

XV Krajowa Konferencja Automatyki, Warszawa 27-30 czerwca 2005

21

IMPLEMENTATION OF METHODS
OF COMPUTATIONAL INTELLIGENCE

��������	
��
���	�

Auburn University, Alabama Microelectronic, Science and Technology Center, 200 Broun Hall,
Department of Electrical and Computer Engineering, AL 39849, USA e-mail wilam@ieee.org

Abstract: Nonlinear processes are difficult to control because
there can be so many variations of the nonlinear behavior.
Traditionally, a nonlinear process has to be linearized first before
an automatic controller can be effectively applied. This is
typically achieved by adding a reverse nonlinear function to
compensate for the nonlinear behavior so the overall process
input-output relationship becomes somewhat linear. The adaptive
systems are best handled with methods of computational
intelligence such as neural networks and fuzzy systems. This
presentation will focus on several methods of developing close to
optimal architectures and on finding efficient learning
algorithms. The problem becomes even more complex if the
methods of computational intelligence have to be implemented in
hardware. Various practical solutions will be presented and
compared.

Key words: Computational intelligence, neural networks,
fuzzy systems.

1. INTRODUCTION

Conventional controllers such as PID, and many advanced
control methods are useful to control linear processes. In
practice, most processes are nonlinear. Nonlinear control
is one of the biggest challenges in modern control theory.
While linear control system theory has been well
developed, it is the nonlinear control problems that cause
most challenges. Traditionally, a nonlinear process has to
be linearized first before an automatic controller can be
effectively applied. This is typically achieved by adding a
reverse nonlinear function to compensate for the nonlinear
behavior so the overall process of the input-output
relationship becomes somewhat linear. The issue
becomes more complicated if a nonlinear characteristic of
the system changes with time and there is a need for an
adaptive change of the nonlinear behavior. These
adaptive systems are best handled with methods of
computational intelligence such as neural networks and
fuzzy systems [1][2]. This presentation will focus on
several methods of developing close to optimal
architectures and on finding efficient learning algorithms.
Any dynamic nonlinear system can be described by the
following set of nonlinear state equations:

()
()

()�

�
�

=

=

=

dtyyyxxxfy

dtyyyxxxfy

dtyyyxxxfy

nnnn

nn

nn

��

�

��

��

,,,,,

,,,,,

,,,,,

2121

212122

212111

 (1)

� dttx)(

� dttx)(

nonlinear
terms � dttx)(

nonlinear
terms

nonlinear
terms1x

2x

nx

1y

2y

ny

Fig. 1. Block diagram of nonlinear system derived from a
set of state variable equations.

� dttx)(

� dttx)(

� dttx)(

1x

2x

nx

1y

2y

ny

Neural Network
or

Fuzzy System

Fig. 2. Block diagram of nonlinear dynamic system using
neural networks or fuzzy systems.

Such a system can be implemented as a composition of
integrators and nonlinear terms as shown in Fig. 1.
Implementation of analog integrators on silicon chips is
relatively simple. It requires a capacitance and an
operational or transcounductance amplifier. Nonlinear
terms with multiple inputs are most difficult to implement.
These nonlinear blocks can be developed as universal
elements using neural networks or fuzzy systems (Fig. 2).
In both cases these nonlinear terms can be digitally
controlled. In the case of neural networks only weights

22

need to be digitally controlled. In the case of the fuzzy
systems parameters of fuzzifiers and deffuzifiers have to
be digitally adjusted. In both cases signals can always be
in analog form. This analog type of signal processing is
especially important in systems where a large signal
latency is not acceptable.

2. FUZZY SYSTEMS

The fuzzy set system theory was developed by Zadeh
[3]. The block diagram of a typical fuzzy system, as
proposed by Mamdani [4] is shown in Fig. 3.

Fu
zz

ifi
er

M
IN

 o
pe

ra
to

rs

M
A

X
 o

pe
ra

to
rs

D
ef

uz
zi

fie
r

Fuzzy
rules

Fu
zz

ifi
er

out

X

Y

Fig. 3. Block diagram of a Mamdani type fuzzy controller.

At the left side of the diagram, analog inputs are
converted by fuzzifiers into sets of fuzzy variables. For
each analog input, several fuzzy variables typically are
generated. Each fuzzy variable has an analog value
between zero and one. Various types of fuzzification
methods can be used as shown in Fig. 4.

(a)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Membership functions for various fuzzification
methods: (a) triangular, (b) trapezoidal, and (c)
Gaussian.

Each point of the input analog variable should belong to
at least one, and preferably no more than two,
membership functions. For overlapping functions, the
sum of two membership functions must not be larger
than one. This also means that overlap must not cross
the points of maximum values (ones).

For higher accuracy, more membership functions should
be used. However, very dense functions can lead to
frequent controller action (also known as “hunting”), and
sometimes this may lead to system instability.
If the required nonlinear function has the shape as shown
in Fig. 5, then actual implemented functions will have
slightly different shapes depending on the type of
fuzzification used (Fig. 6). In most cases best results are
obtained with triangular fuzzifiers, as shown in Fig. 6(a)

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

Fig. 5. Required nonlinear function

(a)
0

5
10

15
20

0

5

10

15

20
-1

-0.5

0

0.5

1

(b)
0

5
10

15
20

0

5

10

15

20
-1

-0.5

0

0.5

1

(c)
0

5
10

15
20

0

5

10

15

20
-1

-0.5

0

0.5

1

Fig. 6. Different control surfaces obtained with different
fuzzification methods: (a) triangular, (b) trapezoidal, and
(c) Gaussian.

In the center of the Mamdani control diagram of Fig. 3,
fuzzy variables from fuzzifiers are processed by fuzzy
logic blocks with MIN and MAX operators. The fuzzy

23

logic is similar to Boolean logic but instead of AND
operators, MIN operators are used and in place of OR
operators, MAX operators are implemented.
Interestingly fuzzy logic has a more general nature and it
works equally well as Boolean logic. Fig. 7 shows fuzzy
logic operations on zero-one Boolean variables (Fig.
7(a)) and on fuzzy variables (Fig. 7(b)).

(a)

BA ∩

11

01

10

00

11

01

10

00

1

0

0

0

1

0

0

0

BA ∪

11

01

10

00

11

01

10

00

1

1

1

0

1

1

1

0

MIN MAX

(b)

MIN MAXBA ∩

0.80.7

0.30.7
0.80.2

0.30.2

0.80.7

0.30.7
0.80.2

0.30.2

0.7

0.3
0.2

0.2

0.7

0.3
0.2

0.2

BA ∪

0.80.7

0.30.7
0.80.2

0.30.2

0.80.7

0.30.7
0.80.2

0.30.2

0.8

0.7
0.8

0.3

0.8

0.7
0.8

0.3

union intersection
Fig. 7. Comparison of (a) Boolean and (b) Fuzzy logic.

The Mamdani concept follows the rule of ROM and
PLA digital structures where AND operators are
selecting specified addresses and then OR operators are
used to find the output bits from the information stored
at these addresses. Also, in the case of the fuzzy system,
as presented in Fig. 3, first MIN and then MAX
operators are used.

k
(fuzzy)

1 output
(analog)

de
fu

zz
ifi

er

k
(fuzzy)

1 output
(analog)

w
ei

gh
te

d
su

m

no
rm

al
iz

at
io

n

k
(fuzzy)

Fig. 9. Conversion from Mamdani to TSK fuzzy
architecture.

In some implementations, MIN operators are replaced by
product operators (signals are multiplied). Fuzzy
systems with product encoding are more difficult to
implement but they generate a slightly smoother control
surface. Fig. 8 shows the surface obtained with product
encoding, which is smoother than the surface of Fig. 6(a)
which is obtained with a MIN encoding.

As a result of fuzzy logic block of Fig. 3 a new set of
fuzzy variables is generated, which later has to be
converted to an analog output value. The rightmost
block of the diagram represents defuzzification, where
the output analog variable is retrieved from a set of
output fuzzy variables. Several more or less complicated
defuzzification schemes are used. The most common is
the centroid type of defuzzification.
More recently Mamdani architecture was replaced by
TSK (Takagi, Sugeno, Kang) [4][5] architecture where
the defuzzification block was replaced with
normalization and weighted average (see Fig. 9)
The TSK structure, as shown in Fig. 10, also does not
require MAX operators, but a weighted average is
applied directly to regions selected by MIN operators.
What makes the TSK system really simple is that the
output weights are proportional to the average function
values at the selected regions by MIN operators.

Fu
zz

ifi
er

X

Y

out

weighted
sum

N
or

m
al

iz
at

io
n

Fu
zz

ifi
er

Rule selection cells
min operations

Fig. 10. TSK (Takagi-Sugeno-Kang) fuzzy architecture.

There were many attempts to further improve fuzzy
controllers by replacing fuzzifiers and MIN operators by
other weighted sum approaches and RBF (Radial Base
Function) networks [6]. These areas of research are
known as fuzzy-neuro systems and the resulting
architectures are more close to neural networks than to
fuzzy systems.

3. NEURAL NETWORKS

A single neuron can divide input space by line, plane, or
hyperplane, depending on the problem dimensionality. In
order to select just one region in n-dimensional input
space, more than n+1 neurons should be used. For
example, to separate a rectangular pattern 4 neurons are
required, as is shown in Fig. 11. If more input clusters
should be selected then the number of neurons in the
hidden layer should be properly multiplied. If the number
of neurons in the hidden layer is not limited, then all
classification problems can be solved using the three layer
network.
With the concept shown on Fig. 11 fuzzifiers and MIN
operators used for region selection can be replaced by a
simple neural network architecture. Let us analyze Fig. 12
where a two-dimensional input space was divided by six
neurons horizontally and by six neurons vertically. The
corresponding neural network is shown in Fig. 13. Each
neuron is connected only to one input. For each neuron
input, weight is equal to +1 and the threshold is equal to
the value of the crossing point on the x or y axis. Neurons

24

in the second layers have two connections to lower
boundary neurons with weights of +1 and two connections
to upper boundary neurons with weights of -1. Thresholds
for all these neurons in the second layer are set to 3. Only
two of them are drawn on Fig. 13. One of them is
selecting region A and the second is selecting region B
(Fig. 12).

(a)

1

2

1 2

3

x

y

5.2<y

5.0>y

2<x1>x

01 >−x

02 >+− x

05.2 >+− y

05.0 >−y

neuron equations:

(b)

x

y

+1 +1

1>x

5.2<y

2<x

5.0>y

+1

-1
-1

+2-1

+1
+2.
5

-0.5

AND

+1

+1

+1

+1
-3.5

Fig. 11. Separation of the rectangular area on a two
dimensional space (a) and desired neural network to fulfill
this task (b).

y

x

u v w x y z

a

b

c

d

e

f

0,0

a

b

c

d

e

f

u v w x y z

A

B

Fig. 12. Two-dimensional input plane separated vertically
and horizontally by six neurons in each direction.

Weights in the last layer have values corresponding to the
expected function values in selected areas. All neurons in
Fig. 13 have a unipolar activation function and if the
system is properly designed, then for any input vector in
certain areas only the neuron of this area produces +1
while all remaining neurons have zero values. In the case
of when the input vector is close to a boundary between

two or more regions, then all participating neurons are
producing fractional values and the system output is
generated as a weighted sum. For proper operation it is
important that the sum of all outputs of the second layer
must be equal to +1. In order to assure the above
condition, an additional normalization block can be
introduced, in a similar way as it is done in TSK fuzzy
systems as shown in Fig. 10.

z

y

x

w

v

c

d

e

f

u

a

b

x

y
al

l w
ei

gh
ts

 e
qu

al
 1

+1

+1

-1

-1
A

B

weights are
equal to the
average of

expected value
in the selected

region

all thresholds are
equal to 1

+1

+1

-1

-1

thresholds are set

by values a to z

Fig. 13. Simple neural networks performing the function
of TSK fuzzy system.

It was shown above that a simple neural network of Fig.
13 can replace a fuzzy system. All parameters of this
network are directly derived from requirements specified
for a fuzzy system and there is no need for a training
process.
One may observe that if the training process is allowed
then the network architecture of Fig. 13 can be
significantly simplified. Let us compare in the following
subsections the commonly used neural network
architectures.

3.1. General feedforward networks

The most commonly used neural network architectures are
shown in Fig. 14. The most used learning algorithm such
as EBP – Error Back Propagation or LM - Levenberg-
Marquardt, were developed for this type of feedforward
network.
This feedforward network can become much more
powerful if weight connections across layers are allowed.
Unfortunately only very few software packages are
capable of training fully connected neural networks.

3.2. Functional link and polynomial networks

One layer neural networks are relatively easy to train, but
these networks can solve only linearly separated
problems. One possible solution for nonlinear problems

25

was elaborated by Pao [8] using the functional link
network (shown in Fig. 15). Note that the functional link
network can be treated as a one layer network, where
additional inputs are generated offline using nonlinear
transformations. If nonlinear terms are generated using a
polynomial function then this network is known as a
polynomial network. These networks are extremely easy
to train, but it is usually not known what type of nonlinear
functions are best suited for specific problems. In the case
of polynomial networks a more generalized approach is
possible, but with an increase in the dimensionality of the
problem the number of polynomial terms grow
exponentially and these networks become impractical.

+1 +1 +1
Fig. 14. Feedforward neural network with two hidden
layers.

+1

ou
tp

ut
s

in
pu

ts

no
nl

in
ea

r e
le

m
en

ts

Fig. 15. Functional link and polynomial networks.

unipolar
neurons

Kohonen
 layer

no
rm

al
iz

ed
 in

pu
ts

ou
tp

ut
s

summing
 circuits

0

1

0

0

0

Fig. 16. Counterpropagation networks.

3.3. Counterpropagation networks

Counterpropagation networks were originally proposed by
Hecht-Nilsen [9]. This architecture, which is shown in
Fig. 16, requires several hidden neurons which are equal
to the number of input patterns, or more exactly, to the
number of input clusters.
When binary input patterns are considered, then the input
weights must be exactly equal to the input patterns. Since
for a given input pattern, only one neuron in the first layer
may have the value of one, and the remaining neurons
have zero values, the weights in the output layer are equal
to the required output pattern.
The counterpropagation network is very easy to design.
The number of neurons in the hidden layer should be
equal to the number of patterns (clusters). The weights in
the input layer should be equal to the input patterns and,
the weights in the output layer should be equal to the
output patterns. A disadvantage of the counterpropagation
network is that number of neurons in the hidden layer
must be equal to number of training patterns and this
number is sometimes excessively large.

3.4. LVQ Learning Vector Quantization networks

LVQ networks are derived from counterpropagation
networks by combining some patterns into clusters. By
doing this the size of the network is reduced. In the LVQ
network the first layer detects subclasses. The second
layer combines subclasses into a single class (Fig. 17).
The first layer computes Euclidean distances between
input patterns and stored patterns. A winning “neuron” is
the one with the smallest distance in the input pattern.

unipolar
neurons

Competitive Layer

summing
 circuits

0

1

0

0

0

LinearLayer

W V

Fig. 17. LVQ Learning Vector Quantization networks.

3.5. Cascade correlation architecture

The cascade correlation architecture was proposed by
Fahlman and Lebiere [10] (Fig. 18) The process of
network building starts with a one layer neural network
and hidden neurons are added as needed. In each training
step, the new hidden neuron is added and its weights are
adjusted to maximize the magnitude of the correlation
between the new hidden neuron output and the residual
error signal on the network output that we are trying to

26

eliminate. The output neurons are trained using a simple
one-neuron training algorithm. Each hidden neuron is
trained just once and then its weights are frozen. The
network learning and building process is completed when
satisfactory results are obtained.

hidden neurons

output
neurons

in
pu

ts

ou
tp

ut
s

+1

+1

+1

+1
once adjusted weights and then frozen
weights adjusted every step

Fig. 18. Cascade correlation architecture.

3.6. RBF - Radial Basis Function networks

The structure of the radial basis network is shown in Fig.
19. This type of network usually has only one hidden
layer with special "neurons". Each of these "neurons"
responds only to the input signals close to the stored
pattern. The output signal hi of the i-th hidden "neuron" is
computed using the following formula.

i

2

2h = -
2

exp
x si−�

�
�
�

�

�
�
�σ

 (2)

Note, that the behavior of this "neuron" significantly
differs from the biological neuron. In this "neuron",
excitation is not a function of the weighted sum of the
input signals. Instead, the distance between the input and
stored pattern is computed. This "neuron" is capable of
recognizing certain patterns and of generating output
signals that are functions of a similarity.

in
pu

ts

ou
tp

ut
s

summing
 circuit

y2

y3

y1

D

D

D

hidden "neurons"

w1

w
2

y1

y2

y3

D

0

1

0

0

 output
normalization

s1

s4

s3

s2

stored

stored

stored

stored

x
 is

 c
lo

se
 t

o
 s

 2

Fig. 19. RBF - Radial basis function networks.

3.7. Sarajedini and Hecht-Nielsen network

The Sarajedini and Hecht-Nielsen [11] network of Fig. 20
is capable of calculating Euclidean distances between
input pattern and stored pattern using only information
about the square of the input vector length and the neuron
with a linear activation function. The network is based on
the following analytical formulas:

 wxwwxxwx TTT 2
2 −+=− (3)

and

 net2
222 −+=− wxwx (4)

(a)
x 2

x1

x2

xn

+1

+1

-2w1 w 2

-2w2

-2wn

x w− 2

�

(b) 0
10

20
30

0

10

20

30
0

100

200

300

400

500

Fig. 20. Sarajedini and Hecht-Nielsen neural network: (a)
network architecture, (b) surface generated (for 2-dim
case).

R2 2− x

x1

x2

xn

z1

z2

zn+1

zn

...

Fig. 21. Networks with increased dimensionality.

Fig. 22. Result of cluster separation of networks with
increased dimensionality.

3.8. Networks with increased dimensionality

The network shown in Fig. 21 has a similar property (and
power) to RBF networks, but it uses only traditional
neurons with sigmoidal activation functions [12][13]. In
this network an additional input is generated using the
formula:

22

1 x−=+ Rzn (5)

-10
-5

0
5

10

-10
-5

0
5

10
-1

-0.5

0

0.5

1

27

This way all input patterns are projected on a hyper sphere
with a radius R. Round clusters could be separated by
hyper planes (traditional sigmoidal neurons).
Fig. 22 shows a separation of three clusters using three
sigmoidal neurons. With this approach traditional neurons
are gaining the capability of separating patterns by circle,
sphere, or hyper sphere.

3.9. Comparison on neural network architectures

One of the most difficult problems to solve with neural
networks is the parity problem. This problem has a very
nonlinear character with multiple minimas and maximas
[14]. Let us compare different neural network
architectures to solve the parity-8 problem. This problem
is so complex that the most common EBP algorithm is not
able to solve it, unless, luckily, initial starting weights are
used. In the case of the most popular neural networks
with one hidden layer and without connections across
layers there are at least 9 neurons required and 8*9+9 = 81
weights. See Fig. 23 for the network architecture.

all weights =1

7

8

-1

1

+1

+1

6

2

3

4

5

1

1

1

-1

-1

-1

1

-1

-7; -5; -3; -1; 1; 3; 5; 7
Fig. 23. Parity-8 problem with feedforward bipolar neural
network with one hidden layer.

all weights =1

3

4

-2

-2

+1

+1

2

1

-2

 -2

 -0.5

-6.5; -2.5; 1.5; 5.5

Fig. 24. Fully-connected layered bipolar neural network
with one hidden layer for the parity-8 problem.

weights = +1

1

2

3

out

+1

+1

+1

+1

-8

-4

-2

-6.5

-6.5

-6.5

 -6.5

Fig. 25. Bipolar implementation of a fully connected
cascade neural network for the parity-8 problem.

weights = +1
1

2

3

out

+1

+1

-8

-4

-2

-6.5

-6.5

+1
-6.5

+1
-6.5

Fig. 26. Bipolar implementation of a fully connected
cascade neural network for the parity-8 problem with an
additional summator.

weights = +1

+1

+2

� -9
+2

� -9 �

 Fig. 27: Bipolar implementation of a pipeline neural
network for the parity-8 problem.

In the case of when connections across layers are allowed
(see Fig. 24), number of neurons in the hidden layer can
be reduced from 8 to 4 and the total number of weights is
4*9+8+4+1=49. When neurons are connected in a
cascade (see Fig. 25), then only four neurons are required
and the total number of weights is 9+10+11+12=42.
Note, that in the case of the parity problem (due to the
symmetry of inputs) each of networks shown in Fig 23 to
Fig 25 can be further simplified by adding an additional
neuron with linear activation function (summator) to the
front. For example, the network of Fig. 25 can be
simplified to the architecture shown in Fig. 26 with 5
neurons and 22 weights.
With the pipeline architecture shown in Fig. 27 the parity-
8 problem can be solved with only 3 neurons and
8+2+2=12 weights. The pipeline architecture is very
specific to parity problems and it cannot be generalized for
other cases.
The comparison of minimum hardware requirements for
the parity-8 problem is shown in Table I.

28

TABLE I. Comparison of various neural network
architectures for implementation of the parity 8 problem

NN with one hidden layer (Fig. 23)

NN with one hidden layer with
connections across (Fig. 24)

NN with fully connected cascade
(Fig. 24)

9

49

42

neurons weights
81

5

4

One may conclude that the cascade network (Fig. 25) is
the most powerful, since it would require a minimum
number of elements. At the same time because of a long
signal path (across many layers), the cascade architecture
is more difficult to train and it is also more sensitive to the
variation of weights. The fully connected network (Fig.
14) has only a slightly larger number of neuronal
requirements than cascade architecture but it is easier to
train and in most cases this would be the preferred choice.

5

6

7

8

9

1

2

3

4

Fig. 28. Layered neural network with four neurons in the
hidden layer.

1

2

3

4

5

6

7

Fig. 29. Fully connected neural network with two neurons
in the hidden layer.

3.10. Training algorithms

Unfortunately most of the neural network software (like
MATLAB Tool Box) is not suitable for training fully
connected neural networks. One exception is the SNNS
(Stuttgart Neural Network System [15]), which can handle
fully connected architectures, but only relatively simple
neuron network training algorithms are used and the LM -
Levenberg-Marquardt [16] algorithm is not implemented.
The LM algorithm has currently the best reputation out of
all the training algorithms. For most cases it converges
within 10-20 iterations while the most popular EBP –
Error Back Propagation-algorithm requires 1000 to 2000
iterations to reach a solution with a relatively large error.
An additional advantage of the LM algorithm is its fast

convergence to the solution, while the EBP reaches the
solution only asymptotically.

The author has developed a code for a LM algorithm that
is suitable for any neural network architecture (including
cascade and fully connected networks) The MATLAB
code can be downloaded from [17]. In the current version
of the software all neural network nodes have to be
numbered sequentially starting from inputs to outputs.
The entire network architecture is described by a sequence
of numbers. For example the network shown in Fig 28 is
described by the sequence: 5, 1, 2, 3, 4, 6, 1, 2, 3, 4, 7, 1,
2, 3, 4, 8, 1, 2, 3, 4, 9, 5, 6, 7, 8 while the network shown
in Fig. 29 is described by the sequence: 5, 1, 2, 3, 4, 6, 1,
2, 3, 4, 7, 1, 2, 3, 4, 5, 6. In the numerical sequence the
number of neurons is listed first and then all input nodes,
and then the number of the next neuron is given with all
its associated inputs. The process is repeated until all
neurons are listed. Note, that the software can handle
fully or sparsely connected networks with arbitrary
architectures, as long as the concept of a one directional
signal flow is preserved. The software has the option of
giving initial weights. Weights are listed in the same form
as the network topology. Instead of neuron number, the
biasing weight of this neuron is given and then weights
associated with every input. If the initial weights are not
given, then all the weights are selected randomly.

0
5

10
15

20

0

5

10

15

20
-1.5

-1

-0.5

0

0.5

1

Fig. 30. Control surface obtained using fully connected
neural network with one hidden neuron.

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

Fig. 31. Control surface obtained using fully connected
neural network with two hidden neurons.

29

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

Fig. 32. Control surface obtained using fully connected
neural network with three hidden neurons.

0
5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

Fig. 33. Control surface obtained using fully connected
neural network with four hidden neurons.

M2

M3 M4
VIN

M1

IREFVX

IM3 IM4

IM2

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50
-100

0

100

W
L
__W

L
__

negative
output

positive
output

ou
tp

ut
 c

ur
re

nt
s

[µ
 A

]

input voltage [µA]
(b)

Fig. 34. Simple VLSI implementation of neuron with a
differential pair: (a) circuit diagram (b) result of SPICE
simulation.

M3 M4VIN

IREF

M1 M2

M5 M6

M7 M8

IM2IM4IM6IM7
IM8

1V

2V

3.2V

4.5V

10uA

W/L1,2=5
W/L3,4=1
W/L5,6=2
W/L7,8=3

(a)

 Vin

0V 1.0V 2.0V 3.0V 4.0V 5.0V
ID(M2) ID(M4) ID(M6) ID(M7) ID(M8)

0A

4uA

8uA

12uA

(b)

Fig. 35. VLSI implementation of fuzzifier block: (a)
circuit diagram, (b) result of SPICE simulations with five
membership functions plotted.

4211

4211

2

8 16 32

1 4

VREF2

VREF1

VREF2

VREF3

MSB

LSB

IIN

IOUT

Fig. 36. Digitally programmable weights.

30

4. VLSI IMPLEMENTATIONS

In the case of neural networks a sigmoidal type of
activation function can be implemented using a simple
differential pair (Fig 34). Positive or negative weights can
be implemented by taking a signal to the next layer from
inverted and non inverted outputs.
One possible solution is to use current controlled weights
in neural networks and current controlled parameters in
fuzzy systems. Therefore, in order to fully control
nonlinear systems, only digitally controlled currents are
required. The same differential pairs with a unique
configuration, as shown in Fig. 35(a), may act as
fuzzifiers. Fig. 35(b) shows membership functions
implemented by the circuit of Fig. 35(a). Fig. 36 shows
a sample solution of digitally programmed 6-bit weights.

5. CONCLUSION

Fuzzy systems and neural networks as two major methods
of computational intelligence were described and
compared. Fuzzy systems are easier to design, while
neural networks require training (optimization). In
practical implementations fuzzy systems require more
hardware and resulted control surface is not as smooth as
in the case of neural networks. For example, in the study
case the TSF fuzzy system with triangular membership
function (see Fig. 6(b)) required 6+6+36= 48 values to be
stored. In the case of fully connected neural network with
three hidden neurons (Fig. 32), only 3*4+8=20 values had
to be stored. One may notice that neural networks require
not only less hardware, but also it generates superior
control surface. In the case when only design rules has to
be used and optimization is not desired, neural networks
can also replace fuzzy systems as it was shown in Fig. 13.

IMPLEMENTACJE METOD KOMPUTEROWEJ
INTELIGENCJI

Streszczenie: Tradycyjne kontrolery takie jak PID i wiele
zaawansowanych metod sterowania s� u�yteczne dla sterowania
liniowych procesów. W praktyce wi�kszo�� procesów jest
nieliniowa. Metody nieliniowego sterowania s� głównym
problemem w nowoczesnej teorii sterowania. Nawet, je�li
liniowa teoria sterowania jest ju� dobrze ugruntowana, to
problemy nieliniowego sterowania przysparzaj� nam wiele
kłopotów. Sterowanie nieliniowych systemów nie jest łatwe,
poniewa� wyst�powa� w nich mo�e wiele trybów nieliniowych
zachowa�. Zwykle nieliniowe procesy musz� by� najpierw
zlinearyzowane zanim sterownik b�dzie skuteczny. Mo�na to
zwykle osi�gn�� poprzez dodanie odwrotnej funkcji nieliniowej
dla skompensowania nieliniowych zachowa�. W ten sposób,
wypadkowy proces pomi�dzy wej�ciami i wyj�ciami systemu
b�dzie w przybli�eniu liniowy. Zagadnienie staje si� bardziej
skomplikowane, je�li charakterystyki systemu zmieniaj� si� w
czasie i potrzebna jest adaptacyjna zmiana nieliniowych
wła�ciwo�ci. Takie systemy adaptacyjne s� skutecznie tworzone
przy wykorzystaniu metod komputerowej inteligencji takich jak
sieci neuronowe lub systemy rozmyte. Kolejnym problemem jest
opracowywanie systemów rozmytych i sieci neuronowych, które
same w sobie s� zagadnieniami bardzo zło�onymi. Prezentacja
skupi si� na kilku metodach znajdywania zbli�onych do
optymalnych architektur i efektywnych metod uczenia
systemów. Problemy staj� si� jeszcze bardziej zło�one, je�li
metody komputerowej inteligencji maj� by� zaimplementowane

w krzemie. Szereg praktycznych rozwi�za� zostało
zaprezentowanych i porównanych.

References

[1] Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R.

(2000) Sieci Neuronowe. Akademicka Oficyna
Wydawnicza EXIT, Warszawa.

[2] Wilamowski B.M. (2002) Neural Networks and
Fuzzy Systems”, chapter 32 in Mechatronics
Handbook edited by Robert R. Bishop, CRC Press,
pp. 33-1 to 32-26.

[3] Zadeh L.A. (1965) Fuzzy sets. Information and
Control, 8, 338-353.

[4] Mamdani E.H. (1974) Application of Fuzzy
Algorithms for Control of Simple Dynamic Plant.
IEEE Proceedings, 121, 12, 1585-1588.

[5] Sugeno and G.T. Kang (1988) Structure
Identification of Fuzzy Model. Fuzzy Sets and
Systems, 28, 1, 15-33.

[6] Takagi T., Sugeno M. (1985) Fuzzy Identification of
Systems and Its Application to Modeling and
Control. IEEE Transactions on System, Man,
Cybernetics, 15, 1, 116-132.

[7] Pao Y.H. (1989) Adaptive Pattern Recognition and
Neural Networks, Reading, Mass. Addison-Wesley
Publishing Co.

[8] Hecht-Nielsen R. (1987) Counterpropagation
networks. Appl. Opt., 26(23), 4979-4984.

[9] Fahlman S.E, Lebiere C. (1990) The cascade-
correlation learning architecture. nn D.S.Touretzky,
Ed. Advances in Neural Information Processing
Systems 2, Morgan Kaufmann, San Mateo, Calif.,
524-532.

[10] Sarajedini A., Hecht-Nielson R. (1992) The best of
both worlds: Casasent networks integrate multilayer
perceptrons and radial basis functions. IJCNN’92.
International Joint Conference on Neural Networks
7-11 Jun 1992, vol.3, 905-910.

[11] Wilamowski B., Hunter D. (2003) Solving Parity-n
Problems with Feedforward Neural Network. Proc.
of the IJCNN'03 International Joint Conference on
Neural Networks, pp. 2546-2551, Portland, Oregon,
July 20-23, 2003.

[12] University of Tübingen. [Online]. Available:
http://www-ra.informatik.uni-tuebingen.de/SNNS/

[13] Hagan, M. T. and Menhaj, M., “Training
feedforward networks with the Marquardt
algorithm”, IEEE Transactions on Neural Networks,
vol. 5, no. 6, pp. 989-993, 1994.

[14] Auburn University [Online]. Available:
http://www.eng.auburn.edu/users/wilambm/BMW.zip.

[15] Wilamowski B.M., Binfet J. (1999) Do Fuzzy
Controllers Have Advantages over Neural
Controllers in Microprocessor Implementation.
ICRAM'99 2-nd International Conference on Recent
Advances in Mechatronics -, Istanbul, Turkey, pp.
342-347, May 24-26 1999.

[16] Wilamowski B.M., Hung J.Y., Gottiparthy R. (2005)
Digitally Tuned Analog VLSI Controllers. ISIE’05
IEEE International Symposium on Industrial
Electronics, Dubrovnik Croatia, June 19-22 2005.

