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Abstract— The comparisons of various learning algorithms 
were presented and it was shown that most popular neural 
network topologies (MLP) and most popular training 
algorithm (EBP) are not giving optimal solution. Instead 
MLP networks much simpler neural network topologies can 
be used to produce similar or better results. Instead of 
popular EBP more advance algorithms such as LM or NBN 
should be used. They not only produce results in couple 
order of magnitude shorter time, but also good solutions can 
be found for networks where EBP algorithm fails. 
Eventually EBP can find solution if number of neurons in 
the network increase, but this solution in most cases will be 
far from the optimum one. 
 

I. INTRODUCTION 
 
It is easy to train neural networks with excessive number 
of neurons. Such complex architectures for given patterns 
can be trained to very small errors, but such networks do 
not have generalization abilities. These networks are not 
able to deliver a correct response to new patterns, which 
were not used for training [1]. This way the main purpose 
of using neural networks is missed. In order to properly 
utilize neural networks its architecture should be as 
simple as possible to perform the required function, but in 
order to train them more advanced algorithms should be 
used [2-4]  

 
II.    MAIN PRINCIPLE OF NEURAL NETWORKS LEARNING 
 
Let us consider a single neuron with several inputs (Fig. 
1) and let us assume that the net value on the summing 
input of the neuron is  
 

 xw = net ii

n

=1i

 (1) 

 
One may question what is maximum value of the net and 
when it is achieved if both inputs and weights may have 

binary bipolar (-1,+1) values. Notice that if both weights 
and inputs have the same values, for example: 
  

 [ ]]1,1,1,1,1 −+−+−=w  (2) 
 
 [ ]]1,1,1,1,1 −+−+−=x  (3) 

Then net = n, where n is the number of inputs. If there is 
mismatch of input and weight on one of the inputs then 
the net value will be reduced by 2. In general, 
 

 ),(2 xwHDn = net −  (4) 
 
where HD is the Hamming Distance between input 
pattern x and the weight vector w. In other words the 
neuron receives maximum excitation if input pattern and 
weight vector are equal. This is true for binary bipolar 
values, but it is also true if both input patterns and weight 
vectors are normalized. Therefore, the main learning 
principle is that the required weight change Δw should be 
  

 xLRcw ⋅⋅=Δ  (5) 
 
where c is learning constant and LR is a learning rule 
which distinguished different learning methods. 

 
Unfortunately, the requirement of normalization of 
weights and patterns often leads to removal of important 
information. In order to preserve all information instead 
of normalization, all weights and patterns could be 
projected on the hypersphere in the n+1 dimensions (see 
Fig. 2). With this input pattern transformation the input 
neurons are also gaining ability for separation of entire 
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Figure 2. Input pattern transformation in order to preserve all 

information 
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Figure 1.  A single neuron with several inputs 
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clusters. This way for example in two dimensional space 
3 neurons can separate three clusters (Figure 3). 
 

 
III.   ISSUES WITH LEARNING ALGORITHMS 
 
Similarly to the biological neurons, the weights in artificial 
neurons are adjusted during a training procedure. Most 
algorithms require supervision but there are algorithms 
which can train neural networks without supervision (the 
desired outcome is not known). Common learning rules are 
described below[4] [5]. 
 
A. Hebbian learning rule 
The Hebb learning rule [6] is based on the assumption that 
if two neighbor neurons must be activated and deactivated 
at the same time, then the weight connecting these neurons 
should increase. For neurons operating in the opposite 
phase, the weight between them should decrease. If there is 
no correlation, the weight should remain unchanged. This 
assumption can be described by the formula 
 Δ ij i jw  =  c x o  (6) 
where wij is the weight from i-th to j-th neuron, c is the 
learning constant, xi is the signal on the i-th input and oj is 
the output signal. The training process starts usually with 
values of all weights set to zero. This learning rule can be 
used for both soft and hard threshold neurons. Since desired 
responses of neurons are not used in the learning procedure, 
this is the unsupervised learning rule. 
 
B. Correlation learning rule 
 
The correlation learning rule is based on a similar principle 
as the Hebb learning rule. It assumes that weights between 
simultaneously responding neurons should be largely 
positive, and weights between neurons with opposite 
reaction should be largely negative. Mathematically, it can 

be written that weights should be proportional to the 
product of states of connected neurons. In contrary to the 
Hebb rule, the correlation rule is the supervised training. 
Instead of actual response, the desired response is used for 
weight change calculation 
 Δ ij i jw  =  c x d  (7) 
This training algorithm starts usually with initialization of 
weights to zero values. 
 
C. Instar learning rule 
If input vectors, and weights, are normalized, or they have 
only binary bipolar values (-1 or +1), then the net value will 
have the largest positive value when the weights have the 
same values as the input signals. Therefore, weights should 
be changed only if they are different from the signals 
 ( )Δ i i iw  =  c x  -  w  (8) 
Note, that the information required for the weight change is 
only taken from the input signals. This is a very local and 
unsupervised learning algorithm. 
 
D.  WTA - Winner Takes All 
The WTA is a modification of the instar algorithm where 
weights are modified only for the neuron with the highest 
net value. Weights of remaining neurons are left 
unchanged. Sometimes this algorithm is modified in such a 
way that a few neurons with the highest net values are 
modified at the same time. This unsupervised algorithm 
(because we do not know what are desired outputs) has a 
global character. The net values for all neurons in the 
network should be compared in each training step. The 
WTA algorithm, developed by Kohonen [7] is often used 
for automatic clustering and for extracting statistical 
properties of input data. 
 
E. Outstar learning rule 
In the outstar learning rule it is required that weights 
connected to the certain node should be equal to the desired 
outputs for the neurons connected through those weights 
 
 ( )Δ ij j ijw  =  c d  -  w  (9) 
where dj is the desired neuron output and c is small learning 
constant which further decreases during the learning 
procedure. This is the supervised training procedure 
because desired outputs must be known. Both instar and 
outstar learning rules were developed by Grossberg [8]. 
 
F. Perceptron learning rule 
 ii c xw δ=Δ   (10) 

 odLR −=  (11) 
 ( ))(sign netdii −=Δ xw α  (12) 
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Figure 3.  By increasing dimensionality of the problem it is much 

easier to separate clusters 
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Figure 4. Illustration of the perceptron learning rule 

 
G. Widrow-Hoff (LMS) learning rule 
Widrow and Hoff [9] developed a supervised training 
algorithm which allows to train a neuron for the desired 
response. This rule was derived so the square of the 
difference between net and output value is minimized. 

( )j

p=1

P
2

jp jpError  =   net  -  d  (14) 

where Errorj is the error for j-th neuron, P is the number of 
applied patterns, djp is the desired output for j-th neuron 
when p-th pattern is applied, and net is given by equation 
(1). This rule is also known as the LMS (Least Mean 
Square) rule. By calculating a derivative of (14) with 
respect to wi, one can find a formula for the weight change. 

( )Δ ij ij

p=1

P

jp jpw  =  c x   d  -  net  (15) 

Note, that weight change Δwij is a sum of the changes from 
each of the individual applied patterns. Therefore, it is 
possible to correct weight after each individual pattern is 
applied. If the learning constant c is chosen to be small, 
then both methods gives the same result. The LMS rule 
works well for all type of activation functions.  This rule 
tries to enforce the net value to be equal to desired value. 
Sometimes, this is not what we are looking for. It is usually 
not important what the net value is, but it is important if the 
net value is positive or negative. 
 
H. Linear regression  
The LMS learning rule requires hundreds or thousands of 
iterations before it converges to the proper solution. Using 
the linear regression the same result can be obtained in only 
one step. 
Considering one neuron and using vector notation for a set 
of the input patterns x applied through weights w the value 
net is calculated using 
 
 net = wx  (16) 
or 
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Note that the size of the input patterns is always augmented 
by one, and this additional weight is responsible for the 
threshold. This method, similar to the LMS rule, assumes a 
linear activation function, so the net value should be equal 
to desired output values d 
 dwx  =  (18) 
Usually p > n+1, and the above equation can be solved 
only in the least mean square error sense 

 ( )W =  X X  X  d
-1T T  (19) 

I.  Delta learning rule 
The LMS method assumes linear activation function o=net, 
and the obtained solution is sometimes far from optimum. If 
error is defined as 

 ( )j

p=1

P
2

jp jpError  =   o  -  d  (20) 

Then the derivative of the error with respect to the weight 

wij is ( )d Error
d w

 =  2  o  -  d
df(net )

d net
x

j

ij p=1

P

jp jp
jp

jp
i  (21) 

Note, that this derivative is proportional to the derivative of 
the activation function f'(net). 
Using the cumulative approach, the neuron weight wij 
should be changed with a direction of gradient 

 ( )Δ ij i

p=1

P

jp jp j pw  =  c x   d  -  o  f ′  (22) 

in case of the incremental training for each applied pattern 
 ( )Δ ij i j j jw  =  c x  f  d  -  o′  (23) 
the weight change should be proportional to input signal xi, 
to the difference between desired and actual outputs djp-ojp, 
and to the derivative of the activation function f'jp. Similar 
to the LMS rule, weights can be updated in both the 
incremental and the cumulative methods. In comparison to 
the LMS rule, the delta rule always leads to a solution close 
to the optimum. 
 
J.  Error Backpropagation learning 
The delta learning rule can be generalized for multilayer 
networks [10-11]. Using a similar approach, as it is 
described for the delta rule, the gradient of the global error 
can be computed in respect to each weight in the network. 
 ( ){ }nnppp xwxwxwfFo +++= 2211  (24) 

 [ ]
2

1
_

=

−=
np

p
pp odErrorTotal  (25) 

 ( ) ( ) { } ( )[ ]
=

−−=
np

p
pipppp

i

xnetfzFod
dw
TEd

1
''2  (26) 
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Figure 5. Error backpropagation for neural networks with one output 
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Figure 6. Error backpropagation for neural networks with multiple 
output 
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Figure 7. Calculation errors in neural network using error 

backpropagation algorithm 
 

IV. HEURISTIC APPROACH TO EBP 
The backpropagation algorithm has many disadvantages 
which leads to very slow convergence. One of the most 
painful is that in the backpropagation algorithm the learning 
process almost perishes for neurons responding with the 
maximally wrong answer (Figure 8). 
For example, if the value on the neuron output is close to 
+1 and desired output should be close to -1, then the neuron 
gain f'(net)=0 and the error signal cannot backpropagate, so 
the learning procedure is not effective. To overcome this 
difficulty, a modified method for derivative calculation was 
introduced by Wilamowski and Torvik [12]. The derivative 
is calculated as the slope of a line connecting the point of 
the output value with the point of the desired value as 
shown in Fig. 8. 

 f
o o

net netmodif
desired actual

desired actual

= −
−

 (31) 

Note, that for small errors, equation (31) converges to the 
derivative of activation function at the point of the output 
value. With an increase of the system dimensionality, a 
chance for local minima decrease. It is believed that the 
described above phenomenon, rather than a trapping in 
local minima, is responsible for convergence problems in 
the error backpropagation algorithm. 

-1

+1 output
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net
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Figure 8. In traditional EBP algorithm very large errors are not being 
propagated through the network 

 
By introduction new way of defining derivative of the 
activation function the learning speed could be 
significantly increased 
 [ ]21)(' oknetf −=  (27) 

 −−=
2

2

2
11)(' err

oknetf  (28) 

For small errors:     [ ]21)(' oknetf −=  (29) 
 

For large errors:     knetf =)('  (30) 
 
A. Momentum term 
The backpropagation algorithm has a tendency for 
oscillation. In order to smooth up the process, the weights 
increment Δwij can be modified by introduction of the 
momentum terms: 

ij ij ij ijw (n + 1) =  w (n) +  w (n) +  w (n - 1)Δ Δα  (32) 
or 

( )ij ij ij ijw (n + 1) =  w (n) +  1 -   w (n) +  w (n - 1)α αΔ Δ (33) 

 

 
Figure 9. Solution process without and with momentum term 

 
B. Gradient direction search 
The backpropagation algorithm can be significantly sped 
up, when after finding components of the gradient, weights 
are modified along the gradient direction until a minimum 
is reached. This process can be carried on without the 
necessity of computational intensive gradient calculation at 
each step. The new gradient components are calculated 
once a minimum on the direction of the previous gradient is 
obtained. This process is only possible for cumulative 
weight adjustment. One method to find a minimum along 
the gradient direction is the tree step process of finding 
error for three points along gradient direction and then, 
using a parabola approximation, jump directly to the 
minimum. 
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Figure 10. Search on the gradient direction before a new calculation of 
gradient components. 
 
C. Quickprop algorithm by Fahlman    
The fast learning algorithm using the above approach was 
proposed by Fahlman [14]  and it is known as the 
quickprop. 
 

 ( ) ( ) ( )1−Δ+−=Δ twtStw ijijijij γα  (34) 

 ( ) ( )( ) ( )tw
w

tE
tS ij

ij
ij η+

∂
∂= w

 (35) 

Where: 
α learning constant  
γ memory constant (small 0.0001 range) leads to reduction 
of weights and limits growth of weights 
η momentum term selected individually for each weight 
 

otherwise0
  w of signor 0wwhen6.001.0 ijij

=
Δ=Δ<<

α
α

                               ( ) ( ) 0>Δ twtS ijij  (36) 

 ( ) ( ) ( )1−Δ+−=Δ twtStw ijijijij γα  (37) 
momentum term selected individually for each weight is 
very important part of this algorithm. Quickprop 
algorithm sometimes reduces computation time a 
hundreds times  
Later this algorithm was simplified: 

( ) ( )
( ) ( )tStS

tS
t

ijij

ij
ij −−

=
1

β  (38) 

Modified Quickprop algorithm is simpler and often gives 
better results than the original one. 
 
D.  RPROP Resilient Error Back Propagation 
   Very similar to EBP, but weights adjusted without using 
values of the propagated errors, but only its sign [15]. 
Learning constants are selected individually to each weight 
based on the history 

 ( ) ( )( )
( )∂

∂−=Δ
tw
tE

tw
ij

ijij
wsgnα  (39) 

 ( ) ( )( ) ( )tw
w

tE
tS ij

ij
ij η+

∂
∂= w

 (40) 

 ( )
( )( ) ( ) ( )
( )( ) ( ) ( )

( )−
<−⋅−⋅
>−⋅−⋅

=
otherwise1

01SSfor,1max
01SSfor,1min

ijijmin

ijijmax

t
tttb
ttta

t

ij

ij

ij

ij

α
αα
αα

α  

 
E. Back Percolation 
Error is propagated as in EBP and then each neuron is 
“trained” using an algorithm to train one neuron such as 
pseudo inversion. Unfortunately pseudo inversion may lead 
to errors, which are sometimes larger than 2 for bipolar or 
larger than 1 for unipolar 
 
G.  Delta-bar-Delta  
For each weight the learning coefficient is selected 
individually [16]. It was developed for quadratic error 
functions 

( )
( ) ( )

( ) ( ) ( ) <−−⋅
>−

=Δ
otherwise0

01for1
01for

tDtSt-b
tDtSa

t ijijij

ijij

ijα  (41) 

 

 ( ) ( )
( )tw
tE

tD
ij

ij ∂
∂=  (42) 

 ( ) ( ) ( ) ( )11 −+−= tStDtS ijijij ξξ  (43) 
 
V.  SECOND ORDER ALGORITHMS 
 
A. Levenberg-Marquardt Algorithm (LM)  
 
The Levenberg-Marquardt method was sucesfull applied to 
NN training [17]. In the steepest descent method (error 
backpropagation) 
 gww α−=+ kk 1  (44) 
where g is gradient vector  

nw
E
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w
E
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∂
∂

∂
∂
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∂
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g
 (45) 

Newton method 
 gAww 1

1
−

+ −= kkk  (46) 
where Ak  is Hessian 
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 JJA T2=      and   eJg T2=  (49) 
Gauss-Newton method:  

 ( ) eJJJww T
kk

T
kkk

1
1

−
+ −=  (50) 

 
Levenberg - Marquardt method:  

                   ( ) eJIJJww T
kk

T
kkk

1
1

−
+ +−= μ  (51) 

 
The LM algorithm requires computation of the Jacobian J 
matrix at each iteration step and the inversion of JTJ 
square matrix. Note that in the LM algorithm an N by N 
matrix must be inverted in every iteration. This is the 
reason why for large size neural networks the LM 
algorithm is not practical. Also most of implementations 
of LM algoritms (like popular MATLAB NN Toolbox) 
are developed only for MLP (Multi Layer Perceptron) 
networks which are in most cases far from optimal 
architectures. The MLP networks not only require larger 
than minimum number of neurons, but also they are 
learning slower. 
 
B. Neuron by Neuron Algorithm (NBN)  
The Neuron by Neuron Algorithm (NBN) algorithm was 
developed in order to eliminate many disadvantages of 
the LM algorithm. Detailed description of the algorithm 
can be found in [2-4]. 
 

VI.  COMPARISON VARIOUS TRAINING ALGORITHMS 
 

Experimental comparison of various algorithms can be 
found in Figures 11 to 18 and in TABLES I to III. For MLP 
architectures (TABLE I) comparison can be done for all 
algorithms: 
EBP – Error Back Propagation [10] 
LM _Levenberg Marquat [17] 
NBN Neuron By Neuron [2] 

 
Figure 11. Sum of squared errors as a function of number of iterations 

for the “Parity-4” problem using EBP algorithm with the success rate of 
90% average number if iterations 2438.91, average time 931.92 ms (2-

3-3-1 topology) 

 
Figure 13. Sum of squared errors as a function of number of iterations 

for the “Parity-4” problem using EBP algorithm with the success rate of 
98%, average number if iterations 3977.15, average time 1382.78 ms 

(2-1-1-1-1 topology) 

 
Figure 14. Sum of squared errors as a function of number of iterations 
for the “Parity-4” problem using NBN algorithm with the success rate 

of 100%, average number if iterations 12.36, average time 8.15 ms (2-1-
1-1-1-1 topology) 

 

TABLE I 
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS 

ALGORITHMS ON 1-3-3-1 TOPOLOGY 

Type 
size 

(pts.) 

Averages from 100 runs 

Success rate iterations Computing time 

EBP 90% 2438.91 931.92 ms 

LM 72% 19.72 19.60 ms 

NBN 82% 20.53 19.63 ms 

14



 
Figure 15. Sum of squared errors as a function of number of iterations 

for the “Parity-4” problem using EBP algorithm with the success rate of 
71% average number if iterations 19.72, average time 19.60 ms (2-1-1-1 

topology) 
 

 
Figure 16. Sum of squared errors as a function of number of iterations 
for the “Parity-4” problem using LM algorithm with the success rate of 

71% average number if iterations 19.72, average time 19.60 ms (2-3-3-1 
topology) 

 
Figure 17. Sum of squared errors as a function of number of iterations 
for the “Parity-4” problem using NBN algorithm with the success rate 

of 82% average number if iterations 20.53, average time 19.63 ms (2-3-
3-1 topology) 

 

 
Figure 12. Sum of squared errors as a function of number of iterations 
for the “Parity-4” problem using NBN algorithm with the success rate 
of 97% average number if iterations 14.59, average time 8.69 ms (2-1-

1-1 topology) 
 

 
Figure 18. Sum of squared errors as a function of number of iterations 

for the “Parity-4” problem using EBP algorithm with the success rate of 
88% average number if iterations 7567.81, average time 2985.80 ms (2-

1-1-1 topology) 

 
For MLP topologies it seems that the EBP algorithm is 
most robust and has largest success rate for random weight 
initialization. At the same time the EBP algorithm requires 
over 1000 times larger number of iterations to converge. 
Because it is relatively simple; therefore; the time required 
for each iteration is about 20 times shorter and its actual 
computation time is only 50 times longer than in the case of 
other two algorithms. 
When arbitrarily connected topologies are considered 
(including connections across layers) then a much smaller 
network can be used to solve the same Parity-4 problem. 
The minimum neural network topology would require only 
3 neurons connected in cascade (2-1-1-1). Unfortunately, 
the LM Algorithm was adopted only for MLP networks and 
it cannot be applied for this network so the comparison is 
done only for EBP and NBN algorithms. From TABLE II 

TABLE III 
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS 

ALGORITHMS ON 2-1-1-1-1 TOPOLOGY 

Type 
size 

(pts.) 

Averages from 100 runs 

Success rate iterations Computing time 

EBP 98% 3977.15 1382.78ms 

LM N/A N/A N/A 

NBN 100% 12.36 8.15ms 

TABLE II 
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS 

ALGORITHMS ON 2-1-1-1 TOPOLOGY 

Type 
size 

(pts.) 

Averages from 100 runs 

Success rate iterations Computing time 

EBP 88% 7567.81 2985.80ms 

LM N/A N/A N/A 

NBN 97% 14.59 8.69ms 
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one may notice that NBN algorithm has success rate of 
97% in comparison to 88% of EBP. The number of 
iterations in NBN algorithm is about 30 times smaller. Most 
importantly the computing time of NBN is about 300 times 
shorter than in the case of EBP. This is because EBP 
algorithm cannot handle efficiently arbitrarily connected 
neural networks. 
If number of neurons in the cascade topology is increased 
from 3 to 4 then both algorithms have a much larger 
chance for success and NBN algorithm has 100% success 
rate. One may notice that with increasing of network 
complexity neural networks are losing their ability for 
generalization. This issue will be discussed in more 
details in the next section. 
 

VII. WHY WE SHOULD NOT USE LARGER NEURAL 
NETWORKS THAN NECESSARY ? 

 
Let us consider a neural network which should replace 
the fuzzy system with the control surface shown in Figure 
19. 
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Figure 19. The control surface of a fuzzy controller with 6 and 5 

membership functions for both inputs 
 
This control surface can be approximated by neural 
network topologies with different complexities. Figure 20 
shows the control surface obtained from network with 3 
neurons (2-1-1-1) and Figure 21 shows the control 
surface obtained from network with 6 neurons (2-1-1-1-
1-1-1) 

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

required function

 
Figure 20. The control surface of a neural controller with 3 neurons 
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Figure 21. The control surface of a neural controller with 3 neurons 

 
One may notice that if too large neural networks is used 
the system can find solutions which produces very small 
error for the training patterns, but for patterns which were 
not used for training errors actually could be much  larger 
than in the case of much simple network. 
What many people are not also aware is that not all 
popular algorithms can train every neural network. 
Surprisingly, the most popular EBP (Error Back 
Propagation) algorithm cannot handle more complex 
problems while other more advanced algorithms can.  
Also in most cases neural networks trained with popular 
algorithms such as EBP produce far from optimum 
solutions. 
For example, training the popular test bench with 
Wieland two spiral problem can be solved (Fig. 1) with 
second order using cascade architecture with 8 neurons 
but in order to solve the same problem with the EBP 
algorithm (Fig 2) at least 16 neurons and weights in 
cascade architecture are needed. With only 12 neurons in 
cascade, the NBN algorithm can produce a very smooth 
response (Fig. 3) with less than 150 iterations but we 
were not able to solve this 12 neuron problem with EBP 
algorithm despite many trials with 1,000,000 iterations 
limit. More detailed information about the relationship 
between complexity of network topology and learning 
algorithms can be found in [1]. The conclusion is that 
with a better learning algorithm the same problem can be 
solved with simpler hardware. 

 
Fig. 22. Solution of the two spiral problem with NBN algorithm [2] 
using fully connected architecture with 8 neurons and 52 weights 
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Fig. 23. Solution of the two spiral problem with EBP algorithm using 

fully connected architecture with 16 neurons and 168 weights 
 

 
Fig. 24. Solution of the two spiral problem with NBN algorithm [2] 

using fully connected architecture with only 12 neurons and 102 
weights 

 
If we want to take true advantage of neural networks we 
should use the second order training algorithms such as 
LM or NBN. 
Fully operational software which uses both LM and NBN 
algorithms can be easy downloaded from 
http://www.eng.auburn.edu/~wilambm/nnt  
 

VIII. CONCLUSION 
 

The comparisons of various learning algorithms were 
presented and it was shown that most popular neural 
network topologies (MLP) and most popular training 
algorithm (EBP) are not giving optimal solution. Instead 
MLP much simpler neural network topologies can be 
used to produce similar or better results. Instead of 
popular EBP more advanced algorithms such as LM or 
NBN should be used. They not only produce results in 
couple order of magnitude shorter time, but also they can 
find good solutions for networks where EBP algorithm 
fails. Eventually EBP can find solution if number of 
neurons in the network increase, but this solution in most 
cases will be far from the optimum one. 
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