “datafile=[file name]”. 
• Training pattern files 
The training pattern files include input patterns and 

related desired outputs. In a training pattern file, the number 
of rows is equal to the number of patterns, while the number 
of columns is equal to the sum of the number of inputs and 
the number of outputs. However, only with the data in 
training pattern file, one can’t tell the number of inputs and 
the number of outputs, so the neural topology should be 
considered together in order to decide those two parameters 
(Fig. 5). The training pattern files are specified in the 
topology files as mentioned above, and it should have the 
same route as related topology files. 

 

 
Fig. 5. Get the number of inputs and the number of 

outputs from the data file and topology. 
 
As described in Fig. 5, the number of inputs is obtained 

from the first command line of topology design and it is 
equal to the index of the first neuron minus 1. After that, the 
number of outputs is calculated by the number of columns 
in training pattern files minus the number of inputs. 
• Training result files 
Training result files are used to store the training 

information and results. Once the “save data” function is 

enabled in the software, important information for current 
training, such as training algorithm, training pattern file, 
topology, parameters, initial weights, result weights and 
training results will be saved after the training is finished. 
The name of the training result file is generated 
automatically according to the starting time and the format 
is “date_time_result.txt”. 
• Training verification files 
Training verification files are generated by the software 

when the verification function is triggered. The result 
weights from the current training will be verified, by 
computing the actual outputs of related patterns. The name 
of training verification file is also created by the system 
time when the verification starts and it is 
“date_time_verification.txt”. 

B. Interface instruction 
As shown in Fig. 2, the user interface consists of 6 areas: 

(1) Plotting area; (2) Training information area; (3) Plot 
modes setting area; (4) Execute modes setting area; (5) 
Control area; (6) Parameter setting area; (7) Verification 
area; (8) Command consoler area. 
• Plotting area 
This area is used to depict the sum squared error (SSE) 

during training. The log scaled vertical axis presents SSE 
values from 0.0001 to 10000, while the horizontal axis, 
which is linearly scaled automatically with the coefficient 
at the bottom of plotting area (“×[value]” in Fig. 2), shows 
the number of iterations cost for training. 
• Training information area 
Instantaneous training data are presented in this area, 

including SSE and cost iterations for current training, 
average iteration and time spent in solving the same 
problems, and the success rate for multiple times training. 
• Plot modes setting area 
Three plot modes are available in this software, multi 

curves, one curve and delayed curve. In multi curves mode, 
all the training curves will be plotted together and updated 
instantaneously. In one curve mode, only current training is 
plotted, while other curves will be erased. The delayed 
curve mode is only used in automatic training for multiple 
times; during the training process, there is no plotting, 
while all the curves will be presented together after the 
whole training process is finished. This function is 
designed for training process which needs huge iterations 
and costs time for plotting. 
• Execute modes setting area 
This area is used to control training mode, either training 

one time or automatic training for several times, either 
saving the training results or not. 

If it is set to run automatically, the train will not stop 
unless it reaches the required training times or the “Stop to 
Train” button is clicked. The default training times is 100 
and it can be changed through command consoler. 

If it is set to save training data, all the important 
information, such as algorithm type, topology, training 
parameters, initial weights, result weights and training 
results (SSE and cost iteration) will be saved in training 
result files. 
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• Control area 
The combo box is used to select training algorithms. 

There are 6 choices: (1) “EBP”; (2) “LM”; (3) “NBN”; (4) 
“EBP, forward-only”; (5) “NBN, forward-only”; (6) “NBN, 
improved”. 

Button “Load Data File” is used to choose a topology file 
for training; button “Set Parameters” is used to set training 
parameters for the selected training algorithm; button “Start 
To Train/Stop To Train” helps control the training process; 
button “Clear Plotting” is used to erase the current plotting 
in the plotting area. 
• Parameter setting area 
This area is used to set training related parameters, such 

as training times for automatic training, maximum error for 
convergent judgment and maximum iteration. All the 
settings will be saved in the parameter file once training is 
executed, and they will be loaded as the initial values for 
the next time using the software. 
• Verification area 
This area is used for training results verification, by 

calculating the actual outputs for each pattern with the 
result weights. The verifying patterns can be training 
patterns, testing patterns or user created patterns for 2-D 
situation. Training patterns are from the data file for current 
training (Fig. 6), while testing patterns are loaded from data 
files having the same format as the training data file. For the 
case of 2-D inputs, the patterns are generated from selected 
range of each input with a certain number of points (see 
two-spiral problem verification). 

The verification results can be easily uploaded by Matlab, 
MS Excel, Origin, or other software for analysis. For 2-D 
input patterns, the verification data can be plotted in Matlab 
by the accessory tool included in the software, named as 
“PlotFor2D.m”.  

 

 
Fig. 6. A list of verification results of parity-3 problem 

by training patterns; the first 3 columns are inputs; the 
fourth column is the desired output; the fifth column is the 
actual output; the sixth column is the error from desired 
output minus related actual output.  

 
The verification can be also for networks with multiple 

outputs, and the results are presented in the format: “input 
columns     desired output one     actual output one     error 
one     desired output two     actual output two     error 
two ….”. 

Verification results will be stored in training verification 
files as introduced above and they will appear as pop-up 
windows automatically. 
• Command consoler area 
The list box is used to show the important information or 

hints for users’ operations. It is also a command consoler. 

Most of the operations can be achieved by related 
commands. Table 3 presents the available commands and 
their functions. 

 
TABLE 3: AVAILABLE COMMANDS AND 

RELATED FUNCTIONS 
Commands Functions 
help list all the available commands and 

instructions 
clr clear the content of the list box
cc clear all the curves in plotting area
sus suspend training and save current 

status
res resume training with the status at 

suspending point 
tra start/stop training 
sav data saving control 
aut automatic training control 
pm= select plotting mode, e.g. pm=2 (one 

curve mode) 
load load input file 
para set training parameters for selected 

algorithm, e.g. para 
info show current training setting
iw show current iw value (used for 

debug)
topo show current topology 
alpha? / alpha= get/set learning constant, e.g. alpha=1
mom? / mom= get/set momentum, e.g. mom=0.001
tt? / tt= get/set training times for automatic 

training, e.g. tt? 
me? / me= get/set maximum error, e.g. me=0.01
mi? / mi= get/set maximum iteration, e.g. 

mi=100
th? / th= get/set parameter for the “NBN, 

improved” algorithm 

C. Implemented algorithms 
As introduced above, there are 6 available algorithms in 

the software for training. The following part is going to 
introduce the characteristics and limitations for each 
algorithm. 

EBP: This is EBP algorithm with traditional 
forward-backward computation; for EBP algorithm, it may 
work a little bit faster than forward-only computation. Now 
it is only used for standard MLP networks. EBP algorithm 
converges slowly, but it can be used for huge patterns 
training. 

LM: This is LM algorithm with traditional 
forward-backward computation; for LM (and NBN) 
algorithm, the improved forward-only computation 
performs faster training than forward-backward 
computation for networks with multiple outputs. Now it is 
also only used for standard MLP networks. LM (and NBN) 
algorithm converges much faster than EBP algorithm for 
small and media sized patterns training. For huge patterns 
(huge Jacobian matrix, we have solved this problem) and 
huge networks (huge Hessian matrix), it may work slower 
than EBP algorithm. 

NBN: This is NBN algorithm with forward-backward 
computation. NBN algorithm is developed based on LM 
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algorithm, but it can handle arbitrarily connected neuron 
(ACN) networks, also, the convergence is improved [1][2]. 

EBP, forward-only: This is EBP algorithm with 
forward-only computation. It can work on arbitrarily 
connected neuron networks. 

 NBN, forward-only: This is NBN algorithm with 
forward-only computation. It can handle arbitrarily 
connected neuron networks and, as mentioned above, it 
works faster than “NBN” algorithm, especially for 
networks with multiple outputs. 

NBN, improved: This is a newly developed second 
order algorithm, implemented with forward-only 
computation, so it can handle arbitrarily connected neuron 
networks. In this algorithm, Hessian matrix is inverted only 
one time per iteration, so this algorithm is supposed to 
compute faster than LM (and NBN) algorithm which may 
have several times Hessian matrix inversion per iteration. 
The train ability (convergence) is also improved in this 
algorithm. Furthermore, a local minima detector is 
implemented in this algorithm. When the detector 
diagnoses that the training is trapped in local minima, all 
the weights will be regenerated randomly for further 
training. 

III. PRACTICAL APPLICATIONS 
Let us use the two-spiral problem as an example to 

illustrate how to use the software for neural network 
training. Other practical applications are also presented 
followed.  

A. Two-spiral problem 
Two-spiral problem is considered as an efficient 

evaluation of both training algorithms and neural structures 
[21]. This problem is aimed to separate two groups of 
twisted points, as shown in Fig. 7. 

 
Fig. 7. Two-spiral problem; it’s aimed to separate red 

points from black points. 
 
The first step is to generate the training pattern file. 

Two-spiral data can be obtained by the code shown in Fig. 
8. 

 

 
Fig. 8. Left: C++ code to generate two-spiral patterns; right: 
part of two-spiral data (10 in 194 patterns totally). 
 

The second step is to create the topology file. For a better 
explanation, two different topologies are designed as: 8 
neurons in FCN networks (Fig. 9(a)) and 16 neurons in 
2=5=5=5=1 MLP networks (Fig. 9(b)). All neurons are 
bipolar because the desired outputs are 1 or -1. 

 

 
(a) 8 neurons in FCN network 

 

 
(b) 16 neurons in MLP network 

 
Fig. 9. Different neural structures and related topologies 

design for two-spiral problem. 
 
The third step is to train the two-spiral patterns with the 

designed topologies. “NBN, improved” algorithm is used 
for the topology in Fig. 9(a), while “NBN” is used for Fig. 
9(b). After loading topology file and setting related 
parameters, the training can begin. 

The last step is to do verification for the training results. 
Since two-spiral problem has 2 inputs, the “Created 2-D 
Patterns” can be used for verification. Fig. 10 presents the 
plotting in Matlab (using “PlotFor2D.m”) with the 
verification results, by setting the ranges of X and Y both 
from -6.5 to 6.5, and 1300 points for each dimension. 
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(a)                                       (b) 

 

 
(c)                                        (d)  

 
Fig. 10.Verification results of two-spiral problem using 

different training structures and algorithms: (a) 8 neurons in 
FCN network, “NBN, improved” algorithm; (b) 16 neurons 
in 2=5=5=5=1 MLP network, “NBN” algorithm; (c) 16 
neurons in 2=5=5=5=1 MLP-FCL network, “EBP, 
forward-only” algorithm; (d) 15 neurons in FCN network, 
“NBN, forward-only” algorithm. 

B. Function approximation 
With the function described by (1), 25 points (x, y and z) 

are picked out from 0 to 4 as the training data saved in 
training pattern file. The purpose of the training is to set up 
a neural network with outputs approximating to the results 
(z values) of (1) if the inputs (x and y) are the same. A 
training result from the smallest topology for this problem 
is presented in Fig. 11.  

( ) 922 10)3(5.0)4(15.0exp4 −+−−−−= yxz     (1) 
 

 
(a) Desired surface, depicted by (1) 

 

 
(b) Approximated surface, SSE = 0.24997 

 
Fig. 11. Training results of the function approximation 

problem. 
With the training results above, one may notice that the 

trained neural network in Fig. 11(b) can perform a very 

similar computation which it is done by function (1). 
Therefore, in the case that there are not specified equations, 
but only data, a proper approximation can be made by 
neural networks trained with the given data. 

C. Parity-N problems 
Parity-N problems are aimed to associate n-bit binary 

input data with their parity bits. It is also considered to be 
one of the most difficult problems in neural network 
training, although it has been solved analytically [22]. Fig. 
12 shows the verification of parity-2 problem (also called 
XOR problem). Experimental results for more complex 
parity-N problems are presented in Table 4, using fully 
connected neural networks with “NBN, improved” 
algorithm. 

 

 
Fig. 12. Verification of the parity-two problem, with 

2500 points from -1 to 1. 
 

TABLE 4: TRAINING RESULTS OF PARITY-N 
PROBLEMS 

Parity-N 
(neurons)

4(3) 6(4) 8(5) 10(6) 12(8) 

Cost 
Iterations 

10.5 23.6 41.4 43.2 78.3 

Compute 
Time (ms) 

166 373 758 1636 23943 

Success 
Rate 

1.00 1.00 1.00 1.00 1.00 

Parameter settings: maximum error – 0.1; maximum 
iteration – 500; training times – 100; local minima detector 
– enabled with accuracy level 2. 

D. Error correction 
Error correction is an extension of parity-N problems for 

multiple parity bits. In Fig. 13, the left side is the input data, 
made up of signal bits and their parity bits, while the right 
side is the related corrected signal bits and parity bits as 
outputs, so number of inputs is equal to the number of 
outputs. 
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Fig. 13. Using neural networks to solve error correction 

problems; errors in input data can be corrected by well 
trained neural networks. 

 
For the example, the problem consists of 4-bit signal 

with its 3-bit parity bits as inputs, 7 outputs and 128 
patterns (16 correct patterns and 112 patterns with errors). 
Error patterns with one incorrect bit must be corrected. 
Using 29 neurons in fully connected neural network, with 
“NBN” algorithm, the training can converge in 84.2 
averaged iterations and the success rate is nearly 36%. 

With the trained neural network, all the patterns with one 
bit error are corrected successfully. 

E. Image association 
A simple example is presented to illustrate how to use 

NBN 2.0 for image association problems. Fig. 14 shows the 
digit images, each of which is made up of 56 pixels (8×7). 
The purpose is to associate images with related digits. The 
training patterns can be generated as the color of pixels, e.g. 
“1” is used for black, while “-1” for white. Therefore, in 
this problem, there are 56 inputs and 10 outputs. Using 
“NBN, forward-only” algorithm, with the topology 56=10 
MLP network, the training is converged in 5 iterations, and 
the associations are all correct. 

 

 
Fig. 14. Digit images with 8×7 pixels from 0 to 9. 

IV. CONCLUSION 
In this paper, the software NBN 2.0 is introduced for 

neural network training. This software contains both first 
order and second order training algorithms, which are 
implemented by traditional forward-backward computation 
and a newly developed forward-only computation 
respectively. It can handle not only MLP networks, but also 
ACN networks well. With the detailed instructions and 
several examples presented in the paper, one can get 
familiar with this useful tool for neural network training. 
The NBN 2.0 is available at: 

http://www.eng.auburn.edu/users/wilambm/nnt/ 
And also, all the data of the examples presented in this 
paper are included in the software package. 
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