
3374 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

Optimization Using a Modified Second-Order
Approach With Evolutionary Enhancement

Joel D. Hewlett, Student Member, IEEE, Bogdan M. Wilamowski, Fellow, IEEE, and
Günhan Dündar, Member, IEEE

Abstract—An optimization algorithm is presented which
effectively combines the desirable characteristics of both gradient
descent and evolutionary computation into a single robust algo-
rithm. The method uses a population-based gradient approxima-
tion which allows it to recognize surface behavior on both large
and small scales. By adjusting the population radius between iter-
ations, the algorithm is able to escape local minima by shifting its
focus onto global trends rather than local behavior. The algorithm
is compared experimentally with existing methods over a set of
relevant test cases, and each method is ranked on the basis of both
reliability and rate of convergence. For each case, the algorithm is
shown to outperform other methods in terms of both measures of
performance, truly making it the best of both worlds.

Index Terms—Evolutionary algorithms, gradient descent,
optimization.

I. INTRODUCTION

O PTIMIZATION algorithms usually come in one of two
flavors, generally referred to as gradient descent and

evolutionary computation. To put it plainly, a method is either
fast or powerful. Although this distinction is not necessarily
valid for every case, it is still a widely accepted generalization.
Each method has its own niche, and comparison of any two
methods is highly subjective on the basis of application. Still,
the use of optimization algorithms continues to see rapid growth
in a number of diverse fields ranging from robotics [1] and com-
putational intelligence [2]–[5] to wireless transmission [6], [7]
and digital filter design [8], [9]. With this continued increase
in interest and application, the demand for a newer and more
versatile approach has become evident. While attempts have
been made at bringing the two sides together [10]–[12], it is the
purpose of this paper to help further this cause, with the ultimate
goal being a single robust algorithm which encompasses the
strengths of both methods, making itself useful over a wider
range of problems.

The content herein is the continuation of work previously
published in [13]. Since its original publication, the method
has been seeing a series of drastic changes and improvements,

Manuscript received June 11, 2008. First published July 9, 2008; last
published August 29, 2008 (projected). This work was supported in part by
the National Science Foundation under Contract NSF OISE 0352771.

J. D. Hewlett and B. M. Wilamowski are with the Department of Electri-
cal and Computer Engineering, Auburn University, Auburn, AL 36849 USA
(e-mail: hewlejd@auburn.edu).

G. Dündar is with the Department of Electrical and Electronic Engineering,
Boǧaziçi University, Istanbul 34342, Turkey.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2008.927987

which are the subject of this paper. While the content presented
is complete, and should not require any supplemental reading,
the work presented in [13] may still be of interest to the reader.
Although the method has changed significantly, the underlying
principles are still the same.

The remainder of this paper is organized as follows.
Section II presents an overview of the proposed method using a
simple illustration. Section III contains a technical explanation
which includes the details of the algorithm’s operation. In
Section IV, a set of test functions is presented, and the relevance
of each function is discussed. A comparative analysis of the
algorithm’s performance is presented in Section V. This paper
concludes with a short summary in Section VI.

II. BIGGER PICTURE

Gradient methods are often compared to a ball rolling along
some surface. Neglecting momentum and assuming that the ball
is infinitely small, it will follow the path of steepest descent
exactly. This is a powerful illustration which, consequently, also
highlights the method’s fundamental flaws. With little effort,
one can visualize any number of surfaces on which the ball
might become permanently trapped before ever reaching its
desired destination. Take, for example, a flight of stairs as in
Fig. 1. Even though the behavior of the surface is relatively
simple, it is clear that no matter where the ball on the left
is placed, it will never find its way to the foot of the stairs.
Although the staircase clearly exhibits a global trend which
may be determined with only a limited amount of information,
the ball is still incapable of proceeding. The advantage of this
illustration is that it makes the solution blatantly obvious: Use
a bigger ball. Although changing the size of the ball would not
change the gradient of the surface, it will make the ball more
sensitive to the large-scale behavior, allowing it to successfully
descend the stairs. After all, all of the relevant information for
descending a staircase can be found at the corners of the indi-
vidual steps. While steps may be an essential part of a staircase,
from the perspective of minimization, they are nothing more
than noise. Furthermore, by actively allowing the ball to expand
and contract as it descends, it is possible to navigate on as large
or small a scale as necessary. This is the basic principle by
which the proposed method operates.

III. PROPOSED METHOD

The key feature of the proposed method is the way in
which the gradient is approximated. During each iteration, the

0278-0046/$25.00 © 2008 IEEE

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

HEWLETT et al.: OPTIMIZATION USING A MODIFIED APPROACH WITH EVOLUTIONARY ENHANCEMENT 3375

Fig. 1. (Left) Ordinary gradient methods are easily trapped on complex or
piecewise constant optimization surfaces. (Right) The proposed method is able
to overcome these obstacles by expanding the radius of its population-based
gradient approximation.

Fig. 2. Simplified flowchart depicts the basic operation of the proposed
algorithm.

algorithm generates a “population” of points within a spheri-
cally bounded region. A portion of the generated set lies on the
perimeter of the bounded region, and it is these members of the
population which are used in the approximation of the gradient.
Next, an additional point is generated in the direction of the
approximated gradient and is added to the current population.
Finally, the fittest member of the population is compared to the
current best solution, and the population’s center and radius are
updated accordingly. The basic flow of the algorithm is shown
in Fig. 2.

A. Approximating the Gradient

As previously noted, the gradient approximation is the defin-
ing feature of the proposed method. The generalized process
for computing it is presented in the following in a step-by-step
manner.

Let x0 ∈ Rn be the center of a population P with radius r,
and let y0 = f(x0) be the value of the objective function f :

Rn → R at x0.

1) First, generate a set of n random vectors
{∆x1,∆x2, . . . ,∆xn}, each of length r, and define an
n × n matrix

∆X =

∆x1
...

∆xn

 .

2) Now, let xi = ∆xi + x0, and define the vector y =
[y1, . . . , yn]T, where

yi = f(xi) (1)

for i = 1, . . . , n. It should be clear from (1) that each
value yi corresponds to the value of the objective function
at the randomly generated point xi, which lies on the
perimeter of the population.

3) Finally, compute the gradient approximation using

∇f = ∆X−1 · (y − y0). (2)

It may appear, and understandably so, that a significant leap has
been made between steps 2) and 3). Therefore, for the sake of
clarity, a short derivation of (2) is included.

Let f be an n-dimensional scalar function. A linear
approximation of f with respect to some point x0 =
(x01, x02, . . . , x0n) may be found using the first two terms of
the Taylor series expansion

f(x) ≈ f(x0) +
∂f

∂x1
· ∆x1 +

∂f

∂x2
· ∆x2 + · · · + ∂f

∂xn
· ∆xn

= f(x0) + ∇f |x0 · ∆x. (3)

Solving this equation for the gradient yields

∇f |x0 ≈ ∆f

∆x
=

f(x) − f(x0)
x − x0

. (4)

By generating a point x in the vicinity of x0, it is possible to
obtain a numerical approximation of ∇f |x0 using (4). However,
for n > 1, (4) is an invalid expression because it implies that
∆x is a vector and therefore has no inverse. Thus, in order to
generalize (4), f is evaluated for a set of n linearly independent
points, allowing ∆x and ∆f to be replaced by the n × n matrix
∆X and the n × 1 vector of corresponding function values ∆f .
This leads to the generalized form

∇fn×1 ≈

∆x11 · · · ∆x1n
...

. . .
...

∆xn1 · · · ∆xnn

−1

n×n

f(x1) − f(x0)
...

f(xn) − f(x0)

n×1

≈∆X−1 · ∆f (5)

which is equivalent to (2).

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

3376 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

B. Modified LM Update Rule

Once the gradient is computed, an additional point xn+1 is
generated in the direction of the approximation. The proposed
method uses a modified version of the Levenberg–Marquardt
(LM) algorithm [14] update rule for this purpose. For a scalar-
valued function f : Rn → R, the LM update rule may be
written as

x(k+1)
n+1 = x(k)

0 − (∇f · ∇fT + µI)−1∇f · y(k)
0 (6)

where k is the current iteration and µ acts as a damping factor
which reduces oscillation by actively controlling the step size.
One who is familiar with the LM algorithm may notice that
the Jacobian has been replaced by the gradient in (6). This
is because the Jacobian is defined as the matrix of all first-
order partial derivatives of a vector-valued function. Thus,
for a scalar-valued function, the Jacobian is, by definition,
the transpose of the gradient. Although the proposed method
may be extended to handle vector-valued functions, the version
presented here is intended for use with scalar-valued problems.
Thus, the Jacobian is replaced by the gradient. This is not the
only modification. For the proposed implementation, the rule
is also modified to account for the population radius r. This
is done by adding a term which ensures that the length of the
update step will be no smaller than the population radius r.
This modification is needed to ensure that when the algorithm
encounters local minima, the step size will exceed the radius
of the current population, thus providing greater diversity. The
modified version of the rule is written as

x(k+1)
n+1 = x(k)

0 −(∇f · ∇fT+µI)−1∇f · y(k)
0 +

∇f

‖∇f‖ · r(k).

(7)

The added term in (7) is simply a vector of length r in the
direction of ∇f .

It is important to note that the algorithm presented here,
using the modified version of the LM update rule, is but one
of many possible implementations. In other words, the shaded
box in Fig. 2 may be replaced with any number of existing
gradient methods without compromising the underlying prin-
ciples. The only requirement is that the gradient be calcu-
lated in the previously described fashion. In fact, the proposed
method was specifically designed with this sort of flexibility
in mind. Therefore, the update rule may be readily exchanged
with another second-order method such as the BFGS method
[15] or the closely related Davidon–Fletcher–Powell algorithm,
which has even been shown to outperform LM in certain appli-
cations [16].

C. Assembling the Population

The population P is generated in two parts with a combined
size of λ. The primary population

A = {x1, . . . ,xn+1} (8)

is created in the two previous steps, and is of size n + 1,
whereas the secondary population

B = {xn+2, . . . ,xλ} (9)

consists of a set of m points which are randomly distributed
within the region defined x0 and r. Here, the value of m is a
user-defined parameter and may be assigned any nonnegative
integer value including zero. This leads to the following defini-
tions for P and λ:

P = {x1, . . . ,xn+1,xn+2, . . . ,xλ} = A ∪ B (10)
λ =n + 1 + m. (11)

While the inclusion of A in P can provide a noticeable increase
in the rate of convergence when applied to relatively complex
optimization surfaces, in general, it is sufficient to let m = 0.

D. Selection Process

Once the P has been constructed according to (10), its
members are ranked with respect to fitness. Next, the fittest
member xopt ∈ P is chosen, and the following condition, also
shown in Fig. 2, is evaluated:

IF f(xopt) < fTol THEN
Terminate algorithm.

ELSE IF f(xopt) ≥ f(x0) THEN
Adjust population radius r.

ELSE
x0 = xopt.

END IF

where fTol is the maximum acceptable value for the objective.
Updating in this way essentially recycles the information used
in the approximation of the gradient, which would otherwise
be thrown away. This process also helps to guarantee the algo-
rithm’s stability because it is equivalent to running two methods
in parallel. That is, if the generated step does not result in a
lower value of the objective, the method will resort to selecting
the best of the points used in the gradient approximation. In this
way, it is still possible for the method to proceed. Furthermore,
because the current best solution is included in the selection
process, it is guaranteed that the value of the objective will
not increase from one iteration to the next. Therefore, while
the instability of the update rule may affect the algorithm’s
convergence, the algorithm itself will remain stable as a result
of selection.

E. Adjustment of the Population Radius

Any number of radius update rules may be devised; however,
the version presented here is perhaps the simplest. The method
uses a fixed step size ∆ to modify the radius over a bounded
user-defined interval [rmin, rmax], and is subject to the follow-
ing conditions:

IF r ≥ rmax THEN
r(k+1) = r(k) + ∆

ELSE
r(k+1) = rmin

END IF

where k is the number of the current iteration. Although this
method is simple, it proves to be adequate. The two features

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

HEWLETT et al.: OPTIMIZATION USING A MODIFIED APPROACH WITH EVOLUTIONARY ENHANCEMENT 3377

which make the method so basic are the use of a resetting
value of r, and a constant step size ∆. The constant step size
serves the purpose of increasing the population radius when
the algorithm encounters local minima, whereas the increase
in r causes the gradient approximation to become less sensi-
tive to local behavior, thereby allowing it to escape the traps
introduced by complex local behaviors. Conversely, if greater
accuracy of approximation becomes necessary for local search,
the algorithm is still able to proceed once r is reset.

IV. TEST FUNCTIONS

Four unique functions were used for testing. Each function
exhibits features deemed relevant for the purpose of compari-
son. All four functions are presented in generalized form, with
n being the dimension of the search space.

A. Test Function 1

T1(x) =
n∑

i=1

(xi

4

)4

, xi ∈ [−10,+10].

The first test function, T1, has a simple convex continuous
parabolic surface with a minimum of T1(x) = 0 located at the
origin. The function is used for two primary purposes. First, it
offers a fair comparison of the proposed method with some of
the more common gradient methods. Second, it highlights the
strengths of such methods, which are superior to evolutionary
methods when applied to problems of this type. Also, because
the function is fourth order, it will highlight the difference
between algorithms of higher and lower orders.

B. Test Function 2

T2(x) =
n∑

i=1

(
�xi	
4

)4

, xi ∈ [−10,+10].

The second test function, inspired by the illustration in
Section II, is of an identical form to that of T1, except that the
variables have been floored in order to make it piecewise con-
stant. T2 has a minimum value of zero for all x = [x1, . . . , xn]
which satisfy xi ∈ [0, 1) for i = 1, . . . , n. The features of this
function are useful for testing the hypothesis made in Section II.
If the proposed method operates as intended, there should be
little difference in performance between T1 and T2. The surface
of T2 is shown in Fig. 3.

C. Test Function 3

f(x) =
1
2

√√√√ n∑
i=1

�xi	2, xi ∈ [−100,+100]

g(x) =
x
4

+ (1 − cos(πx)) ·
(
tanh

(x
4

)
− 1

)2

T3(x) = g ◦ f.

Like T2, T3 is also piecewise constant, but with the addition
of local minima, which is the most common challenge faced by

Fig. 3. Piecewise-constant surface of T2 has a gradient of zero everywhere,
making it impossible for gradient methods to minimize.

Fig. 4. T3 combines the zero-gradient characteristics of T2 with the added
challenge of local minima.

Fig. 5. Cross-sectional view of T4 shows the severity of the numerous local
minima.

gradient methods. Although evolutionary methods may also be-
come susceptible to these traps if population diversity becomes
too low, they are still better suited for this type of problem.
T3 has a minimum value of zero for all x = [x1, . . . , xn]
which satisfy xi ∈ [0, 1) for i = 1, . . . , n. The surface of T3
is represented in Fig. 4.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

3378 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

TABLE I
LIST OF ALGORITHM PARAMETERS USED IN TESTING

TABLE II
SUCCESS RATE AND AVERAGE NUMBER OF FUNCTION EVALUATIONS

D. Test Function 4

T4(x) =
1
2

n∑
i=1

(
x2

i + tan(xi)2 − 10 · cos(2 · xi) + 10
)
,

xi ∈ [−100,+100].

T4 is the most extreme of the test functions. Although it is
piecewise continuous, each of the regions of continuity is a deep
local minimum. Thus, gradient methods are only capable of
minimizing T4 on a local basis. Due to the large number of local
minima, evolutionary methods which rely on modified mutation
strength for accelerated convergence may also be susceptible to
entrapment. The surface of T4 is shown in Fig. 5. In reality, the
“walls” which separate the local minima in Fig. 5 are infinitely
high. The minimum of T4 is zero and is located at the origin.

V. EXPERIMENTAL RESULTS

The proposed method is compared with four other known
algorithms. It should be noted that the purpose of the compari-
son is not to show that the proposed method is superior to all al-
gorithms over all problems; clearly, that is not the case. Instead,
the goal is to show that while the algorithm shows the high rate
of convergence and efficient local search characteristics of a
second-order gradient method, it is also capable of minimizing
complex classes of problems which are usually associated with
evolutionary methods. Thus, the evolutionary methods used for
comparison were selected on the basis of these same qualities.
The following is a list of the compared methods.

1) MSD: The Method of Steepest Descent is perhaps the
most well known of all gradient methods. MSD is a
simple first-order method which, as the name implies,
employs a user-defined step size to proceed in the direc-

tion of “steepest descent.” The method was chosen for
its high degree of stability as well as its reputation as the
standard gradient method.

2) LM: The LM algorithm, described briefly in
Section III-C, is regarded as one of the fastest gradient
methods available. The method was chosen as a bench-
mark among second-order algorithms. Furthermore, the
gradient portion of the proposed method uses an update
rule directly inspired by the LM algorithm, making the
method particularly relevant for comparison.

3) (µ, λ)-SA-ES: Self-Adaptive Evolution Strategy [17], a
member of the larger family of algorithms known as
Evolutionary Strategies [17], is a powerful evolutionary
method which uses self-adapted mutation strength for op-
timal convergence as well as an accelerated local search.
The method was chosen as a strong representative of the
power of evolutionary methods.

4) CMA-ES: Covariance Matrix Adaptation Evolutionary
Strategy [18], also a member of the family of Evolu-
tionary Strategies, is an evolution-path-related technique
which uses search-space information in a highly efficient
manner, making it exceptionally fast with respect to other
evolutionary methods.

5) PM: The proposed method.

The performance of each algorithm on each of the test
functions was evaluated over a series of 100 simulation runs
using the algorithm parameters listed in Table I. Each algorithm
was then evaluated with respect to rate of success as well as
the mean number of function evaluations per solution. The
tabulated results are presented in Table II, which represents
the case n = 2 for all four functions. For each of the test
functions, success was defined by the following two conditions:
1) f(x) < 10−6 and 2) no more than 105 total evaluations of the
objective.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

HEWLETT et al.: OPTIMIZATION USING A MODIFIED APPROACH WITH EVOLUTIONARY ENHANCEMENT 3379

Fig. 6. Graphical summary of the test results.

The fields in Table II highlighted in bold font denote the
top performers for each of the test cases. One may notice the
similarity between the proposed method and the LM algorithm
with regard to the first test function. Notice that, for this
particular function, the behaviors of the two algorithms are
nearly identical. This validates the earlier hypothesis that, in
the absence of local minima, the two methods should behave
in a similar manner. Note too the striking difference in the rate
of convergence between the two second-order gradient methods
when compared with the first-order method of steepest descent.
Another point of interest is the performance of the proposed
method on the second test. It was suggested in Section IV-B
that, assuming proper performance, little difference should be
observed between T1 and T2. This is confirmed by the results
in Table II. In fact, the algorithm actually performs better. This
behavior is a result of the increased population radius coupled
with the modified LM update rule, which, when used together,
increase the rate at which the proposed method traverses the
optimization surface.

Finally, notice the similarity between the proposed method
and that of CMA-ES with respect to T3 and T4. In fact,
for T4, the similarities are striking. When applied to these
more complex surfaces, the behavior of the algorithm changes
drastically, and yet there seems to be little, if any, effect on the

level of performance. What is most striking about the results
in Fig. 6 is the change in behavior between T1 and T4. As
the nature of the test functions becomes more complex, the
behavior of the proposed method changes from a second-order
gradient method to one which bears a striking resemblance to
that of evolutionary computation.

VI. CONCLUSION

An optimization algorithm was presented, which incorpo-
rates features of both gradient and evolutionary methods. The
algorithm was tested over a series of test functions, each chosen
to typify commonly faced difficulties. The proposed method
was then compared with a set of known algorithms which
included both gradient and evolutionary methods. It was shown
from the results that the proposed method was able to not only
emulate both classes of algorithms based on the behavior of a
given function but also outperform the compared methods in
terms of rate of success and average number of evaluations
of the objective. While the presented implementation shows
a great deal of promise, its discussion is intended only as
an introduction to the proposed method. Thus, for the sake
of simplicity, a number of known improvements have been
omitted for inclusion in future versions of the algorithm.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

3380 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

REFERENCES

[1] J. C. Derenick and J. R. Spletzer, “Convex optimization strategies for
coordinating large-scale robot formations,” IEEE Trans. Robot., vol. 23,
no. 6, pp. 1252–1259, Dec. 2007.

[2] S.-B. Roh, W. Pedrycz, and S.-K. Oh, “Genetic optimization of fuzzy
polynomial neural networks,” IEEE Trans. Ind. Electron., vol. 54, no. 4,
pp. 2219–2238, Aug. 2007.

[3] L. dos Santos Coelho and B. M. Herrera, “Fuzzy identification based on a
chaotic particle swarm optimization approach applied to a nonlinear yo-yo
motion system,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3234–3245,
Dec. 2007.

[4] S.-K. Oh, W. Pedrycz, and H.-S. Park, “A new approach to the de-
velopment of genetically optimized multilayer fuzzy polynomial neural
networks,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1309–1321,
Aug. 2006.

[5] F.-J. Lin, P.-K. Huang, and W.-D. Chou, “Recurrent-fuzzy-neural-
network-controlled linear induction motor servo drive using genetic
algorithms,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1449–1461,
Jun. 2007.

[6] F. Grimaccia, M. Mussetta, P. Pirinoli, and R. E. Zich, “Genetical swarm
optimization (GSO): A class of population-based algorithms for antenna
design,” in Proc. 1st ICCE, Oct. 10–11, 2006, pp. 467–471.

[7] F. Grimaccia, M. Mussetta, P. Pirinoli, and R. E. Zich, “Optimization of
a reflectarray antenna via hybrid evolutionary algorithms,” in Proc. 17th
Int. Symp. EMC-Zurich, Feb. 27–Mar. 3, 2006, pp. 254–257.

[8] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Optimal design of digital IIR filters
by using hybrid taguchi genetic algorithm,” IEEE Trans. Ind. Electron.,
vol. 53, no. 3, pp. 867–879, Jun. 2006.

[9] Y. Yu and Y. Xinjie, “Cooperative coevolutionary genetic algorithm for
digital IIR filter design,” IEEE Trans. Ind. Electron., vol. 54, no. 3,
pp. 1311–1318, Jun. 2007.

[10] R. Salomon, “Evolutionary algorithms and gradient search: Similarities
and differences,” IEEE Trans. Evol. Comput., vol. 2, no. 2, pp. 45–55,
Jul. 1998.

[11] M. Bundzel and P. Sincak, “Combining gradient and evolutionary ap-
proaches to the artificial neural networks training according to principles
of support vector machines,” in Proc. IEEE IJCNN, Jul. 16–21, 2006,
pp. 2068–2074.

[12] X. Hu, Z. Huang, and Z. Wang, “Hybridization of the multi-objective evo-
lutionary algorithms and the gradient-based algorithms,” in Proc. CEC,
Dec. 8–12, 2003, vol. 2, pp. 870–877.

[13] J. Hewlett, B. Wilamowski, and G. Dundar, “Merge of evolutionary com-
putation with gradient based method for optimization problems,” in Proc.
IEEE ISIE, Vigo, Spain, Jun. 4–7, 2007, pp. 3304–3309.

[14] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM J. Appl. Math., vol. 11, no. 2, pp. 431–441, Jun. 1963.

[15] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York:
Springer-Verlag, 2006, pp. 136–143.

[16] S. Abid, A. Mouelhi, and F. Fnaiech, “Accelerating the multilayer per-
ceptron learning with the Davidon Fletcher Powell algorithm,” in Proc.
IJCNN, 2006, pp. 3389–3394.

[17] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A comprehensive
introduction,” Nat. Comput., vol. 1, no. 1, pp. 3–52, 2002.

[18] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),” Evol. Comput., vol. 11, no. 1, pp. 1–18, 2003.

Joel D. Hewlett (S’08) received the B.S. degree
in electrical engineering from Auburn University,
Auburn, AL, where he is currently working to-
ward the M.S. degree in electrical and computer
engineering.

He is a Research Assistant with the Department
of Electrical and Computer Engineering, Auburn
University. He was a Systems Analyst with Delta
Research, Inc., Huntsville, AL. His main research
interests include intelligent systems, neural net-
works, numerical optimization, and evolutionary

computation.
Mr. Hewlett is a Reviewer for the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS.

Bogdan M. Wilamowski (M’82–SM’83–F’00)
received the M.S. degree in computer engineering in
1966, the Ph.D. degree in neural computing in 1970,
and the Dr. Habil. degree in integrated circuit design
in 1977.

He received the title of Full Professor from the
President of Poland in 1987. He was the Direc-
tor of the Institute of Electronics (1979–1981) and
the Chair of the Solid State Electronics Depart-
ment, Technical University of Gdansk (1987–1989),
Gdansk, Poland. He was a Professor with Gdansk

University of Technology (1987–1989), Gdansk; University of Wyoming,
Laramie (1989–2000); University of Idaho, Moscow (2000–2003); and Auburn
University, Auburn, AL (2003). He was also with the Communication Institute,
Tohoku University, Sendai, Japan (1968–1970); Semiconductor Research In-
stitute, Sendai (1975–1976); Auburn University (1981–1982 and 1995–1996);
and University of Arizona, Tucson (1982–1984). Currently, he is the Director of
the Alabama Micro/Nano Science and Technology Center and a Professor with
the Department of Electrical and Computer Engineering, Auburn University.
He is the author of four textbooks and about 300 refereed publications and is
the holder of 28 patents. He was the Major Professor for over 130 graduate
students. His main areas of interest include computational intelligence and soft
computing, CAD development, solid-state electronics, mixed signal and analog
signal processing, and network programming.

Dr. Wilamowski was the President of the IEEE Industrial Electronics Society
(2004–2005). He served as an Associate Editor for the IEEE TRANSACTIONS

ON NEURAL NETWORKS, IEEE TRANSACTIONS ON EDUCATION, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Journal of Intelligent and
Fuzzy Systems, Journal of Computing, International Journal of Circuit Sys-
tems, and IES Newsletter. Currently, he is the Editor-in-Chief of the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS.

Günhan Dündar (M’89) was born in Istanbul,
Turkey, in 1969. He received the B.S. and M.S.
degrees in electrical engineering from Boǧaziçi
University, Istanbul, Turkey, in 1989 and 1991, re-
spectively, and the Ph.D. degree in electrical engi-
neering from Rensselaer Polytechnic Institute, Troy,
NY, in 1993.

In 1994, he was a Lecturer with Boǧaziçi Uni-
versity, teaching courses on electronics, electronics
laboratory, IC design, electronic design automation,
and semiconductor devices. During August 1994–

November 1995, he was with the Turkish Navy and taught courses on elec-
tronics, electronics laboratory, and signals and systems at the Turkish Naval
Academy, Istanbul. Since 1995, he has been with Boǧaziçi University, where
he is currently a Professor in, and the Department Chairman of, the Department
of Electrical and Electronic Engineering. Between 2002 and 2003, he was
with the Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, on
sabbatical leave. His research interests include analog integrated circuit design,
CAD for analog design, and soft-computing circuits.

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:32 from IEEE Xplore. Restrictions apply.

