
 
XV Krajowa Konferencja Automatyki, Warszawa 27-30 czerwca 2005 

 

21 

IMPLEMENTATION OF METHODS 
OF COMPUTATIONAL INTELLIGENCE 

��������	
��
���	�

Auburn University, Alabama Microelectronic, Science and Technology Center, 200 Broun Hall, 
Department of Electrical and Computer Engineering, AL 39849, USA e-mail wilam@ieee.org 

Abstract:    Nonlinear processes are difficult to control because 
there can be so many variations of the nonlinear behavior. 
Traditionally, a nonlinear process has to be linearized first before 
an automatic controller can be effectively applied. This is 
typically achieved by adding a reverse nonlinear function to 
compensate for the nonlinear behavior so the overall process 
input-output relationship becomes somewhat linear. The adaptive 
systems are best handled with methods of computational 
intelligence such as neural networks and fuzzy systems. This 
presentation will focus on several methods of developing close to 
optimal architectures and on finding efficient learning 
algorithms. The problem becomes even more complex if the 
methods of computational intelligence have to be implemented in 
hardware. Various practical solutions will be presented and 
compared. 

Key words:  Computational intelligence, neural networks, 
fuzzy systems. 

1. INTRODUCTION 

Conventional controllers such as PID, and many advanced 
control methods are useful to control linear processes.  In 
practice, most processes are nonlinear.  Nonlinear control 
is one of the biggest challenges in modern control theory. 
While linear control system theory has been well 
developed, it is the nonlinear control problems that cause 
most challenges.  Traditionally, a nonlinear process has to 
be linearized first before an automatic controller can be 
effectively applied.  This is typically achieved by adding a 
reverse nonlinear function to compensate for the nonlinear 
behavior so the overall process of the input-output 
relationship becomes somewhat linear.  The issue 
becomes more complicated if a nonlinear characteristic of 
the system changes with time and there is a need for an 
adaptive change of the nonlinear behavior.  These 
adaptive systems are best handled with methods of 
computational intelligence such as neural networks and 
fuzzy systems [1][2].  This presentation will focus on 
several methods of developing close to optimal 
architectures and on finding efficient learning algorithms.   
Any dynamic nonlinear system can be described by the 
following set of nonlinear state equations: 
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Fig. 1. Block diagram of nonlinear system derived from a 
set of state variable equations. 
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Fig. 2. Block diagram of nonlinear dynamic system using 
neural networks or fuzzy systems.  

Such a system can be implemented as a composition of 
integrators and nonlinear terms as shown in Fig. 1. 
Implementation of analog integrators on silicon chips is 
relatively simple.  It requires a capacitance and an 
operational or transcounductance amplifier.  Nonlinear 
terms with multiple inputs are most difficult to implement. 
These nonlinear blocks can be developed as universal 
elements using neural networks or fuzzy systems (Fig. 2). 
In both cases these nonlinear terms can be digitally 
controlled.  In the case of neural networks only weights 
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need to be digitally controlled.  In the case of the fuzzy 
systems parameters of fuzzifiers and deffuzifiers have to 
be digitally adjusted.  In both cases signals can always be 
in analog form.  This analog type of signal processing is 
especially important in systems where a large signal 
latency is not acceptable.  

2. FUZZY SYSTEMS 

The fuzzy set system theory was developed by Zadeh 
[3].  The block diagram of a typical fuzzy system, as 
proposed by Mamdani [4] is shown in Fig. 3.  
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Fig. 3. Block diagram of a Mamdani type fuzzy controller. 
 
At the left side of the diagram, analog inputs are 
converted by fuzzifiers into sets of fuzzy variables.  For 
each analog input, several fuzzy variables typically are 
generated.  Each fuzzy variable has an analog value 
between zero and one. Various types of fuzzification 
methods can be used as shown in Fig. 4. 
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Fig. 4. Membership functions for various fuzzification 
methods: (a) triangular, (b) trapezoidal, and (c) 
Gaussian. 
 
Each point of the input analog variable should belong to 
at least one, and preferably no more than two, 
membership functions.  For overlapping functions, the 
sum of two membership functions must not be larger 
than one.  This also means that overlap must not cross 
the points of maximum values  (ones).  

For higher accuracy, more membership functions should 
be used.  However, very dense functions can lead to 
frequent controller action (also known as “hunting”), and 
sometimes this may lead to system instability. 
If the required nonlinear function has the shape as shown 
in Fig. 5, then actual implemented functions will have 
slightly different shapes depending on the type of 
fuzzification used (Fig. 6).  In most cases best results are 
obtained with triangular fuzzifiers, as shown in Fig. 6(a) 
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Fig. 5.   Required nonlinear function 
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Fig. 6.  Different control surfaces obtained with different 
fuzzification methods: (a) triangular, (b) trapezoidal, and 
(c) Gaussian. 

 
In the center of the Mamdani control diagram of Fig. 3, 
fuzzy variables from fuzzifiers are processed by fuzzy 
logic blocks with MIN and MAX operators.  The fuzzy 
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logic is similar to Boolean logic but instead of AND 
operators, MIN operators are used and in place of OR 
operators, MAX operators are implemented.  
Interestingly fuzzy logic has a more general nature and it 
works equally well as Boolean logic. Fig. 7 shows fuzzy 
logic operations on zero-one Boolean variables (Fig. 
7(a)) and on fuzzy variables (Fig. 7(b)). 

 

(a) 

BA ∩

11

01

10

00

11

01

10

00

1

0

0

0

1

0

0

0

BA ∪

11

01

10

00

11

01

10

00

1

1

1

0

1

1

1

0

MIN MAX

  
 

(b) 

MIN MAXBA ∩

0.80.7

0.30.7
0.80.2

0.30.2

0.80.7

0.30.7
0.80.2

0.30.2

0.7

0.3
0.2

0.2

0.7

0.3
0.2

0.2

BA ∪

0.80.7

0.30.7
0.80.2

0.30.2

0.80.7

0.30.7
0.80.2

0.30.2

0.8

0.7
0.8

0.3

0.8

0.7
0.8

0.3

union intersection  
Fig. 7.  Comparison of (a) Boolean and (b) Fuzzy logic. 
 
The Mamdani concept follows the rule of ROM and 
PLA digital structures where AND operators are 
selecting specified addresses and then OR operators are 
used to find the output bits from the information stored 
at these addresses.  Also, in the case of the fuzzy system, 
as presented in Fig. 3, first MIN and then MAX 
operators are used.  
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Fig. 9.  Conversion from Mamdani to TSK fuzzy 
architecture. 
 
In some implementations, MIN operators are replaced by 
product operators (signals are multiplied).  Fuzzy 
systems with product encoding are more difficult to 
implement but they generate a slightly smoother control 
surface.  Fig. 8 shows the surface obtained with product 
encoding, which is smoother than the surface of Fig. 6(a) 
which is obtained with a MIN encoding.  

As a result of fuzzy logic block of Fig. 3 a new set of 
fuzzy variables is generated, which later has to be 
converted to an analog output value.  The rightmost 
block of the diagram represents defuzzification, where 
the output analog variable is retrieved from a set of 
output fuzzy variables.  Several more or less complicated 
defuzzification schemes are used.  The most common is 
the centroid type of defuzzification.  
More recently Mamdani architecture was replaced by 
TSK (Takagi, Sugeno, Kang) [4][5] architecture where 
the defuzzification block was replaced with 
normalization and weighted average (see Fig. 9) 
The TSK structure, as shown in Fig. 10, also does not 
require MAX operators, but a weighted average is 
applied directly to regions selected by MIN operators.  
What makes the TSK system really simple is that the 
output weights are proportional to the average function 
values at the selected regions by MIN operators.  
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Fig. 10.  TSK (Takagi-Sugeno-Kang) fuzzy architecture. 
 
There were many attempts to further improve fuzzy 
controllers by replacing fuzzifiers and MIN operators by 
other weighted sum approaches and RBF (Radial Base 
Function) networks [6].  These areas of research are 
known as fuzzy-neuro systems and the resulting 
architectures are more close to neural networks than to 
fuzzy systems. 

3. NEURAL NETWORKS 

A single neuron can divide input space by line, plane, or 
hyperplane, depending on the problem dimensionality.  In 
order to select just one region in n-dimensional input 
space, more than n+1 neurons should be used.  For 
example, to separate a rectangular pattern 4 neurons are 
required, as is shown in Fig. 11.  If more input clusters 
should be selected then the number of neurons in the 
hidden layer should be properly multiplied.  If the number 
of neurons in the hidden layer is not limited, then all 
classification problems can be solved using the three layer 
network.   
With the concept shown on Fig. 11 fuzzifiers and MIN 
operators used for region selection can be replaced by a 
simple neural network architecture.  Let us analyze Fig. 12 
where a two-dimensional input space was divided by six 
neurons horizontally and by six neurons vertically.  The 
corresponding neural network is shown in Fig. 13.  Each 
neuron is connected only to one input.  For each neuron 
input, weight is equal to +1 and the threshold is equal to 
the value of the crossing point on the x or y axis.  Neurons 
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in the second layers have two connections to lower 
boundary neurons with weights of +1 and two connections 
to upper boundary neurons with weights of -1.  Thresholds 
for all these neurons in the second layer are set to 3.  Only 
two of them are drawn on Fig. 13.  One of them is 
selecting region A and the second is selecting region B 
(Fig. 12). 
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Fig. 11.  Separation of the rectangular area on a two 
dimensional space (a) and desired neural network to fulfill 
this task (b). 
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Fig. 12.  Two-dimensional input plane separated vertically 
and horizontally by six neurons in each direction. 
 
Weights in the last layer have values corresponding to the 
expected function values in selected areas.  All neurons in 
Fig. 13 have a unipolar activation function and if the 
system is properly designed, then for any input vector in 
certain areas only the neuron of this area produces +1 
while all remaining neurons have zero values.  In the case 
of when the input vector is close to a boundary between 

two or more regions, then all participating neurons are 
producing fractional values and the system output is 
generated as a weighted sum.  For proper operation it is 
important that the sum of all outputs of the second layer 
must be equal to +1.  In order to assure the above 
condition, an additional normalization block can be 
introduced, in a similar way as it is done in TSK fuzzy 
systems as shown in Fig. 10. 
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Fig. 13.  Simple neural networks performing the function 
of TSK fuzzy system. 
 
It was shown above that a simple neural network of Fig. 
13 can replace a fuzzy system.  All parameters of this 
network are directly derived from requirements specified 
for a fuzzy system and there is no need for a training 
process.   
One may observe that if the training process is allowed 
then the network architecture of Fig. 13 can be 
significantly simplified.  Let us compare in the following 
subsections the commonly used neural network 
architectures.  

3.1. General feedforward networks 

The most commonly used neural network architectures are  
shown in Fig. 14.  The most used learning algorithm such 
as EBP – Error Back Propagation or LM - Levenberg-
Marquardt, were developed for this type of feedforward 
network.     
This feedforward network can become much more 
powerful if weight connections across layers are allowed. 
Unfortunately only very few software packages are 
capable of training fully connected neural networks. 

3.2. Functional link and  polynomial networks 

One layer neural networks are relatively easy to train, but 
these networks can solve only linearly separated 
problems.  One possible solution for nonlinear problems 
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was elaborated by Pao [8] using the functional link 
network (shown in Fig. 15).  Note that the functional link 
network can be treated as a one layer network, where 
additional inputs are generated offline using nonlinear 
transformations.  If nonlinear terms are generated using a 
polynomial function then this network is known as a 
polynomial network.  These networks are extremely easy 
to train, but it is usually not known what type of nonlinear 
functions are best suited for specific problems.  In the case 
of polynomial networks a more generalized approach is 
possible, but with an increase in the dimensionality of the 
problem the number of polynomial terms grow 
exponentially and these networks become impractical. 
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Fig. 14.  Feedforward neural network with two hidden 
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Fig. 15. Functional link and polynomial networks. 
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Fig. 16. Counterpropagation networks. 

3.3. Counterpropagation networks 

Counterpropagation networks were originally proposed by 
Hecht-Nilsen [9].  This architecture, which is shown in 
Fig. 16, requires several hidden neurons which are equal 
to the number of input patterns, or more exactly, to the 
number of input clusters. 
When binary input patterns are considered, then the input 
weights must be exactly equal to the input patterns.  Since 
for a given input pattern, only one neuron in the first layer 
may have the value of one, and the remaining neurons 
have zero values, the weights in the output layer are equal 
to the required output pattern. 
The counterpropagation network is very easy to design.  
The number of neurons in the hidden layer should be 
equal to the number of patterns (clusters).  The weights in 
the input layer should be equal to the input patterns and, 
the weights in the output layer should be equal to the 
output patterns.  A disadvantage of the counterpropagation 
network is that number of neurons in the hidden layer 
must be equal to number of training patterns and this 
number is sometimes excessively large. 

3.4. LVQ Learning Vector Quantization networks 

LVQ networks are derived from counterpropagation 
networks by combining some patterns into clusters. By 
doing this the size of the network is reduced.  In the LVQ 
network the first layer detects subclasses.  The second 
layer combines subclasses into a single class (Fig. 17). 
The first layer computes Euclidean distances between 
input patterns and stored patterns.  A winning “neuron” is 
the one with the smallest distance in the input pattern. 
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Fig. 17.  LVQ Learning Vector Quantization networks. 

3.5. Cascade correlation architecture 

The cascade correlation architecture was proposed by 
Fahlman and Lebiere  [10] (Fig. 18)  The process of 
network building starts with a one layer neural network 
and hidden neurons are added as needed.  In each training 
step, the new hidden neuron is added and its weights are 
adjusted to maximize the magnitude of the correlation 
between the new hidden neuron output and the residual 
error signal on the network output that we are trying to 



 
26 

eliminate.  The output neurons are trained using a simple 
one-neuron training algorithm.  Each hidden neuron is 
trained just once and then its weights are frozen.  The 
network learning and building process is completed when 
satisfactory results are obtained. 
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Fig.  18. Cascade correlation architecture. 

3.6. RBF - Radial Basis Function networks 

The structure of the radial basis network is shown in Fig. 
19.  This type of network usually has only one hidden 
layer with special "neurons".  Each of these "neurons" 
responds only to the input signals close to the stored 
pattern.  The output signal hi of the i-th hidden "neuron" is 
computed using the following formula. 
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Note, that the behavior of this "neuron" significantly 
differs from the biological neuron.  In this "neuron", 
excitation is not a function of the weighted sum of the 
input signals.  Instead, the distance between the input and 
stored pattern is computed.  This "neuron" is capable of 
recognizing certain patterns and of generating output 
signals that are functions of a similarity.   
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Fig. 19.  RBF - Radial basis function networks. 
 

3.7. Sarajedini  and Hecht-Nielsen network 

The Sarajedini and Hecht-Nielsen [11] network of Fig. 20 
is capable of calculating Euclidean distances between 
input pattern and stored pattern using only information 
about the square of the input vector length and the neuron 
with a linear activation function.  The network is based on 
the following analytical formulas:  
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Fig.  20.  Sarajedini and Hecht-Nielsen neural network: (a) 
network architecture, (b) surface generated (for 2-dim 
case). 
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Fig. 21.  Networks with increased dimensionality. 

 
Fig. 22.  Result of cluster separation of networks with 
increased dimensionality. 

3.8. Networks with increased dimensionality 

The network shown in Fig. 21 has a similar property (and 
power) to RBF networks, but it uses only traditional 
neurons with sigmoidal activation functions [12][13].  In 
this network an additional input is generated using the 
formula:  
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This way all input patterns are projected on a hyper sphere 
with a radius R.  Round clusters could be separated by 
hyper planes (traditional sigmoidal neurons).   
Fig. 22 shows a separation of three clusters using three 
sigmoidal neurons. With this approach traditional neurons 
are gaining the capability of separating patterns by circle, 
sphere, or hyper sphere.  

3.9. Comparison on neural network architectures 

One of the most difficult problems to solve with neural 
networks is the parity problem.  This problem has a very 
nonlinear character with multiple minimas and maximas 
[14].  Let us compare different neural network 
architectures to solve the parity-8 problem.  This problem 
is so complex that the most common EBP algorithm is not 
able to solve it, unless, luckily, initial starting weights are 
used.  In the case of the most popular neural networks 
with one hidden layer and without connections across 
layers there are at least 9 neurons required and 8*9+9 = 81 
weights.  See Fig. 23 for the network architecture.   
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with one hidden layer for the parity-8 problem. 
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Fig. 25.  Bipolar implementation of a fully connected 
cascade neural network for the parity-8 problem.  
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Fig. 26.  Bipolar implementation of a fully connected 
cascade neural network for the parity-8 problem with an 
additional summator. 
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 Fig. 27: Bipolar implementation of a pipeline neural 
network for the parity-8 problem.  

 
In the case of when connections across layers are allowed 
(see Fig. 24), number of neurons in the hidden layer can 
be reduced from 8 to 4 and the total number of weights is 
4*9+8+4+1=49.  When neurons are connected in a 
cascade (see Fig. 25), then only four neurons are required 
and the total number of weights is 9+10+11+12=42. 
Note, that in the case of the parity problem (due to the 
symmetry of inputs) each of networks shown in Fig 23 to 
Fig 25 can be further simplified by adding an additional 
neuron with linear activation function (summator) to the 
front.  For example, the network of Fig. 25 can be 
simplified to the architecture shown in Fig. 26 with 5 
neurons and 22 weights.  
With the pipeline architecture shown in Fig. 27 the parity-
8 problem can be solved with only 3 neurons and 
8+2+2=12 weights.  The pipeline architecture is very 
specific to parity problems and it cannot be generalized for 
other cases.  
The comparison of minimum hardware requirements for 
the parity-8 problem is shown in Table I.   
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TABLE I.  Comparison of various neural network
architectures for implementation of the parity 8 problem

NN with one hidden layer (Fig. 23)

NN with one hidden layer with
connections across (Fig. 24)

NN with fully connected  cascade
(Fig. 24)

9

49

42

neurons weights
81

5

4

 

One may conclude that the cascade network (Fig. 25) is 
the most powerful, since it would require a minimum 
number of elements.  At the same time because of a long 
signal path (across many layers), the cascade architecture 
is more difficult to train and it is also more sensitive to the 
variation of weights.  The fully connected network (Fig. 
14) has only a slightly larger number of neuronal 
requirements than cascade architecture but it is easier to 
train and in most cases this would be the preferred choice. 
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Fig. 28.  Layered neural network with four neurons in the 
hidden layer. 
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Fig. 29.  Fully connected neural network with two neurons 
in the hidden layer. 

3.10. Training algorithms  

Unfortunately most of the neural network software (like 
MATLAB Tool Box) is not suitable for training fully 
connected neural networks.  One exception is the SNNS 
(Stuttgart Neural Network System [15]), which can handle 
fully connected architectures, but only relatively simple 
neuron network training algorithms are used and the LM - 
Levenberg-Marquardt [16] algorithm is not implemented. 
The LM algorithm has currently the best reputation out of 
all the training algorithms.  For most cases it converges 
within 10-20 iterations while the most popular EBP – 
Error Back Propagation-algorithm requires 1000 to 2000 
iterations to reach a solution with a relatively large error.  
An additional advantage of the LM algorithm is its fast 

convergence to the solution, while the EBP reaches the 
solution only asymptotically. 

The author has developed a code for a LM algorithm that 
is suitable for any neural network architecture (including 
cascade and fully connected networks) The MATLAB 
code can be downloaded from [17].  In the current version 
of the software all neural network nodes have to be 
numbered sequentially starting from inputs to outputs.  
The entire network architecture is described by a sequence 
of numbers. For example the network shown in Fig 28 is 
described by the sequence:   5, 1, 2, 3, 4, 6, 1, 2, 3, 4, 7, 1, 
2, 3, 4, 8, 1, 2, 3, 4, 9, 5, 6, 7, 8 while the network shown 
in Fig. 29 is described by the sequence: 5, 1, 2, 3, 4, 6, 1, 
2, 3, 4, 7, 1, 2, 3, 4,  5, 6.  In the numerical sequence the 
number of neurons is listed first and then all input nodes, 
and then the number of the next neuron is given with all 
its associated inputs. The process is repeated until all 
neurons are listed.  Note, that the software can handle 
fully or sparsely connected networks with arbitrary 
architectures, as long as the concept of a one directional 
signal flow is preserved.  The software has the option of 
giving initial weights.  Weights are listed in the same form 
as the network topology.  Instead of neuron number, the 
biasing weight of this neuron is given and then weights 
associated with every input.  If the initial weights are not 
given, then all the weights are selected randomly. 
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Fig. 30.  Control surface obtained using fully connected 
neural network with one hidden neuron. 
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Fig. 31.  Control surface obtained using fully connected 
neural network with two hidden neurons. 
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Fig. 32.  Control surface obtained using fully connected 
neural network with three hidden neurons. 
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Fig. 33.  Control surface obtained using fully connected 
neural network with four hidden neurons. 
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Fig. 34.  Simple VLSI implementation of neuron with a 
differential pair: (a) circuit diagram (b) result of SPICE 
simulation. 
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Fig. 35.   VLSI implementation of fuzzifier block: (a) 
circuit diagram, (b) result of SPICE simulations with five 
membership functions plotted. 
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Fig. 36.  Digitally programmable weights.  
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4. VLSI IMPLEMENTATIONS 

In the case of neural networks a sigmoidal type of 
activation function can be implemented using a simple 
differential pair (Fig 34).  Positive or negative weights can 
be implemented by taking a signal to the next layer from 
inverted and non inverted outputs. 
One possible solution is to use current controlled weights 
in neural networks and current controlled parameters in 
fuzzy systems. Therefore, in order to fully control 
nonlinear systems, only digitally controlled currents are 
required. The same differential pairs with a unique 
configuration, as shown in Fig. 35(a), may act as 
fuzzifiers. Fig. 35(b) shows membership functions 
implemented by the circuit of Fig. 35(a).  Fig. 36 shows 
a sample solution of digitally programmed 6-bit weights. 

5. CONCLUSION 

Fuzzy systems and neural networks as two major methods 
of computational intelligence were described and 
compared.  Fuzzy systems are easier to design, while 
neural networks require training (optimization). In 
practical implementations fuzzy systems require more 
hardware and resulted control surface is not as smooth as 
in the case of neural networks. For example, in the study 
case the TSF fuzzy system with triangular membership 
function (see Fig. 6(b)) required 6+6+36= 48 values to be 
stored.  In the case of fully connected neural network with 
three hidden neurons (Fig. 32), only 3*4+8=20 values had 
to be stored.  One may notice that neural networks require 
not only less hardware, but also it generates superior 
control surface.  In the case when only design rules has to 
be used and optimization is not desired, neural networks 
can also replace fuzzy systems as it was shown in Fig. 13. 

IMPLEMENTACJE METOD KOMPUTEROWEJ 
INTELIGENCJI 

Streszczenie:   Tradycyjne kontrolery takie jak PID i wiele 
zaawansowanych metod sterowania s� u�yteczne dla sterowania 
liniowych procesów. W praktyce wi�kszo�� procesów jest 
nieliniowa. Metody nieliniowego sterowania s� głównym 
problemem w nowoczesnej teorii sterowania. Nawet, je�li 
liniowa teoria sterowania jest ju� dobrze ugruntowana, to 
problemy nieliniowego sterowania przysparzaj� nam wiele 
kłopotów. Sterowanie nieliniowych systemów nie jest łatwe, 
poniewa� wyst�powa� w nich mo�e wiele trybów nieliniowych 
zachowa�. Zwykle nieliniowe procesy musz� by� najpierw 
zlinearyzowane zanim sterownik b�dzie skuteczny. Mo�na to 
zwykle osi�gn�� poprzez dodanie odwrotnej funkcji nieliniowej 
dla skompensowania nieliniowych zachowa�. W ten sposób, 
wypadkowy proces pomi�dzy wej�ciami i wyj�ciami systemu 
b�dzie w przybli�eniu liniowy. Zagadnienie staje si� bardziej 
skomplikowane, je�li charakterystyki systemu zmieniaj� si� w 
czasie i potrzebna jest adaptacyjna zmiana nieliniowych 
wła�ciwo�ci. Takie systemy adaptacyjne s� skutecznie tworzone 
przy wykorzystaniu metod komputerowej inteligencji takich jak 
sieci neuronowe lub systemy rozmyte. Kolejnym problemem jest 
opracowywanie systemów rozmytych i sieci neuronowych, które 
same w sobie s� zagadnieniami bardzo zło�onymi. Prezentacja 
skupi si� na kilku metodach znajdywania zbli�onych do 
optymalnych architektur i efektywnych metod uczenia 
systemów. Problemy staj� si� jeszcze bardziej zło�one, je�li 
metody komputerowej inteligencji maj� by� zaimplementowane 

w krzemie. Szereg praktycznych rozwi�za� zostało 
zaprezentowanych i porównanych. 
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