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Abstract— The paper describes an optimization method which
combines advantages of both evolutionary computation and gra-
dient based methods. The proposed method follows the general
concept of evolutionary computation, but uses an approximated
gradient for generating subsequent populations. The gradient is
not explicitly computed, but is instead estimated using minimum
solutions from neighboring populations. Experimental data shows
that the proposed method is not only robust, but is also compa-
rable to gradient methods with respect to speed of convergence.

I. INTRODUCTION

Gradient based search methods are known to be very
efficient, especially for cases in which the surface of the
solution space is relatively smooth, with few local minima.
Unfortunately, in cases where the solution space lacks this
relative uniformity, gradient methods become easily trapped
in the local minima commonly found on rough or complex
surfaces. Methods of evolutionary computation (including ge-
netic algorithms), on the other hand, are much more effective
for traversing these more complex surfaces, and are inherently
better suited for avoiding local minima. However, like the
gradient based approach, evolutionary computation has it’s
own significant weakness. This stems from the fact that despite
its reliability, solutions are often not optimal. Furthermore,
both methods are known to converge very slowly [4] [5][7].

The objective behind this work is to take advantage of both
methods by combining the desirable characteristics of each.
Unlike standard evolutionary computation, populations are
generated using the gradient, which is not directly calculated,
but is instead extracted from the properties of the existing
population. Several similar approaches have been undertaken
along this path [1] [2][3][4][5][6], but the method which is
proposed here has less computational complexity and is more
suitable for online hardware training. Simple computations
are repeated with every iteration, and the gradient is updated
simply by subtracting the coordinates of the best solutions
from the current and previous populations. The steepest decent
method, which is the most commonly used gradient method,
tends to approach the solution asymptotically, which results
in a much slower rate of convergence. By comparison, the
proposed method converges much more rapidly.

The paper is organized as follows: Section II describes
the proposed method in detail. Section III offers several

modifications, including methods for generating populations
along the gradient and for modifying the population density.
Some experimental results and statistical data are shown in
section IV.

II. THE PROPOSED METHOD

The proposed method is a hybrid algorithm which offers
both the relative speed of gradient descent and the methodical
power of evolutionary computation. Like the latter, this hybrid
algorithm relies on a randomly generated population of initial
points. It also shares the advantage of being an exclusively
feed-forward process. What separates this approach from
standard methods of evolutionary computation is the way in
which the successive populations are generated. This is where
the proposed method borrows more from the gradient based
approach. The hybrid approach relies on the calculation of a
“rough” gradient using the individual errors associated with
a given population. The minimum of these errors is deter-
mined and an entirely new population is generated about the
corresponding point. This offers a more directional approach
to the generation of successive populations. The result is
an algorithm which converges much more rapidly than the
combinational approach commonly associated with genetic
algorithms, while at the same time reducing the risks presented
by local minima.

A. Detailed Description

The method mentioned above is best represented as a four
step process. Although the algorithm technically involves only
three steps per iteration, an additional step is required to begin
the process.

1) Step 1: Choosing a Starting Point and Radius: Let f be
a function defined in Rn. Choose an initial center point c and
radius r. An initial minimum m must also be selected. For the
first iteration, let m = c.

2) Step 2: Generating a Random Population: With n being
the number of points per population, define a set of vectors
V = {v1,v2, ...,vn} such that

vik = rkXY + ck for i = 1...n (1)

where X is a random number ranging from 0 to 1, Y is
a normalized random vector, and k is the current iteration.
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Fig. 1. Four iterations in two dimensions

Using (1) creates a set of random vectors whose members
are centered about ck with magnitudes ranging from 0 to rk.
Therefore vik represent positional vectors of the points pik

which lie within the defined region.

3) Step 3: Approximation of the Gradient: Evaluate f(pik)
for i = 1...n. If ∀i(min(f(pik)) > f(mk)), repeat step two.
Otherwise, let mk+1 be p for which f(p) = min(f(pik)). An
approximate gradient vector gk can then be defined by taking
the difference between mk+1 and mk.

gk = mk+1 − mk

4) Step 4: Creating a New Center and Radius: The new
center should be shifted slightly so that the following pop-
ulation will lie in the general direction of the approximated
gradient. Using

ck+1 = αg + mk for α ≥ 1

allows the size of the shift to be controlled by α. If no shift
is desired, α can be set to 1, in which case ck+1 = mk+1.
In order to ensure that mk+1 lies within the new region, we
need rk+1 ≥ ‖ck+1 − mk+1‖. This can be set using

rk+1 = β‖ck+1 − mk+1‖ for β ≥ 1

Once rk+1 and ck+1 are determined, steps two through four
are repeated until f(m) is within the desired tolerance.

The two dimensional example case in fig. 1 illustrates the
process through four iterations. For this particular example,
α = 2 and β = 3/2. This can be clearly seen by the way rk,
represented by the large circles, perfectly bisects gk−1 for each
iteration. Also, notice that for the first iteration, the gradient
vector g extends from c to m, whereas in all subsequent
iterations g is defined from mk to mk+1.

III. POSSIBLE MODIFICATIONS

Spherically shaped regions may not be optimal when gen-
erating successive populations. Using conical regions which
extend in the direction of the approximate gradient might
greatly increase the speed of convergence. The following is
just one of many similar modifications.

A. Conically Shaped Regions

We have a vector v which we wish to use as our axis of
symmetry. A hyperconical region is best represented using po-
lar coordinates. Only the zenith angle φ and radial component
ρ are needed. This is an especially useful way of describing a
hyperconical region since it is valid for any subspace of Rn.
The drawback of this method is that it requires that the axis
of symmetry lie along the zenith axis. In order to extend this
method to cases using arbitrary axes of symmetry, we’ll need
to change to a basis U whose zenith axis is in the direction of
v. Our region can then be very easily defined using this new
set of coordinate axes. If we then wish to represent a point
or vector in this region in terms of the standard basis E, we
can easily change bases from U back to E using a transition
matrix.

Defining a new basis

The process described below first requires the formation of
a new basis using the n-dimensional axial vector v. To do
this we must find n − 1 other linearly independent vectors.
The first step is to devise a generalized method for generating
this set of linearly independent vectors.

1) Generating an ordinary basis: In order to generate a
set of linearly independent vectors, we will first need some
useful tools for determining whether they are in fact linearly
independent. The three following theorems are especially
relevant.

Theorem 3.1: Let x1,x2, ...,xn be n vectors in Rn and let

xi = (x1i, x2i, ..., xni)T

for i = 1, ..., n. If X = (x1,x2, ...,xn), then the vectors
x1,x2, ...,xn will be linearly independent if and only if X
is singular.

Theorem 3.2: An n × n matrix A is singular if and only if

det(A) = 0
Theorem 3.3: Let A be an n × n matrix.

(i) If A has a row or column consisting entirely of zeros,
then det(A) = 0.

(ii) If A has two identical rows or two identical columns,
then det(A) = 0.

Combining these three theorems yields a particularly useful
result.

Corollary 3.4: Let A be an n × n matrix. The column space
of A forms an ordinary basis for Rn if and only if

(i) A contains no rows or columns consisting entirely of
zeros.

(ii) No two rows or columns of A are identical.
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The conditions from Corollary 3.4 can nearly always be
satisfied by taking the standard basis E and simply replacing
e1 with v. The only case in which this will not result in an
ordinary basis of Rn is when v1 = 0, which can be easily
remedied by replacing ei1 with (v1 + 1) for i = 2, ..., n. This
method will work for any v except 0. To summarize,

1) Let E = {e1, e2, ..., en}. Replace e1 with v.
2) Replace ei1 with (v1 + 1) for i = 2, ..., n.
The resulting set of vectors, which we will call S, is an

ordinary basis for Rn with s1 = v.
Although this method does produce a basis for Rn relative

to v, it still lacks one essential characteristic. In order for the
vector lengths and angles of separation to be preserved when
changing bases, S must be orthogonal. Clearly, S is not an
orthogonal basis, however this can be fixed using the Gram-
Schmidt Orthogonalization Process.

The Gram-Schmidt Process

The Gram-Schmidt Process is a method for orthogonalizing
a set of vectors in an inner product space, most commonly the
Euclidian space Rn. The GramSchmidt process takes a finite,
linearly independent set V = {v1, ..., vn} and generates an
orthogonal set V ′ = {u1, ..., un} that spans the same subspace
as V .

Theorem 3.5 (The Gram-Schmidt Process): Let
{x1,x2, ...,xn} be a basis for the inner product space
V. Let

u1 =
(

1
‖x1‖

)
x1

and define u2, ...,un recursively by

uk+1 =
1

‖xk+1 − pk‖ (xk+1 − pk) for k = 1, ..., n − 1

where

pk = 〈xk+1,u1〉u1 + 〈xk+1,u2〉u2 + ... + 〈xk+1,uk〉uk

is the projection of xk+1 onto Span(u1,u2, ...,uk). The set

{u1,u2, ...,un}
is an orthonormal basis for V.

By applying Theorem 3.5 to the ordinary basis S, we obtain
an orthogonal basis S′ which spans the same subspace as
S who’s first element u1 shares the same axis as s1 and
therefore lies in the direction of our initial vector v. Thus
the net effect is an orthonormal basis S′ which allows for
orthonormal transformations between itself and the standard
basis E.

Defining a Hyperconically bounded region

With the basis S′, defining a hyperconically bounded region
about v is a trivial matter. Using hyperspherical coordinates,
the region can be described using only the radial component
ρ and the zenith angle φ. Any point obtained by manipulating
the other angular components will lie on the boundary of
this region. For a region described by a maximum radial
component ρmax and a maximum zenith angle φmax, any

point satisfying 0 ≤ ρ ≤ ρmax and 0 ≤ φ ≤ φmax is
guaranteed to lie within the desired region. Now all we need
to do is perform an orthonormal transformation from S′ back
to E.

Changing bases from S′ to E

Changing bases is a relatively simple matter. A transition
matrix from S′ to E can easily be found. However, before
this matrix can be used to change the basis of a point which
lies within the predefined region, its coordinates must be
converted from spherical to cartesian. Thus we must find some
generalized method for making this conversion.

2) Hyperspherical to cartesian coordinate conversion: We
have already defined a coordinate system in an n-dimensional
Euclidean space which is analogous to the spherical coordinate
system defined for 3-dimensional Euclidean space. These
coordinates consist of a radial coordinate ρ, and n − 1
angular coordinates φ1, φ2, ..., φn−1. If xk are the Cartesian
coordinates, then we may define

xk =




ρ · cos(φk) for k = 1

ρ ·
k−1∏
i=1

sin(φi) · cos(φk) for k = 2, ..., n − 1

ρ ·
k−1∏
i=1

sin(φi) for k = n

(2)
This offers a generalized method by which an n-dimensional

vector or point in hyperspherical coordinates may be converted
into its cartesian representation. Once the conversion has been
made, the given point or vector can be converted from one
basis to another using a transition matrix.

3) Creating a transition matrix from S′ to E:
Theorem 3.6: (Transition matrices) Let {u1,u2, ...,un} be

an ordered basis for Rn, and let c be a coordinate vector
with respect to {u1,u2, ...,un}. To find the corresponding
coordinate vector x with respect to {e1, e2, ..., en}, simply
multiply the matrix U = [u1,u2, ...,un] by c.

x = Uc

Summary

A step-by-step summary of the combined process.
Step 1: Using [v, e2, ..., en], create a new basis for Rn

by replacing ei1 with v1 + 1 for i = 2, ..., n. We will call
the resulting matrix S and refer to it’s column space as
{s1, s2, ..., sn}.

Step 2: Using S = {s1, s2, ..., sn}, let

u1 =
(

1
‖s1‖

)
s1

and define u2, ...,un recursively by

uk+1 =
1

‖sk+1 − pk‖ (sk+1 − pk) for k = 1, ..., n − 1

The resulting matrix [u1,u2, ...,un]will form an orthonor-
mal basis for Rn which we will call U .
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Step 3: Define a hyperconical region about u1 by choosing
a maximum radial component ρmax and a maximum zenith
angle φmax.

Step 4: Generate vectors within the defined region by
choosing ρ and φ such that 0 ≤ ρ ≤ ρmax and 0 ≤ φ ≤ φmax.

Step 5: Let x be one of the vectors chosen in step four.
Convert x from hyperspherical to cartesian coordinates using
(2).

Step 6: Express x with respect to [e1, e2, ..., en] using the
U as a transition matrix.

x′ = Ux

This newly generated vector x′ has two very important
characteristics, which make it particularly useful. They are:

(i) The length of x′ is no greater than ρmax

(ii) The angle of separation between x′ and the original
vector v is no greater than φmax

A modification

It might be desirable to have ρ diminish as φ increases. This
can be done by expressing ρ as a function of φ.

ρ(φ) = ρmax

[
1 −

(
φ

φmax

)β
]

The variable β can be adjusted to control the shape of the given
region. As β becomes larger, the shape of the region becomes
increasingly conical. Fig. 2 offers a graphical representation
of how β effects the region’s shape.
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Fig. 2. ρmax = 2, φmax = 30◦

B. Modified Population Distribution

One of the dangers of using a uniform population distribu-
tion is its susceptibility to local minima. If the algorithm gets
into a low-lying area which is larger than the current maximum
population radius, the algorithm will be permanently stuck. In
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Fig. 3. A Plot of 1000 random points using (3)

order to avoid this scenario, occasional points must be plotted
outside the desired maximum radius.

One effective and efficient way of doing this is to use a
population density which decreases exponentially as a function
of the radius. This can be achieved by replacing rkX in (1)
with

1
X + 1

rk

− rk

rk − 1
(3)

which has a range of (
0,

rk

1 + 1
rk

)

Although the upper bound for ‖vik‖ is no longer rk, for larger
values of rk,

rk

1 + 1
rk

≈ rk

Figure 3 shows how (3) effects density.

IV. EXPERIMENTAL RESULTS

Two variations of the algorithm were used for testing. The
first set of tests were performed using the standard algorithm
as described in section II. The second set used the modified
population distribution from section III-B. The algorithms
were then tested using population sizes of 5, 10, and 20 points
per iteration. Statistical Data was compiled for both algorithms
using 100 runs for each population size.

Due to the common practical application of optimization
in the field of artificial neural networks, initial tests were
made using the algorithm for training a simple two layer
network. The network was then retrained using a standard
training method for comparison. Statistical data and error plots
are included for each test, including error back propagation,
which was the compared method. All figures and statistics
were taken for successful runs only, with the exception of
success rate, which was defined as the ratio of successful
runs to non-convergent ones. From the results it is clear that
both algorithms perform comparably to EBP, with the modified
version being by far the most consistent.
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Fig. 4. Error back propagation using α = 0.5

Error back propagation
Gain 5
Learning constant 0.5
Total runs 100
Min run 138 ite
Max run 259 ite
Ave. run 152 ite
Standard deviation 15 ite
Success rate 66 %
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Fig. 5. Feed forward algorithm using modified distribution

Modified FF algorithm
Population 5
Initial radius 5
Total runs 100
Min run 57 ite
Max run 376 ite
Ave. run 105 ite
Standard deviation 47 ite
Success rate 82 %
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Fig. 6. Feed forward algorithm using modified distribution

Modified FF algorithm
Population 10
Initial radius 5
Total runs 100
Min run 21 ite
Max run 302 ite
Ave. run 67 ite
Standard deviation 45 ite
Success rate 81 %
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Fig. 7. Feed forward algorithm using modified distribution

Modified FF algorithm
Population 20
Initial radius 5
Total runs 100
Min run 17 ite
Max run 84 ite
Ave. run 36 ite
Standard deviation 11 ite
Success rate 81 %
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Fig. 8. Feed forward algorithm using β = 1.5, α = 2

Standard FF algorithm
Population 5
Min run 17 ite
Max run 301 ite
Ave. run 82 ite
Success rate 55 %
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Fig. 9. Feed forward algorithm using β = 1.5, α = 2

Standard FF algorithm
Population 10
Min run 11 ite
Max run 159 ite
Ave. run 34 ite
Success rate 66 %
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Fig. 10. Feed forward algorithm using β = 1.5, α = 2

Standard FF algorithm
Population 20
Min run 9 ite
Max run 197 ite
Ave. run 29 ite
Success rate 70 %

V. CONCLUSION

A method of indirect gradient computation to speed up the
evolutionary optimization process was presented. New popula-
tions of solutions are randomly generated along the estimated
gradient line. The method was verified using examples to
find optimal weights in neural networks. It was shown that
with little computational complexity, the proposed algorithm
converges faster than the traditionally used method of er-
ror back propagation. Interestingly, the proposed algorithm
reaches the optimum solution very rapidly and does not exhibit
the asymptotic convergence typical of error back propagation.
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