
Advanced Learning Algorithms

Bogdan M. Wilamowski
Electrical and Computer Engineering, Auburn University, Alabama, USA

wilam@ieee.org

Abstract— The comparisons of various learning algorithms
were presented and it was shown that most popular neural
network topologies (MLP) and most popular training
algorithm (EBP) are not giving optimal solution. Instead
MLP networks much simpler neural network topologies can
be used to produce similar or better results. Instead of
popular EBP more advance algorithms such as LM or NBN
should be used. They not only produce results in couple
order of magnitude shorter time, but also good solutions can
be found for networks where EBP algorithm fails.
Eventually EBP can find solution if number of neurons in
the network increase, but this solution in most cases will be
far from the optimum one.

I. INTRODUCTION

It is easy to train neural networks with excessive number
of neurons. Such complex architectures for given patterns
can be trained to very small errors, but such networks do
not have generalization abilities. These networks are not
able to deliver a correct response to new patterns, which
were not used for training [1]. This way the main purpose
of using neural networks is missed. In order to properly
utilize neural networks its architecture should be as
simple as possible to perform the required function, but in
order to train them more advanced algorithms should be
used [2-4]

II. MAIN PRINCIPLE OF NEURAL NETWORKS LEARNING

Let us consider a single neuron with several inputs (Fig.
1) and let us assume that the net value on the summing
input of the neuron is

 xw = net ii

n

=1i

 (1)

One may question what is maximum value of the net and
when it is achieved if both inputs and weights may have

binary bipolar (-1,+1) values. Notice that if both weights
and inputs have the same values, for example:

 []]1,1,1,1,1 −+−+−=w (2)

 []]1,1,1,1,1 −+−+−=x (3)

Then net = n, where n is the number of inputs. If there is
mismatch of input and weight on one of the inputs then
the net value will be reduced by 2. In general,

),(2 xwHDn = net − (4)

where HD is the Hamming Distance between input
pattern x and the weight vector w. In other words the
neuron receives maximum excitation if input pattern and
weight vector are equal. This is true for binary bipolar
values, but it is also true if both input patterns and weight
vectors are normalized. Therefore, the main learning
principle is that the required weight change Δw should be

 xLRcw ⋅⋅=Δ (5)

where c is learning constant and LR is a learning rule
which distinguished different learning methods.

Unfortunately, the requirement of normalization of
weights and patterns often leads to removal of important
information. In order to preserve all information instead
of normalization, all weights and patterns could be
projected on the hypersphere in the n+1 dimensions (see
Fig. 2). With this input pattern transformation the input
neurons are also gaining ability for separation of entire

22 X−R

Figure 2. Input pattern transformation in order to preserve all

information

1x

3x
2x

4x

5x

1w
2w

3w

4w

5w

Figure 1. A single neuron with several inputs

9978-1-4244-4113-6/09/$25.00 ©2009 IEEE

clusters. This way for example in two dimensional space
3 neurons can separate three clusters (Figure 3).

III. ISSUES WITH LEARNING ALGORITHMS

Similarly to the biological neurons, the weights in artificial
neurons are adjusted during a training procedure. Most
algorithms require supervision but there are algorithms
which can train neural networks without supervision (the
desired outcome is not known). Common learning rules are
described below[4] [5].

A. Hebbian learning rule
The Hebb learning rule [6] is based on the assumption that
if two neighbor neurons must be activated and deactivated
at the same time, then the weight connecting these neurons
should increase. For neurons operating in the opposite
phase, the weight between them should decrease. If there is
no correlation, the weight should remain unchanged. This
assumption can be described by the formula
 Δ ij i jw = c x o (6)
where wij is the weight from i-th to j-th neuron, c is the
learning constant, xi is the signal on the i-th input and oj is
the output signal. The training process starts usually with
values of all weights set to zero. This learning rule can be
used for both soft and hard threshold neurons. Since desired
responses of neurons are not used in the learning procedure,
this is the unsupervised learning rule.

B. Correlation learning rule

The correlation learning rule is based on a similar principle
as the Hebb learning rule. It assumes that weights between
simultaneously responding neurons should be largely
positive, and weights between neurons with opposite
reaction should be largely negative. Mathematically, it can

be written that weights should be proportional to the
product of states of connected neurons. In contrary to the
Hebb rule, the correlation rule is the supervised training.
Instead of actual response, the desired response is used for
weight change calculation
 Δ ij i jw = c x d (7)
This training algorithm starts usually with initialization of
weights to zero values.

C. Instar learning rule
If input vectors, and weights, are normalized, or they have
only binary bipolar values (-1 or +1), then the net value will
have the largest positive value when the weights have the
same values as the input signals. Therefore, weights should
be changed only if they are different from the signals
 ()Δ i i iw = c x - w (8)
Note, that the information required for the weight change is
only taken from the input signals. This is a very local and
unsupervised learning algorithm.

D. WTA - Winner Takes All
The WTA is a modification of the instar algorithm where
weights are modified only for the neuron with the highest
net value. Weights of remaining neurons are left
unchanged. Sometimes this algorithm is modified in such a
way that a few neurons with the highest net values are
modified at the same time. This unsupervised algorithm
(because we do not know what are desired outputs) has a
global character. The net values for all neurons in the
network should be compared in each training step. The
WTA algorithm, developed by Kohonen [7] is often used
for automatic clustering and for extracting statistical
properties of input data.

E. Outstar learning rule
In the outstar learning rule it is required that weights
connected to the certain node should be equal to the desired
outputs for the neurons connected through those weights

 ()Δ ij j ijw = c d - w (9)
where dj is the desired neuron output and c is small learning
constant which further decreases during the learning
procedure. This is the supervised training procedure
because desired outputs must be known. Both instar and
outstar learning rules were developed by Grossberg [8].

F. Perceptron learning rule
 ii c xw δ=Δ (10)

 odLR −= (11)
 ())(sign netdii −=Δ xw α (12)

=

=
n

i
iiwnet

1
x (13)

R2 2− x

x1

x2

z1

z2

z3

-10
-5

0
5

10

-10
-5

0
5

10
-1

-0.5

0

0.5

1

Figure 3. By increasing dimensionality of the problem it is much

easier to separate clusters

10

neuron

1

2

1 2

3

x

y

3

(2,1) => +1

(1,2) => -1

+1

x

y

1

3

-3

initial setting with wrong answers
both paterns belongd to -1 category

1

2

1 2

3

x

y

3

+1

x

y

1.6

0.6

-3.6

6
6.0
6.3

25.2
6.1
6.3

0

0

==

==

y

x

Figure 4. Illustration of the perceptron learning rule

G. Widrow-Hoff (LMS) learning rule
Widrow and Hoff [9] developed a supervised training
algorithm which allows to train a neuron for the desired
response. This rule was derived so the square of the
difference between net and output value is minimized.

()j

p=1

P
2

jp jpError = net - d (14)

where Errorj is the error for j-th neuron, P is the number of
applied patterns, djp is the desired output for j-th neuron
when p-th pattern is applied, and net is given by equation
(1). This rule is also known as the LMS (Least Mean
Square) rule. By calculating a derivative of (14) with
respect to wi, one can find a formula for the weight change.

()Δ ij ij

p=1

P

jp jpw = c x d - net (15)

Note, that weight change Δwij is a sum of the changes from
each of the individual applied patterns. Therefore, it is
possible to correct weight after each individual pattern is
applied. If the learning constant c is chosen to be small,
then both methods gives the same result. The LMS rule
works well for all type of activation functions. This rule
tries to enforce the net value to be equal to desired value.
Sometimes, this is not what we are looking for. It is usually
not important what the net value is, but it is important if the
net value is positive or negative.

H. Linear regression
The LMS learning rule requires hundreds or thousands of
iterations before it converges to the proper solution. Using
the linear regression the same result can be obtained in only
one step.
Considering one neuron and using vector notation for a set
of the input patterns x applied through weights w the value
net is calculated using

 net = wx (16)
or

=∗

=

=

=

===

===

===

P

p
pNp

P

p
pp

P

p
pp

N
P

p
pNpN

P

p
ppN

P

p
ppN

P

p
pNp

P

p
pp

P

p
pp

P

p
pNp

P

p
pp

P

p
pp

xd

xd

xd

w

w
w

xxxxxx

xxxxxx

xxxxxx

1

1
2

1
1

2

1

11
2

1
1

1
2

1
22

1
12

1
1

1
21

1
11 (17)

Note that the size of the input patterns is always augmented
by one, and this additional weight is responsible for the
threshold. This method, similar to the LMS rule, assumes a
linear activation function, so the net value should be equal
to desired output values d
 dwx = (18)
Usually p > n+1, and the above equation can be solved
only in the least mean square error sense

 ()W = X X X d
-1T T (19)

I. Delta learning rule
The LMS method assumes linear activation function o=net,
and the obtained solution is sometimes far from optimum. If
error is defined as

 ()j

p=1

P
2

jp jpError = o - d (20)

Then the derivative of the error with respect to the weight

wij is ()d Error
d w

 = 2 o - d
df(net)

d net
x

j

ij p=1

P

jp jp
jp

jp
i (21)

Note, that this derivative is proportional to the derivative of
the activation function f'(net).
Using the cumulative approach, the neuron weight wij
should be changed with a direction of gradient

 ()Δ ij i

p=1

P

jp jp j pw = c x d - o f ′ (22)

in case of the incremental training for each applied pattern
 ()Δ ij i j j jw = c x f d - o′ (23)
the weight change should be proportional to input signal xi,
to the difference between desired and actual outputs djp-ojp,
and to the derivative of the activation function f'jp. Similar
to the LMS rule, weights can be updated in both the
incremental and the cumulative methods. In comparison to
the LMS rule, the delta rule always leads to a solution close
to the optimum.

J. Error Backpropagation learning
The delta learning rule can be generalized for multilayer
networks [10-11]. Using a similar approach, as it is
described for the delta rule, the gradient of the global error
can be computed in respect to each weight in the network.
 (){ }nnppp xwxwxwfFo +++= 2211 (24)

 []
2

1
_

=

−=
np

p
pp odErrorTotal (25)

 () () { } ()[]
=

−−=
np

p
pipppp

i

xnetfzFod
dw
TEd

1
''2 (26)

11

+1

)(xf }{zFpx popz

() { } ()[]
=

−=Δ
np

p
pppppp netfzFod

1
'' xw α

Figure 5. Error backpropagation for neural networks with one output

+1

)(xf

}{1 zF
px

po
pz }{2 zF

}{zFno

() { } ()[]
= =

−=Δ
no

o

np

p
pppopopp netfzFod

1 1
'' xw α

Figure 6. Error backpropagation for neural networks with multiple
output

x

y

+1 +1

z 2err

3err

1err
1g

222 errgB ⋅=Δ

3g

2g

11w

12w21w

31w

34wA
B

()31321211111 wwwf BBBA ⋅Δ+⋅Δ+⋅Δ=Δ

1f

2f

3f

313212111 www BBB ⋅Δ+⋅Δ+⋅Δ

Figure 7. Calculation errors in neural network using error

backpropagation algorithm

IV. HEURISTIC APPROACH TO EBP
The backpropagation algorithm has many disadvantages
which leads to very slow convergence. One of the most
painful is that in the backpropagation algorithm the learning
process almost perishes for neurons responding with the
maximally wrong answer (Figure 8).
For example, if the value on the neuron output is close to
+1 and desired output should be close to -1, then the neuron
gain f'(net)=0 and the error signal cannot backpropagate, so
the learning procedure is not effective. To overcome this
difficulty, a modified method for derivative calculation was
introduced by Wilamowski and Torvik [12]. The derivative
is calculated as the slope of a line connecting the point of
the output value with the point of the desired value as
shown in Fig. 8.

 f
o o

net netmodif
desired actual

desired actual

= −
−

 (31)

Note, that for small errors, equation (31) converges to the
derivative of activation function at the point of the output
value. With an increase of the system dimensionality, a
chance for local minima decrease. It is believed that the
described above phenomenon, rather than a trapping in
local minima, is responsible for convergence problems in
the error backpropagation algorithm.

-1

+1 output

desired
output

net

f(net)

actual derivative

modified derivative

Figure 8. In traditional EBP algorithm very large errors are not being
propagated through the network

By introduction new way of defining derivative of the
activation function the learning speed could be
significantly increased
 []21)(' oknetf −= (27)

 −−=
2

2

2
11)(' err

oknetf (28)

For small errors: []21)(' oknetf −= (29)

For large errors: knetf =)(' (30)

A. Momentum term
The backpropagation algorithm has a tendency for
oscillation. In order to smooth up the process, the weights
increment Δwij can be modified by introduction of the
momentum terms:

ij ij ij ijw (n + 1) = w (n) + w (n) + w (n - 1)Δ Δα (32)
or

()ij ij ij ijw (n + 1) = w (n) + 1 - w (n) + w (n - 1)α αΔ Δ (33)

Figure 9. Solution process without and with momentum term

B. Gradient direction search
The backpropagation algorithm can be significantly sped
up, when after finding components of the gradient, weights
are modified along the gradient direction until a minimum
is reached. This process can be carried on without the
necessity of computational intensive gradient calculation at
each step. The new gradient components are calculated
once a minimum on the direction of the previous gradient is
obtained. This process is only possible for cumulative
weight adjustment. One method to find a minimum along
the gradient direction is the tree step process of finding
error for three points along gradient direction and then,
using a parabola approximation, jump directly to the
minimum.

12

0,0

y1 y2

xΔ xΔ
xMIIN

21

21

24
4

2 yy
yyx

a
bx

−
−Δ=−=

Figure 10. Search on the gradient direction before a new calculation of
gradient components.

C. Quickprop algorithm by Fahlman
The fast learning algorithm using the above approach was
proposed by Fahlman [14] and it is known as the
quickprop.

 () () ()1−Δ+−=Δ twtStw ijijijij γα (34)

 () ()() ()tw
w

tE
tS ij

ij
ij η+

∂
∂= w

 (35)

Where:
α learning constant
γ memory constant (small 0.0001 range) leads to reduction
of weights and limits growth of weights
η momentum term selected individually for each weight

otherwise0
 w of signor 0wwhen6.001.0 ijij

=
Δ=Δ<<

α
α

 () () 0>Δ twtS ijij (36)

 () () ()1−Δ+−=Δ twtStw ijijijij γα (37)
momentum term selected individually for each weight is
very important part of this algorithm. Quickprop
algorithm sometimes reduces computation time a
hundreds times
Later this algorithm was simplified:

() ()
() ()tStS

tS
t

ijij

ij
ij −−

=
1

β (38)

Modified Quickprop algorithm is simpler and often gives
better results than the original one.

D. RPROP Resilient Error Back Propagation
 Very similar to EBP, but weights adjusted without using
values of the propagated errors, but only its sign [15].
Learning constants are selected individually to each weight
based on the history

 () ()()
()∂

∂−=Δ
tw
tE

tw
ij

ijij
wsgnα (39)

 () ()() ()tw
w

tE
tS ij

ij
ij η+

∂
∂= w

 (40)

 ()
()() () ()
()() () ()

()−
<−⋅−⋅
>−⋅−⋅

=
otherwise1

01SSfor,1max
01SSfor,1min

ijijmin

ijijmax

t
tttb
ttta

t

ij

ij

ij

ij

α
αα
αα

α

E. Back Percolation
Error is propagated as in EBP and then each neuron is
“trained” using an algorithm to train one neuron such as
pseudo inversion. Unfortunately pseudo inversion may lead
to errors, which are sometimes larger than 2 for bipolar or
larger than 1 for unipolar

G. Delta-bar-Delta
For each weight the learning coefficient is selected
individually [16]. It was developed for quadratic error
functions

()
() ()

() () () <−−⋅
>−

=Δ
otherwise0

01for1
01for

tDtSt-b
tDtSa

t ijijij

ijij

ijα (41)

 () ()
()tw
tE

tD
ij

ij ∂
∂= (42)

 () () () ()11 −+−= tStDtS ijijij ξξ (43)

V. SECOND ORDER ALGORITHMS

A. Levenberg-Marquardt Algorithm (LM)

The Levenberg-Marquardt method was sucesfull applied to
NN training [17]. In the steepest descent method (error
backpropagation)
 gww α−=+ kk 1 (44)
where g is gradient vector

nw
E

w
E
w
E

gradient

∂
∂

∂
∂
∂
∂

=
2

1

g
 (45)

Newton method
 gAww 1

1
−

+ −= kkk (46)
where Ak is Hessian

2

2

2

2

1

2

2

2

2
2

2

21

2
1

2

12

2

2
1

2

nnn

n

n

k

w
E

ww
E

ww
E

ww
E

w
E

ww
E

ww
E

ww
E

w
E

Hessian

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=A
 (47)

13

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

MP

2

MP

1

MP

N

2P

2

2P

1

2P

N

1P

2

1P

1

1P

N

M1

2

M1

1

M1

n

21

2

21

1

21

n

11

2

11

1

11

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

J

 (48)

 JJA T2= and eJg T2= (49)
Gauss-Newton method:

 () eJJJww T
kk

T
kkk

1
1

−
+ −= (50)

Levenberg - Marquardt method:

 () eJIJJww T
kk

T
kkk

1
1

−
+ +−= μ (51)

The LM algorithm requires computation of the Jacobian J
matrix at each iteration step and the inversion of JTJ
square matrix. Note that in the LM algorithm an N by N
matrix must be inverted in every iteration. This is the
reason why for large size neural networks the LM
algorithm is not practical. Also most of implementations
of LM algoritms (like popular MATLAB NN Toolbox)
are developed only for MLP (Multi Layer Perceptron)
networks which are in most cases far from optimal
architectures. The MLP networks not only require larger
than minimum number of neurons, but also they are
learning slower.

B. Neuron by Neuron Algorithm (NBN)
The Neuron by Neuron Algorithm (NBN) algorithm was
developed in order to eliminate many disadvantages of
the LM algorithm. Detailed description of the algorithm
can be found in [2-4].

VI. COMPARISON VARIOUS TRAINING ALGORITHMS

Experimental comparison of various algorithms can be
found in Figures 11 to 18 and in TABLES I to III. For MLP
architectures (TABLE I) comparison can be done for all
algorithms:
EBP – Error Back Propagation [10]
LM _Levenberg Marquat [17]
NBN Neuron By Neuron [2]

Figure 11. Sum of squared errors as a function of number of iterations

for the “Parity-4” problem using EBP algorithm with the success rate of
90% average number if iterations 2438.91, average time 931.92 ms (2-

3-3-1 topology)

Figure 13. Sum of squared errors as a function of number of iterations

for the “Parity-4” problem using EBP algorithm with the success rate of
98%, average number if iterations 3977.15, average time 1382.78 ms

(2-1-1-1-1 topology)

Figure 14. Sum of squared errors as a function of number of iterations
for the “Parity-4” problem using NBN algorithm with the success rate

of 100%, average number if iterations 12.36, average time 8.15 ms (2-1-
1-1-1-1 topology)

TABLE I
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS

ALGORITHMS ON 1-3-3-1 TOPOLOGY

Type
size

(pts.)

Averages from 100 runs

Success rate iterations Computing time

EBP 90% 2438.91 931.92 ms

LM 72% 19.72 19.60 ms

NBN 82% 20.53 19.63 ms

14

Figure 15. Sum of squared errors as a function of number of iterations

for the “Parity-4” problem using EBP algorithm with the success rate of
71% average number if iterations 19.72, average time 19.60 ms (2-1-1-1

topology)

Figure 16. Sum of squared errors as a function of number of iterations
for the “Parity-4” problem using LM algorithm with the success rate of

71% average number if iterations 19.72, average time 19.60 ms (2-3-3-1
topology)

Figure 17. Sum of squared errors as a function of number of iterations
for the “Parity-4” problem using NBN algorithm with the success rate

of 82% average number if iterations 20.53, average time 19.63 ms (2-3-
3-1 topology)

Figure 12. Sum of squared errors as a function of number of iterations
for the “Parity-4” problem using NBN algorithm with the success rate
of 97% average number if iterations 14.59, average time 8.69 ms (2-1-

1-1 topology)

Figure 18. Sum of squared errors as a function of number of iterations

for the “Parity-4” problem using EBP algorithm with the success rate of
88% average number if iterations 7567.81, average time 2985.80 ms (2-

1-1-1 topology)

For MLP topologies it seems that the EBP algorithm is
most robust and has largest success rate for random weight
initialization. At the same time the EBP algorithm requires
over 1000 times larger number of iterations to converge.
Because it is relatively simple; therefore; the time required
for each iteration is about 20 times shorter and its actual
computation time is only 50 times longer than in the case of
other two algorithms.
When arbitrarily connected topologies are considered
(including connections across layers) then a much smaller
network can be used to solve the same Parity-4 problem.
The minimum neural network topology would require only
3 neurons connected in cascade (2-1-1-1). Unfortunately,
the LM Algorithm was adopted only for MLP networks and
it cannot be applied for this network so the comparison is
done only for EBP and NBN algorithms. From TABLE II

TABLE III
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS

ALGORITHMS ON 2-1-1-1-1 TOPOLOGY

Type
size

(pts.)

Averages from 100 runs

Success rate iterations Computing time

EBP 98% 3977.15 1382.78ms

LM N/A N/A N/A

NBN 100% 12.36 8.15ms

TABLE II
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS

ALGORITHMS ON 2-1-1-1 TOPOLOGY

Type
size

(pts.)

Averages from 100 runs

Success rate iterations Computing time

EBP 88% 7567.81 2985.80ms

LM N/A N/A N/A

NBN 97% 14.59 8.69ms

15

one may notice that NBN algorithm has success rate of
97% in comparison to 88% of EBP. The number of
iterations in NBN algorithm is about 30 times smaller. Most
importantly the computing time of NBN is about 300 times
shorter than in the case of EBP. This is because EBP
algorithm cannot handle efficiently arbitrarily connected
neural networks.
If number of neurons in the cascade topology is increased
from 3 to 4 then both algorithms have a much larger
chance for success and NBN algorithm has 100% success
rate. One may notice that with increasing of network
complexity neural networks are losing their ability for
generalization. This issue will be discussed in more
details in the next section.

VII. WHY WE SHOULD NOT USE LARGER NEURAL
NETWORKS THAN NECESSARY ?

Let us consider a neural network which should replace
the fuzzy system with the control surface shown in Figure
19.

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

Figure 19. The control surface of a fuzzy controller with 6 and 5

membership functions for both inputs

This control surface can be approximated by neural
network topologies with different complexities. Figure 20
shows the control surface obtained from network with 3
neurons (2-1-1-1) and Figure 21 shows the control
surface obtained from network with 6 neurons (2-1-1-1-
1-1-1)

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

required function

Figure 20. The control surface of a neural controller with 3 neurons

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

NN outputs data

Figure 21. The control surface of a neural controller with 3 neurons

One may notice that if too large neural networks is used
the system can find solutions which produces very small
error for the training patterns, but for patterns which were
not used for training errors actually could be much larger
than in the case of much simple network.
What many people are not also aware is that not all
popular algorithms can train every neural network.
Surprisingly, the most popular EBP (Error Back
Propagation) algorithm cannot handle more complex
problems while other more advanced algorithms can.
Also in most cases neural networks trained with popular
algorithms such as EBP produce far from optimum
solutions.
For example, training the popular test bench with
Wieland two spiral problem can be solved (Fig. 1) with
second order using cascade architecture with 8 neurons
but in order to solve the same problem with the EBP
algorithm (Fig 2) at least 16 neurons and weights in
cascade architecture are needed. With only 12 neurons in
cascade, the NBN algorithm can produce a very smooth
response (Fig. 3) with less than 150 iterations but we
were not able to solve this 12 neuron problem with EBP
algorithm despite many trials with 1,000,000 iterations
limit. More detailed information about the relationship
between complexity of network topology and learning
algorithms can be found in [1]. The conclusion is that
with a better learning algorithm the same problem can be
solved with simpler hardware.

Fig. 22. Solution of the two spiral problem with NBN algorithm [2]
using fully connected architecture with 8 neurons and 52 weights

16

Fig. 23. Solution of the two spiral problem with EBP algorithm using

fully connected architecture with 16 neurons and 168 weights

Fig. 24. Solution of the two spiral problem with NBN algorithm [2]

using fully connected architecture with only 12 neurons and 102
weights

If we want to take true advantage of neural networks we
should use the second order training algorithms such as
LM or NBN.
Fully operational software which uses both LM and NBN
algorithms can be easy downloaded from
http://www.eng.auburn.edu/~wilambm/nnt

VIII. CONCLUSION

The comparisons of various learning algorithms were
presented and it was shown that most popular neural
network topologies (MLP) and most popular training
algorithm (EBP) are not giving optimal solution. Instead
MLP much simpler neural network topologies can be
used to produce similar or better results. Instead of
popular EBP more advanced algorithms such as LM or
NBN should be used. They not only produce results in
couple order of magnitude shorter time, but also they can
find good solutions for networks where EBP algorithm
fails. Eventually EBP can find solution if number of
neurons in the network increase, but this solution in most
cases will be far from the optimum one.

REFERENCES
[1] B. M. Wilamowski, “Special Neural Network

Architectures for Easy Implementations for Electronic
Control” (keynote), POWERENG 2009, Lisbon, Portugal,
March 18-20, 2009

[2] B. M. Wilamowski, N. Cotton, O. Kaynak, G. Dundar,
“Method of Computing Gradient Vector and Jacobian
Matrix in Arbitrarily Connected Neural Networks”. Proc.
IEEE ISIE, Vigo, Spain, June, 4-7, pp. 3298-3303, 2007

[3] B. M. Wilamowski, N. Cotton, J. Hewlett, O. Kaynak,
“Neural Network Trainer with Second Order Learning
Algorithms”. Proc. International Conference on
Intelligent Engineering Systems, June 29 2007-July 1
2007, pp. 127-132

[4] Hao Yu and B. M. Wilamowski “C++ Implementation of
Neural Networks Trainer” 13th IEEE Intelligent
Engineering Systems Conference, INES 2009, Barbados,
April 16-18, 2009

[5] B. M. Wilamowski “Methods of Computational
Intelligence” ICIT'04 IEEE International Conference on
Industrial Technology, Tunisia, Tunisia, December 8-10,
2004

[6] D. O. Hebb, 1949. The Organization of Behivior, a
Neuropsychological Theory. John Wiley, New York

[7] T. Kohonen, The Self-organized Map. Proc. IEEE
78(9):1464-1480

[8] Grossberg, S. 1969. Embedding Fields: a Theory of
Learning with Physiological Implications. Journal of
Mathematical Psychology 6:209-239

[9] B. Widrow, “Generalization and Information Storage in
Networks of Adaline Neurons”, Self-Organizing Systems,
1962, Spartan Books, pp. 435-461

[10] D. E., Rumenhart, G. E. Hinton, G. E. and R. J, Wiliams,
“Learning Representations by Back-Propagating Errors”,
Nature, Vol. 323, pp. 533-536, 1986

[11] P. J. Werbos “Back-Propagation: Past and future”,
Proceeding of International Conference on Neural
Networks, San Diego, CA, 1, 343-354

[12] B. M. Wilamowski, B. M. and L. Torvik, "Modification
of Gradient Computation in the Back-Propagation
Algorithm", ANNIE'93 Intelligent Engineering Systems
Through Artificial Neural Networks Vol. 3, pp. 175-180,
ASME PRESS, New York 1993

[13] A. A Miniani and R. D Williams. (1990). “Acceleration of
Back-Propagation through Learning Rate and Momentum
Adaptation”, Proceedings of International Joint
Conference on Neural Networks, San Diego, CA, 1, 676-
679

[14] S. Fahlman, ”An Empirical Study of Learning Speed in
Backpropagation Networks”, Tech. Report CMCU-CS-
162, Carnegie-Mellon University, Computer Science
Dep., 1988

[15] J. M. Hannan, J. M. Bishop, “A Comparison of Fast
Training Algorithms over Two Real Problems”, Fifth
International Conf. on Artificial Neural Networks, 7-9
July, pp. 1-6, 1997

[16] R. A. Jacobs, "Increased Rates of Convergence through
Learning Rate Adaptation", Neural Networks, Vol. 1,
1988, pp. 295-307

[17] M. T. Hagan and M. Menhaj, “Training Feedforward
Networks with the Marquardt Algorithm”, IEEE
Transactions on Neural Networks, Vol. 5, No. 6, pp.
989-993, 1994

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

