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Abstract - Nonlinear processes are difficult to control because
there can be so many variations of the nonlinear behavior. The
issue becomes more complicated if a nonlinear characteristic of
the system changes with time and there is a need for an adaptive
change of the nonlinear behavior. These adaptive systems are
best handled with methods of computational intelligence such as
neural networks and fuzzy systems. The problem is that
development of neural or fuzzy systems is not trivial.
Advantages and disadvantages of fuzzy systems will be

presented and compared, including Mamdani, Takagi-Sugeno
and other approaches. In the conclusion, advantages and
disadvantages of neural and fuzzy approaches are discussed with
a reference to their hardware implementation.

I. INTRODUCTION

Nonlinear control is one of the biggest challenges in modem
control theory. Traditionally, a nonlinear process has to be
linearized first before an automatic controller can be
effectively applied. This is typically achieved by adding a
reverse nonlinear function to compensate for the nonlinear
behavior so the overall process input-output relationship
becomes somewhat linear. The issue becomes more
complicated if a nonlinear characteristic of the system changes
with time and there is a need for an adaptive change of the
nonlinear behavior. These adaptive systems are best handled
with methods of computational intelligence such as neural
networks and fuzzy systems. However, developments of
neural or fuzzy systems are not trivial.
Neural networks are capable of approximating any

multidimensional nonlinear functions and as such they can be
very useful in nonlinear control [1][2]. But, until now there
was no precise method for determination of proper neural
network architecture. Currently this is more art than science.
Also, all known algorithms often have difficulties to converge
to a solution and this leads to a lot of disappointments and
frustrations. As a result many researches were discouraged
with neural networks.
In the case of fuzzy systems the system topology and

parameters are easier to define, but also in this case this is
more art than science. Fuzzy systems have very significant
limitations of the number of inputs.

This presentation will describe the current status of neural
networks and fuzzy systems. Comparison of various learning
algorithms for neural networks will be presented and specific
architectures, which are easy to train, will be described. Some
of these NN architectures need not to be trained at all. In the
case of fuzzy systems two practical approaches, Mamdani [3]
and TSK [4][5], will be described. Some more advanced fuzzy
systems will be also presented. Special fuzzy systems suitable
for training will be also shown. We will try to bridge two

words: neural networks which can be designed (need not to be
trained) and fuzzy systems, which are easy to train.

II. NEURAL NETWORKS

Fig. 1 shows several simple McCulloch and Pitts [1943]
neurons. These neurons are more powerful than logic gates.
Each neuron can implement many logic functions and what is
even more important is that without changing of network
topology different logic function can be realized by adjusting
weights and thresholds. For over a half of century we were
recognizing a tremendous power of neural networks but we
were not able to use them efficiently.
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A significant breakthrough occurred in 1978 when
Rumelhart [6] proposed the Error Backpropagation algorithm.
The algorithm itself was not that important as the fact that
instead a hard threshold functions and the soft sigmoid
functions were used. This way neural networks became
"transparent" for error signals and we could train multilayered
neural networks. Unfortunately the learning algorithms now
often are not converging to solutions. In order to undusted
problem let us analyze some simple neural networks.
A single neuron can divide only linearly separated patterns. In

order to select a shape of Fig. 2 (in two dimensions ) four
neurons have to be used. Fig. 2 shows the separation lines and
equation for all four neurons. Fig. 3. shows neural network
architectures with all network weights and sigmoidal
activation functions with various gains.
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Fig. 2. Two-dimensional input space with four sei
representing four neurons.
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neuron equations:

3x+y-3>0

AND x+3y-3>0

x-2 > 0

x-2y+2 >0

III. NEURAL NETWORK LEARNING

Several methods to training a single neuron (read single layer
of feed forward neural network) were developed such as:
* correlation learning rule Awu = cxid1
* instar learning rule Awi = c(xi - wi)
* outstar learning rule Awj = c(dj - wij)
* perceptron fixed rule: Awi cx1(d= - 01)

* perceptron adjustable rule: Awij = cnet xi (dj oj)
xf

Fig. 3. Neural network architecture for patterns of Fig. 1 and used
activation functions.

* LMS (Widrow-Hoff) rule: Aw. = cxi (di
* delta rule: Aw. = cxi fJ (d- o

-net1)

* linear regression (pseudoinverse) rule: w =(XTx) xTd
where:
wi =weight from ith tojth neuron
Aw1 =weight change for w
c =learning constant
xi =signal on the ith input

n

net1 = YXuwij +Wi+1j
i=l

(1)

0o = f(net1) output signal
In order to understand neural network learning let us consider
a neuron with eight inputs with binary signals and weights
such as
x =+1 -1 -1 +1 -1 +1 +1 -1
if weights w = x
w =+1 -1 -1 +1 -1 +1 +1 -1
then

(2)

Fig. 4. Surfaces on different nodes of neural networks of Fig. 3 for
neurons with the gain of activation function k=5.

o.tp.t k=2
output k=20X

(a) (b)
Fig. 5. Nonlinear mapping of the neural network of Fig. 3 for
different values of the neuron gains (a) k=20, (b) k=2

Neural network may separate patterns (perform
classifications) as shown in Fig. 5 (a) but also they can
produce very complex nonlinear shapes (see Fig. 5 (b)) The
question is how to design neural networks for arbitrary
nonlinear mapping? Can we just select randomly chosen
neural network architectures and train them?

n

net = Zwixi= 8
i=l

and this is the maximum value net=8 can have for any other
combinations net would be smaller. For example for the same
weights and slightly different input pattern:
x= +1 +1 -1 +1 -1 +1 +1 -1

(3)
n

net = Zwi xi= 6
i=l

One may notice that the maximum net value is when weights
are the same as the pattern (assuming that both weights and
patterns are normalized). Therefore, one can draw a
conclusion that during the learning process weights should be
changed the same way as input signals to these weights

Awji=cAA xji (4)
In the case of the delta rule for one neuron

j f(dj -oj) (5)

A. Error Back Propagation EBP

This rule can be extended for multiple layers as it is shown in
Fig. 6. Instead of a gain f' through single neuron the signal
gain through entire network can be used and this leads to the
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Error Backpropagation (EBP) algorithm, as it is illustrated in
Fig. 7. C. Quickprop algorithm by Fahlman

Fig. 6. Extension of delta rule for a feed forward network with
multiple layers.

AAI fl(ABl wll±+AB2 w21+ AB3 W31)
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x
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The fast learning algorithm was proposed by Fahlman [7] and it
is known as the quickprop.

(6)

(7)

w (t) = -oc S(j (t))+ YjAw. (t - 1)
Si] (t) =qEw(w ) (t)

ij

a learning constant
y memory constant (small 0.0001 range) leads to reduction of
weights and limits growth of weights
rq momentum term selected individually for each weight

D. RPROP Resilient Error Back Propagation

RPROP [8] is very similar to EBP, but weights adjusted
without using values of the propagated errors, but only its sign.
Learning constants are selected individually to each weight
based on the history

Aw, (t) - sgn( aE(w(t)))
aw,( (t)

sit E(w(t)) (t
ON

i

(8)

(9)

Fmin(a a, (t - 1), max )
a1j (t) = max(b aj (t -1), amin )

al Y (t-1)
Fig. 7. Error Backpropagation algoritm.

Many other learning algorithms which are derivatives of EBP
algorithm were developed. They are shortly described in
following sections

B. Gradient direction search

The EBP algorithm can be significantly speeded up, when
after finding components of the gradient, weights are modified
along the gradient direction until a minimum is reached. One
method to find a minimum along the gradient direction is the tree
step process of finding error for three points along gradient
direction and then, using a parabola approximation, jump
directly to the minimum (Fig. 8 (b)).
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(a) (b)
Fig. 8. Search on the gradient direction before a new calculation of
gradient components.

Error is propagated as in EBP and then each neuron is "trained"
using an algorithm to train one neuron such as pseudo inversion.
Unfortunately pseudo inversion may lead to errors, which are

sometimes larger than 2 for bipolar or larger than 1 for unipolar

F. Delta-bar-Delta

For each weight the learning coefficient is selected individually.
It was developed for quadratic error functions

for Sj (t - I)Dj (t) > 0
for S1Q(t - I)D1Q(t) < 0

otherwise

D,j (t) = aE(t)

SUj (t) = (I1- a)Dj(t)+ S Sj (t -1)

(10)

(1 1)

(12)

G. Levenberg-Marquardt Algorithm (LM)

Newton method is the principal second order method

Wk+l = Wk Ak g

where Ak is Hessian and g is the gradient

(13)
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for
for

otherwise

E. Back Percolation

sij (t) sij (t 1) > 0

sij (t) sij (t 1) < 0

I

a

A a,, (t) = -b a,, (t 1)
0
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The Newton algorithm works very well only for quasi linear
system. In nonlinear systems it often fails to converge. Also,
Computation of the Hessian is relatively expensive.
Levenberg and Marquardt made several improvements for the
Newton method. Instead of computing Hessian they are
computing a Jacobian

algorithm requires computation of the Jacobian J matrix at
each iteration step and the inversion of JTJ square matrix. In
the LM algorithm an N by N matrix must be inverted in every
iteration. Therefore LM algorithm is not very efficient to train
large neural networks.

IV. SPECIAL NEURAL NETWORK ARCHITECTURES
FOR EASY LEARNING

Because difficulties with neural network training several
special neural network architectures were developed which are
easy to train. These special neural network architectures will
be reviewed in following sections:
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and then Hessians and gradients are calculated using:

A=2JTJ
and

g = 2jT8e

A. Functional Link Networks

(15)

(16)

(17)

One-layer neural networks are relatively easy to train, but
these networks can solve only linearly separated problems.
One possible solution for nonlinear problems presented by
Nilsson [11] and then was elaborated by Pao [12] using the
functional link network are shown in Fig. 9. Using nonlinear
terms with initially determined functions, the actual number of
inputs supplied to the one-layer neural network is increased.

(a)
unipolar neuron

Resulting in the modified Newton method [9] [1O]:
bipolar neuron

output

S/XOR

Wk+l1 Wk -(JJk) Jke

LM algorithm combines the speed of the Newton algorithm
with the stability of the steepest decent method. The LM
algorithm uses the following formula to calculate weights in
subsequent iterations:

Wk = Wk -(J;Jk +1uI) Jke (19)

For t = 0 it becomes the Gauss-Newton method. For very
large jt the LM algorithm becomes the steepest descent or the
EBP algorithm. The m parameter is automatically adjusted at
every iteration in order to secure convergence.
While EBP usually requires several thousands iterations the

LM algorithm converges in several iterations. The LM

(b)
Fig. 9. Functional link networks (a) network architecture (b) used for
solution of the XOR problem

The problem with the functional link network is that proper
selection of nonlinear elements is not an easy task. In many
practical cases, however, it is not difficult to predict what kind
of transformation of input data may linearize the problem, and
so the functional link approach can be used.

B. Polynomial Networks

Polynomial networks are a subclass of functional link
networks, where for nonlinear functions polynomial terms are

used.
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special neurons. Each of these neurons responds only to the
input signals close to the stored pattern. The output signal hi
of the i-th hidden neuron is computed using formula

h1
- isl2 (20)

N ;'t 0 Ao X Z

summing
unipolar circuits
neurons

Fig. 10 Counterpropagation network

C. Counterpropagation networks

The counterpropagation network was originally proposed by
Hecht-Nilsen [13] This network, which is shown in Fig. 10,
requires numbers of hidden neurons equal to the number of
input patterns, or more exactly, to the number of input
clusters. The first layer is known as the Kohonen layer with
unipolar neurons. In this layer only one neuron, the winner,
can be active. The second is the Grossberg outstar layer.
A modification [14] of counterpropagation network is shown
in Fig. 11. This modified network is can be easily designed.
Weights in the input layer are equal to input patterns and
weights in the output layer are equal to output patterns.

0 FII

where:
ix =input vector

isi stored pattern representing the center of the i cluster

vi =radius of the cluster
The radial-based networks can be designed or trained.
Training is usually carried out in two steps. In the first step,
the hidden layer is usually trained in the unsupervised mode
by choosing the best patterns for cluster representation. An
approach, similar to that used in the WTA architecture can be
used. Also in this step, radii uv must be found for a proper
overlapping of clusters.
The second step of training is the error backpropagation
algorithm carried on only for the output layer. Since this is a
supervised algorithm for one layer only, the training is very
rapid.

hidden "neurons

Fig. 12. Radial Basis Function Network

Outputs
same as output weights

-2.3 3.12 -1 6.8 1.3 -1 4.1
0.2 -5.2 4.6 2.5 5.4 -4.5 0.3
5.23 -2.1 9.32 -1.32 -3.1 2.1 1.92
7.5 -0.34 -3.5 5.43 -2.4 4.87 -8.3
1.23 4.32 -8.1 -0.72 10.1 -2.1 -3.2

(b)
Fig. 11 Modification of the counter propagation network (network
architecture, (b) sample weights, which are equal to input and output
patterns.

D. Radial Basis Function Networks

The structure of the radial basis network is shown in Fig. 12
This type of network usually has only one hidden layer with

weights adjusted every step
once adjusted weights and then frozen

Fig. 13. Cascade correlation network

E. Cascade Correlation Networks

The cascade correlation architecture was proposed by
Fahiman and Lebiere [15]. The process of network building
starts with a one layer neural network and hidden neurons are

added as needed. In each training step, the new hidden neuron is
added and its weights are adjusted to maximize the magnitude of
the correlation between the new hidden neuron output and the
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residual error signal on the network output that we are trying to
eliminate. The output neurons are trained using the delta
(backpropagation) algorithm. Each hidden neuron is trained just
once and then its weights are frozen. The network learning and
building process is completed when satisfied results are obtained.
The learning process is limited to multiple one neuron (one
layer) training and it is very fast.

V. FUZZY SYSTEMS

Fuzzy systems give us another solution of the nonlinear
mapping problem. The principle of operation of the fuzzy
controller significantly differs from neural networks. Analog
values are at first converted into a set of fuzzy variables which
are processed by a fuzzy logic and then a new set of fuzzy
variables are converted back to analog value. Most commonly
used algorithms are Mamdani [3] and Tagagi-Sugeno-Ken
[4][5].

U)

analog \ O
inputs N

N

C/)
L-o

fuzzy O)a)CDO0
E

C/)
L-

o

fuzzyv azy' oD
0

E

a)

fuzzyv N

U_7

analog
output/

Fig. 14. Architecture of Mamdani fuzzy controller

A. Mamdanifuzzy controller

The block diagram of the Mamdani approach [3] is shown in
Fig. 14. The fuzzy logic is similar to Boolean logic but instead
ofAND operators, MIN operators are used and in place ofOR
operators, M\AX operators are implemented. The Mamdani
concept follows the rule of ROM and PLA digital structures
where AND operators are selecting specified addresses and
then OR operators are used to find the output bits from the
information stored at these addresses.
In some implementations, MIN operators are replaced by

product operators (signals are multiplied). The rightmost block
of the diagram represents defuzzification, where the output
analog variable is retrieved from a set of output fuzzy
variables. The most common is the centroid type of
defuzzification.

108 D X

0 1 2 3 4 5 6 7 8 9 10

Fig. 16. Design process for Mamdani type fuzzy controller

Let us assume that we have to design the Mamdani Fuzzy
controller having the required function shown in Fig. 15. A
contour plot of the same surface is shown in Fig. 16. In order
to design a fuzzy controller at first characteristic break points
should be selected for input variables. In our example we
selected 8, 13, 17, and 22 for X variable and 10, 18, and 24 for
Y variable. For higher accuracy, more membership functions
should be used. A similar process has to be done for the
output variable where values 0.8, 2, 4.5, 7.5, and 9.5 were
selected. The last step is to assign to every area one specific
membership function of the output variable. This is marked on
Fig. 16 by letters from A to F. The described above process
can be redefined by assigning different values for both inputs
and outputs.
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Fig. 15. Required control surface

Fig. 17. Control surface obtained with Mamdani Fuzzy controller.
30

20

10
B. TSKfuzzy controller

More recently Mamdani architecture was replaced by TSK
[4][5] (Takagi, Sugeno, Kang) architecture where the
defuzzification block was replaced with normalization and
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weighted average The block diagram of TSK approach is
shown in Fig. 18 The TSK architecture, as shown in Fig. X
(b), does not require M\AX operators, but a weighted average
is applied directly to regions selected by MIN operators. What
makes the TSK system really simple is that the output weights
are proportional to the average function values at the selected
regions by MIN operators. The TSK fuzzy system works as a
lookup table.
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learning, and PCA - Principal Component Analysis are
presented as a derivation of the general learning rule. The
presentation focuses on various practical methods such as
Quickprop, RPROP, Back Percolation, Delta-bar-Delta and
others. More advance gradient-based methods including
pseudo inversion learning, conjugate gradient, Newton and
LM - Levenberg-Marquardt Algorithm are illustrated with
examples.
Special neural architectures for easy learning such as

cascade correlation networks, functional link networks,
polynomial networks, counterpropagation networks, and RBF-
Radial Basis Function networks are described.
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