
 

 

 
Abstract—The paper describes a multiobjective optimization 
method which combines a second order algorithm with an 
enhanced evolutionary search in order to obtain a set of points 
which lie on the Pareto-optimal front. The second order portion 
of the method makes use of a “quasi-Jacobian” modification of 
the Levenberg-Marquardt algorithm, while the evolutionary 
portion involves a population based search which follows a 
Pareto defined “gradient.” Both methods are described in detail, 
and experimental results are included. 

I. INTRODUCTION 

 
Genetic algorithms (GA’s) currently constitute the prevailing 
paradigm in the field of multiobjective optimization 
[1][2][3][5], however, despite their relative power, genetic 
algorithms are known to be significantly slower than gradient 
based methods. For this reason, single objective problems are 
most often solved using gradient methods, while GA’s are 
used for only the most complex of surfaces. Unfortunately, 
this trend does not carry over to the multiobjective realm. The 
added complexity of the multiobjective problem (MOP) 
greatly reduces the effectiveness of the gradient approach. 
Furthermore, MOP’s introduce the concept of Pareto 
efficiency which allows for, and in fact requires, an entire set 
of feasible solutions to be found, a task for which the gradient 
methods are simply not equipped. In this paper, a method is 
introduced by which the evolutionary process may be 
accelerated when used in tandem with a second order 
approach. Though this method has been shown to be effective 
for single-objective problems [7][9], it remains largely 
unexplored for multiobjective applications (a similar approach 
has been explored in [6], however the approach presented here 
differs in a number of ways including the methods of 
evolutionary computation and second order approximation. 
The interested reader is encouraged to explore both methods 
since each one offers a unique set of tools.)  
 The paper is arranged as follows: Section two offers an 
overview of basic concepts and terminology related to 
multiobjective optimization, and is intended primarily for the 
uninitiated reader. Those who are already familiar with the 
subject may skip this section, however, the notation presented 
here will be used throughout the remainder of the paper.  
 
Section three discusses the specifics of the second order 
method, which includes a derivation of the “quasi-Jacobian.”  

 
The details of the pseudo-evolutionary process are presented 
in section four, followed by the experimental results and 
conclusion. 

II. MULTIOBJECTIVE OVERVIEW 

 
The fundamental difference between single-objective and 
multi-objective optimization problems is the concept of Pareto 
efficiency. While Single-objective problems generally give 
rise to a single most efficient solution, this is not the case for 
MOP’s.  Instead, MOP’s generally give rise to an entire set of 
solutions based on the Pareto efficiency. For this reason it is 
important to offer a formal definition of this concept, and to 
establish some useful notation. 
 

A. Definitions and Notation 

 
Definition 1 Consider a multiobjective minimization problem 
with m decision variables and n objectives: 
 

))(),...,(()( 1 xxxy nfff ==                    (1) 

 

Where Xxx m ∈= ),...,( 1x is a decision vector in the 

parameter space X, and Yyy m ∈= ),...,( 1y is an objective 

vector in the objective space Y. A decision vector X∈a is 
said to dominate a decision vector X∈b  (also written 

ba ) if and only if 
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Definition 2 Let X∈a be an arbitrary decision vector. 
 

1. The decision vector a  is said to be nondominated 
regarding a set XX ⊆' if and only if there is no vector 
in 'X  which dominates a ; formally 
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2. The decision vector a is Pareto-optimal if and only if 
a  is nondominated regarding X. 

 
Definition 3 Consider the set of decision vectors XX ⊆' . 

 
1. The set 'X is denoted as a local Pareto-optimal set if 

and only if 
 

δε <−∧<−
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Where ⋅  is a corresponding distance metric and 

0,0 >> δε . 

2. The set 'X  is called a global Pareto-optimal set if and 
only if  

 
a'aaa ::'' XX ∈∃/∈∀                      (5) 

 
It is important to note that a globally Pareto-optimal set does 
not necessarily contain all Pareto-optimal solutions. The set of 
all globally Pareto-optimal solutions is commonly referred to 
as the Pareto-optimal front. 
    

B. A Graphical Representation of Pareto Efficiency 

Each of the definitions above may be understood graphically 
via the objective space, and in fact, this technique is quite 
useful in the comparison of multiobjective algorithms. Using 
figure 1, the definitions from the previous section can be 
restated to offer a graphical representation of Pareto 
efficiency. 
 
 

 
 

Fig. 1 Geometric view of Pareto-efficiency 
 
 

Definition 1 For the arbitrarily chosen point y in figure 1, any 

point which lies in the green shaded region is said to be 

dominated by y , whereas any point which lies in the blue 

shaded region is said to dominate  y . 

 
Definition 2 For a point 'a X∈  which corresponds to the 
objective point y , if there is no point 'a' X∈ such that y'  lies 

in the blue shaded region, a is said to be non-dominated 
regarding 'X . 
 
Definition 3 For every point 'X∈a  with objective y , there is 

no point 'X∉a'  in the neighborhood of a for which y'  lies in 

the blue shaded region, then 'X  represents a local Pareto 
optimal set. For the case in which (9) holds for any arbitrary ε  
and δ , 'X  is said to represent a globally Pareto optimal set.  
 

A 2-dimensional example of an objective space is shown in 
figure 2. The blue region represents the set of all objective 
vectors ))(),(( 21 xx ff  such that X∈x . It should be evident 

that each of the three bold lines on the border of the blue 
region represents a global Pareto-optimal set. It should also be 
evident that together, these three segments represent the 
Pareto-optimal front. There are, however, some less obvious 
observations which should also be noted. Firstly, the global 
minimum of each objective function will lie on the Pareto-
frontier. (see ba, ). Also, The minimum of one objective with 
respect to the Pareto-front will correspond to the maximum of 
the other.  (see ba, ) 
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 Fig. 2 Example of objective space in two dimensions 
 

 
The importance of these observations will become evident in 
the following section. 

III. DESCRIPTION OF SECOND ORDER METHOD 

 
It will be shown in section 4 that the correct placement of the  
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initial population (i.e. near the Pareto-optimal front) greatly 
enhances the performance of the evolutionary method. Thus, 
the first step in the proposed method involves searching for a 
set of suitable starting points from which the evolutionary 
process may proceed. This is where the two observations 
made at the end of the last section become especially useful. 
Taken together, the two observations imply that minimization 
of each individual objective will result in decision vectors 
which lie at opposite ends of the Pareto optimal front. In other 
words, a set of suitable starting points may be found by 
breaking the multi-objective problem up into a set of single 
objective problems. In this way, suitable starting points may 
be found using the gradient methods mentioned earlier, which 
will greatly accelerate the process. For this purpose, a 
powerful and relatively fast second order method known as the 
Levenberg-Marquardt algorithm (LMA) was selected. LMA 
interpolates between the Gauss-Newton algorithm and the 
method of gradient descent. Although the Gauss-Newton 
Algorithm generally converges faster than LMA when applied 
to well-behaved functions, LMA is more robust, allowing it to 
solve more difficult problems. LMA employs the following 
update rule: 
 

fT
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where μ is an adjustable damping factor, J is the Jacobian 

matrix, and f is a vector containing the values of the 

functions to be minimized. The key to the computation of 
LMA lies in the Jacobian matrix. For this, the proposed 
method makes use of a numerical approximation of the 
Jacobian matrix, which is described below. 
 

A. Quasi-Jacobian 

Given a function f , a linear approximation of f at the point 

),...,,( 21 mxxx=x  may be found using the first two terms of 

the Taylor series expansion. 
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Solving this equation for the gradient yields  
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The goal here is that (10) might be used to obtain a numerical 

approximation of f at x , but for ),...,,( 21 mxxx=x ,  solving 

for fx∇  results in a system of one equation with m  

unknowns. This means that for any case where 1>m , (10) is 
underdetermined and fx∇  cannot be found, however if (10) 

is applied to not just one, but to a whole set of decision 
vectors, any number of equations can be found. More 
specifically, for an m -dimensional function f , finding the 

gradient of f at some point x  requires that the value of f  be 

known at a minimum of m  linearly independent points. This 
may be represented by the following matrix equation. 
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This method may then be extended to the multiobjective case 
by expressing the Jacobian matrix in terms of (11). For a set of 
n functions, the Jacobian matrix is expressed 
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As is evident from (12), the Jacobian is simply a matrix of row 
vectors which correspond to the gradients of each of the 
functions, and can therefore be rewritten using (11), which 
yields the following expression, 
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It is important to note that for a population whose size exceeds 
the number of dimensions of f , i.e. m>Δ )(Rank X , (11) and 

(13)  may still be applied using the pseudo-inverse of XΔ [4].  
Note also that the accuracy of the approximation in (10), and 
therefore (11) and (13), depends entirely on the size of xΔ . 
This would imply that the accuracy of the approximation is 
inversely related to the geometric size of the population. 

IV. ENHANCED-EVOLUTIONARY METHOD 

 
The second portion of the proposed method involves the 
implementation of an enhanced-evolutionary process. This 
process is evolutionary in the sense that it uses the 
combination of desirable attributes within a given population 
to produce an ever improving set of successive populations. 
What sets the method apart from more traditional approaches 
is the way in which the successive populations are generated. 
Assuming the initial population is centered about a point 
which lies on the Pareto-front, an issue which was addressed 
in the previous section, successive populations may be 
generated by determining the Pareto-efficiency of the existing 
population and simply shifting the center point accordingly. 
Furthermore, if the initial starting point is located at the 
minimum of the first objective, then the non-dominated 
member of the current population for which the second 
objective is lowest will lie on or near the Pareto-front in the 
direction of the opposite end. Repeating this process will 
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result in a series of partially overlapping populations which 
traverse the solution set using a sort of Pareto-defined 
gradient.  
 

A. A Pareto Based Gradient 

 
Given an MOP with n  objectives, for two points X∈ba, , 
the Pareto-efficiency of a  with respect to b  may be 
determined using the following rule, 
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For a given population P  and solution set X , (14) may be 
used to determine the non-dominated subset of P   
 

PXPPP ⊆−∪∈∀∈∀= },:{' baba  

 
Finally, given a population of decision vectors P , centered 
about c , the “Pareto-gradient” for P with respect to objective 
f  is defined in the following manner: 

 

minac −=G  

where 
)'()(),''(:'min aaaaa ffPP <∈∀∈=  

V. EXPERIMENTAL RESULTS 

 
The proposed method was tested for a number of different 
MOP’s in order to determine performance. two of the tested 
cases are presented below in order of increasing complexity. 
An overview is offered for each problem, followed by the 
corresponding test results. Each Problem was also tested using 
the non-dominated sorting genetic algorithm 2 (NSGA-II) [8], 
a well known evolutionary method which has seen widespread 
use. The second test case offers a unique visual example of the 
algorithm’s behavior, and is therefore presented in slightly 
greater detail. 

A. Overview of the first test case 

The first test case is a simple single variable MOP which was 
originally presented in [5], and briefly discussed in [3]. The 
problem is comprised of a pair of parabola’s which are slightly 
offset. The problem may be formally stated: 
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The major obstacle posed by this problem is the large set of 
variable bounds which may pose some problems for 
evolutionary approaches if the initial starting point is selected 
at a great distance from the desired solution set. The proposed 
method, on the other hand, is suited quite well for such 
situations. 
 

B. Results for the first test case 

 
For testing, a random point was chosen and the algorithm was 
applied. A near worst case starting point of -9.1e5 was 
generated. From here, the second order method was run for a 
total of 20 iterations and value of 9455.0=x  was selected, 
about which the first population was generated. A total of 5 
populations were used, each having 20 points. In all, 140 
points were evaluated (including calculation of the quasi-
Jacobian) over the range [-9.1e5, 2.2], of which 80 were 
optimal solutions on the interval [0, 2]. The solution set for 
NSGA-II was also found for the sake of comparison. For 
NSGA, 7 populations were used in order to maintain an equal 
number of total points, and the boundary conditions were 
decreased to [-100,100]. Out of 140 total points generated over 
the range [-80,97], 20 were Pareto-optimal solutions. The final 
solutions for both methods are plotted in figure. 
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Fig. 3 Results for the first test case 
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The squares in figure 3 represent the members of the solution 
set produced by the proposed method, while the solution set 
found using NSGA-II is represented by the diamonds. The 
black curve represents the Pareto-optimal front. It is clear 
from figure 3 that the both algorithm performed well in terms  
of convergence, however in terms of diversity, the hybrid 
method is shown to be superior. Despite the significant 
difference in the sizes of the search areas, the hybrid method 
still produced four times as many solutions. 
 

C. Overview of the second test case 

 
The second MOP tested is a 2 variable problem first presented 
in [2], and later in [3]. Here, the problem was chosen in order 
to offer a visual representation of how the algorithm performs 
in the objective space as well as how it behaves in parametric 
space. The ability to plot the decision vectors in 3 dimensions 
will offer a great deal of insight into how the algorithm 
narrows its search, whereas the objective plot only gauges the 
algorithms performance. Ultimately, performance is the key 
issue, however, understanding the algorithm’s behavior will 
allow greater appreciation of its effectiveness.  

The first problem seeks to minimize the two following 
objectives: 

 
Let  
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Fig. 4 Sum of the objective functions 

 
In order to gain a basic understanding of the general nature of 
the parameter space, 1f  and 2f  are shown in Fig 4. It is clear 

from figure 4 that while 2f  is well behaved and has only one 

minimum, 1f  Is significantly more complex, having multiple 

local minima. This behavior will ultimately result in a Pareto 
optimal set which is disconnected in both the parameter space 
and in the objective space. To see this more clearly, a 
parameter space representation of the Pareto-optimal front is 
shown in Figure 5. 
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Fig. 5 Pareto-front as viewed from the parameter space 

 
 

The blue shaded regions in figure 5 represent the Pareto-
optimal front. Region 1 contains the minimum of 1f , and 

includes all surrounding decision vectors for which the 
gradients of 1f  and 2f  are opposite. Region 2 contains a 

global and local minimum of 2f  and 1f  respectively, which 

are connected by the behavior of the boundary region.  
 

D. Results for the second test case 

 
For the first test case, starting points were sought using 1f ,  

2f , and )( 21 ff + . Each function was minimized using “quasi-

Jacobian” modification of the Levenberg-Marquardt algorithm 
described in section 2, in order to find the corresponding 
starting points. The pseudo-evolutionary method described in 
section 3 was then applied for each of the starting points, and a 
Pareto-optimal solution set was formed using the efficiency 
test from (14). 50 populations of 25 decision vectors were 
generated for each of the three starting points. The results are 
presented in figures 6 and 7. 
 

Joel Hewlett, Bogdan M. Wilamowski, Okyay Kaynak • Accelerated Evolutionary Algorithm with Second-order Enhancement

107



 

 

 
Fig. 6 Population centers in parametric space 

 
Figure 6 shows how the algorithm directs its search of the 
parameter space. The center of each population of decision 
vectors is represented by a red dot, while the objective vectors 
themselves have been omitted for the sake of clarity. From 
figures 5 and 6, the efficiency of the search method should be 
evident by comparison. By narrowing the search space using 
the second order method, the proposed method has greatly 
increased the performance of the evolutionary process. It is 
clear from figure 6 that the large majority of the populations 
were generated in very close proximity to the Pareto-front. 
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 Fig. 7 Pareto-optimal set plotted in objective space 
 

A visual representation of the algorithm’s performance is 
offered in Figure 7. The boxes represent members of the 
solution set obtained by the modified algorithm, while the 
diamonds show those solutions found using NSGA-II(again, 
for the sake of clarity, only a sample of the solution set is 
shown here). The Pareto-optimal front is represented by the 
black curve. It is evident from the figure that the proposed 
method has outperformed NSGA-II in terms of both 
convergence and diversity. The algorithm has converged to a 

solution set which is nearly indistinguishable from the Pareto-
front, with a relatively even distribution. Out of a total of 2000 
points generated, 324 were selected as Pareto optimal 
solutions using the modified method, while NSGA-II only 
yields a solution set of 100 points with a lesser degree of 
convergence. 

VI. CONCLUSION 

 
A new approach for multiobjective optimization was 
proposed. The proposed method combines a second order 
gradient search with an evolutionary algorithm in order to 
increase the rate of convergence, while also improving the 
diversity of the solution set. The resulting algorithm was 
tested using a set of problems with varying degrees of 
difficulty. The results of these tests were presented, and the 
proposed method was shown to outperform its unmodified 
counterpart in each and every case. The enhanced algorithm 
showed significant improvement in both solution set diversity 
and rate of convergence, which confirms the authors’ initial 
hypothesis.  
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