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Abstract - Comparison of various methods of computational 
intelligence are presented and illustrated with exampIes. These 
methods include neural networks, fuzzy systems, and 
evolutionary computation. The presentation is focused on 
neural networks, their learning algorithms and special 
architectures. General learning rule as a function of the 
incoming signals is discussed. Other learning rules such as 
Hebbian learning, perceptron learning, LMS - Least Mean 
Square learning, delta learning, WTA - Winner Take All 
learning, and PCA - PrincipaI Component Analysis are 
presented as a derivation of the general learning rule. 
Architecture specific learning algorithms for cascade 
correlation networks, Sarajedini and Hecht-Nielsen networks, 
functional link networks, poIynomial networks, 
counterpropagation networks, REF-Radial Basis Function 
networks are described. 

1. LNTRODUCTION 

AS a likely result of the on-going development of 
computer technology we may expect that massive parallel 
processing and soft computing will significantly enhance 
traditional computation methods. The methods of 
computational intelligence includes neural networks, fuzzy 
systems, and evolutionary computation. They provide a 
practical alternative for solving mathematically intractable 
and complex problems. 

The mathematical power of computational intelligence is 
commonly attributed to the neural-like system architecture 
used and the fault tolerance arising from the massively 
interconnected structure. Such systems are characterized by 
heavy parallel processing. The last feature is unfortunately 
lost if algorithms are implemented using conventional 
microprocessors or digital computers. 

Another aspect of soft computing systems is that instead 
of “zero” and “one” digital levels, they use fuzzy/continuous 
levels and in this way much more information is passed 
through the system. Conventional digital computers are not 
we11 suited for such signal processing. 

A third feature of computational intelligence is their 
ability to find a close to optimum solutions for very complex 
cases which are difficult to handle by analytical methods, 

LI. NEURAL NETWORKS 

The feedfonvard neural networks allow only for one 
directional signa1 flow. Furthermore, most of feedforward 
neural networks are organized in layers. An example of the 
three layer feedforward neural network is shown in Fig. 1. 
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Fig. 1. Feedfonvard neural networks 

A single neuron can divide only linearly separated patterns. 
In order to select just one region in n-dimensional input space, 
more than n+l neurons should be used. For example to 
separate a rectangular pattern 4 neurons are required as it is 
shown in Fig, 2. If more input clusters should be selected then 
the number of neurons in the input (hidden) layer should be 
properly multiplied. If the number of neurons in the input 
(hidden) layer is not lirmted, then all classification problems can 
be solved using the three layer network. 

y x>i x < 2  neuronequations 

x-1 > o  
- x + 2 > 0  

-y+2.5 > 0 

y - o 5 > 0  +I 

Fig. 2. Separation of input space by the set of four neurons. 

The feedforward neural network can be used for nonlinear 
transformation (mapping) of a multidimensional input variable 
into another multidimensional variable in the output. Presently, 
there is no satisfactory method to define how many neurons 
should be used in hidden layers. Usually this is found by trial 

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore.  Restrictions apply.



and error method In general, it is known that if more neurons 
are used more complicated shapes can be mapped. On the 
other side, networks with large number of neurons lose their 

variables are generated. The purpose of hzzification is to 
convert an analog variable input into a set of fuzzy variables. 
For higher accuracy, more fuzzy variables will be chosen. 

ability for generalization, and it is more likely that such network 
will try to map noise supplied to the input also. 

Until now we have mastered only these feedforward 
neural networks. [1,2,3]. But biological neurons are connected 
in many loops. Unfortunately until now there are no good 
methods to analyze neural networks with multiple feedback. 
The power of these systems was already proven but more 
research is needed to analyze and design these recurrent 
networks. 

III. FUZZY SYSTEMS Fig. 4. An example of fuzzy system 

In our digital world we are using Boolean algebra to perform 
basic AND, OR and NOT function. It is interesting that if the 
AND operator is replaced with MIN operator (returning 
minimum value of any input) and OR operator is replaced with 
MAX operator (returning maximum value of any input) then the 
same logic h c t i o n  will be performed. This approach however 
gives an ability to process not only zero and one signals but also 
any analog signals within a range between zero or one. Fig. 3 
illustrates similarity and dflerences between Boolean operators 
(AND, OR) and ~LIZZY operators (MIN, MAX) 

Boolean operators 

For proper design of the fuzzification stage, certain practical 
rules should be used: 
> Each point of the input analog variable should belong to 

at least one and no more than two membership functions. 
k For overlapping functions, the sum of two membership 

functions must not be larger than one. This also means 
that overlaps must not cross the points of maximum 
values (ones). 
For higher accuracy, more membership functions should 
be used. However, very dense functions lead to frequent 
system reaction and sometimes to system instability. 

R 

AND OR 

Fuzzy operators 

0.7 0.3 0.3 
0.7 0.8 0.7 

MIN 
Fig. 3. Comparison Boolean 

MAX 
and i7m-y operators 

The principle of operation of the fuzzy systems significantly 
differs from neural networks. The block diagram of a fuzzy 
controller is shown in Fig. 4. In the first step, analog inputs 
are converted into a set of fuzzy variables. In this step, for 
each analog input, several fuzzy variables typically are 
generated. Each fuzzy variable has an analog value between 
zero and one. In the next step, a fuzzy logic is applied to the 
input fuzzy variables and a resulting set of output variables is 
generated. In the last step, known as defizzzlfication, from a 
set of output fuzzy variables, one or more output analog 

1V. EVOLUTIONARY COMPUTATIONS 

The success of the artificial neural networks encouraged 
researchers to search for other patterns in nature to follow. 
The power of genetics through evolution was able to create 
such sophisticated machines as the human being. Genetic 
algorithms foIlow the evolution process in nature to find 
better solutions to some compIicated problems. The 
foundations of genetic algorithms are given by Holland [4] 
and Goldberg [ 5 ] .  After initialization, the steps selection, 
reprodziction with a crossov~r, and.mututian are repeated for 
each generation. During this procedure, certain strings of 
symbols, known as chromosomes, evaluate toward a better 
solution. The genetic aIgorithm method begins with coding 
and an initialization. All significant steps of the genetic 
algorithm will be explained using a simple example of 
finding a maximum of the function (sin2(x) - 0.5 * x)’ with 
the range of x kom 0 to 1.6 (Fig. 5) Note that in this range, 
the function has a global maximum at ~ 1 . 3 0 9 ,  and a local 
maximum at ~ 0 . 2 6 2 .  

At first, the variable x has to be represented as a string of 
symbols. With longer strings, the process usually converges 
faster, so the fewer symbols for one string field that are used, 
the better. Although this string may be the sequence of any 
symbols, the binary symbols 0 and 1 are usually used. In our 
example, six bit binary numbers are used for coding, having a 
decimal value of 40x. The process starts with a random 
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generation ofthe initial population given in Table .1. 

3 

4 

1 
U o z  0 4  18 us 1 12 I .  ,I 

Fig. 5. Function (sin'(x) - 0 . 5 ~ ) ~  for which the minimum must be 
found 

llOl0I 53 1.325 0.0774. 0.1766 

OIUOOI 41 Id25 0.0475 0.1084 

Table. 1 Initial Population 

smng string k i m d  vanable f,"chon Fnchon 
n m k  value value value of total 

3 

4 

5 

6 

7 

8 

1) I I 101101 I 45 I 1.125 1 0.0633 I 0.6465 11 

0lOl00 20 

100101 37 

V O l V l 0  10 

IIVQOI 49 

l0OIIi 39 

000IOO 4 

II II 

0.500 

0,925 

0.250 

1,225 

0.975 

0.100 

0.0004 0.0016 

0.0307 0.1197 

0.0041 0.0158 

0.0743 0.2895 

0,0390 0.1521 

0.0016 0.0062 

Selection of the best members of the population is an 
important step in the genetic algorithm. Many different 
approaches can be used to rank individuals. In this example, 
the ranking fhction is given. Highest rank is member 
number 6 ,  and lowest rank is member number 3: Members 
with higher rank should have higher chances to reproduce. 
The probability of reproduction for each member can be 
obtained as a fraction of the sum of all objective function 
vaIues. This fraction is shown in the last column of Table 1. 
Note that to use this approach, our objective function should 
always be positive. If it is not, the proper normalization 
should be introduced at first. 
The numbers in the last column of Table I show the 
probabilities of reproduction. Therefore, most likely 
members number 3 and X will not be reproduced, and 
members 1 and 6 may have two or more copies. Using a 
random reproduction process, the following population, 
arranged in pairs, could be generated: 
l0llOl 3 45 ll000l 9 49 l0OlOl + 37 llO0Ol +49 
1001 1 I + 39 101 101 + 45 110001 + 49 101000+40 
If the size of the population from one generation to another 

is the same, two parents should generate two children. By 
combining two strings, two other strings should be generated. 

The simplest way to do this is to split in half each of the 
parent strings and exchange substrings between parents, For 
example, from parent strings, 010100 and 10011 1, the 
following child strings will be generated 0101 11 and 100100. 
This process is known as the crossover. The resultant 
children are 
101111 + 47 I l O l O l  +53 100001 4 33 110000 +48 
l0OlOL + 37 101001 3 4 1  110101 + 5 3  lo1001 +41 
The second population is shown in Table 2. 

TABLE 2 Population ot'Sccond Gcnmtion 

oftotal 

0l0 l I l  I.175 0.0696 0.1587 
I II 

II 

5 I 100001 1 33 I 0.525 I 0.0161 1 0.0368 

Total 

In general, the string need not be split in half. It is usually 
enough if only selected bits are exchanged between parents. 
it is only important that bit positions are not changed. 
Note that two identicaI highest ranking members of the 
second generation are very close to the solutionx=I.309. The 
randomly chosen parents for the third generation are: 
01011 I 3 4 7  l l O l O I  +53 110000 +48 101001 4 4 1  
110101 3 5 3  110000 +48 101001 +41 110101 +53 
which produces the following children: 
010101+21 110000+48 110001--f49 101101+45 
I l O l l l 3 5 5  IlOlOl+53 101000340 llOOOl+49 

The best result in the third population is the same as in the 
second one. By careful inspection of all strings from the 
second or third generation, it may be concluded that using 
crossover, where strings are always split in half, the best 
solution 1 10 100 + 52 will never be reached, regardless of 
how many generations are created. This is because none of 
the population in the second generation has a substring 
ending with 100. For such crossover, a better result can be 
only obtained due to the mutation process, which may require 
many generations. Better results in the fbture generation also 
can be obtained when strings are split in random places. 
Another possible solution is that only randomly chosen bits 
are exchanged between parents. 
The genetic algorithm almost always leads to a good 
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solution, but sometimes many generations are required. This 
solution is usually close to global maximum, but not the best. 
In the case of a smooth function the gadinet metHods are 
converging much faster and to a better solution. CA are much 
slower, but more robust. 

V. CORE LEARNING ALGORITHMS FOR NEURAL 
NETWORKS 

Similarly to the biological neurons, the weights in artificial 
neurons are adjusted during a training procedure. Various 
learning algorithms were developed and only a few are suitable 
for multilayer neuron networks. Some use only local signals in 
the neurons, others require information fiom outputs, some 
require a supervisor who knows what outputs should be for the 
given patterns, other - unsupervised algorithms do not require 
such information. 

A. Hebbian Ieaming rule 
The Hebb [6] learning rule is based on the assumption 

that if two neighbor neurons must be activated and deactivated 
at the same time, then the weight connecting these neurons 
should increase. For neurons operating in the opposite phase, 
the weight between them shouId decrease. If there is no 
correlation, the weight should remain unchanged. This 
assumption can be described by the formula 

where wq is the weight kom i-th to j-th neuron, c is the learning 
constant, xi is the sipid on the i-th input and uj is the output 
signal. 
B. Comelation learning rule 

The correlation learning rule is based on a similar 
principle as the Hebbian learning rule. It assumes that weights 
between simultaneously responding neurons should be largely 
positive, and weights between neurons with opposite reaction 
should be largely negative. Mathematically, this can be written 
that weights should be proportional to the product of states of 
connected neurons. 

(1) 
I A W ~  - C x i O j  

A w ~  = C x i d j  (2) 

C. Instar learning rule 
If input vectors, and weights, are normahzed, or they 

have only binary bipolar values ( - I  or + I ) ,  then the net value 
will have the largest positive value when the weights have the 
same values as the input signals. Therefore, weights should be 
changed only if they are dflerent fiom the signals 

Awi = C ( X ~  - wi) (3) 

D. W A  - Winner Takes All 
The WTA is a modification of the instar algorithm 

where weights are modified only for the ne&n with the highest 
net value. Weights of remaining neurons are left unchanged. 
This unsupervised algorithm (because we do not know what are 

desired outputs) has a global character. The net values for all 
neurons in the network should be compared in each training 
step. The WTA aIgorithm, developed by Kohonen [7] is often 
used for automatic clustering and for extracting statistical 
properties of input data. 

E. Outstar Ieaming rule 
In the outstar learning rule it is required that weights 

connected to the certain node should be equal to the desired 
outputs for the neurons connected through those weights 

A WQ = .(dj - wij) (4) 
where 4 is the desired neuron output and c is small learning 
constant which further decreases during the learning procedure. 
This is the supervised training procedure because desired 
outputs must be known. Both instar and outstar learning rules 
were developed by Grossberg [SI 

F. Percepptron leuming iule 
Awi = c  6 x i  ( 5 )  

6 = d - 0  ( 6 )  
(7) Awi = a xi (d -sign(net)) 

net = C wixi 
1-1 

G. Widmw-Hoff ('IUS) learning rule 
Widrow and Hoff developed a supervised training algorithm 

which allows training a neuron for the desired response. This 
rule was derived so the square of the difference between net and 
output value is minimized. 

P 

p = l  

where Errorj is the error for j-th neuron, P is the number of 
applied patterns, c& is the desired output forj-th neuron whenp- 
fh pattern is applied, and net is given by equation (7). This rule 
.is'also known is the LMS (Least Mean Square) rule. By 
calculating a derivative of (8) with respect to wi, one can find a 
formula for the weight change. 

P 

Awg = C X ~  (djp - netjp) (10) 
p = l  

H. Linear regression 
The LMS learning rule requires hundreds or thousands of 

iterations before it converges to the proper solution. Using the 
linear regression the same result can be obtagzd in only one 
step. 

Considering one neuron and using vector notation for a set 
of the input patterns X applied through weights w the vector of 
net values net is calculated using 

or 
Xw = net (1 1) 

4 
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Note that the s h e  of the input patterns is always augmented by 
one, and this additional weight is responsible for the threshold. 
This method, similar to the LMS rule, assumes a linear 
activation hc t ion ,  so the net values net should be equal to 
desired output values d 

Usuallyp > n+l ,  and the above equation can be solved only in 
the least mean square error sense 

xw = d (13) 

W = (X'X)-' XT d (14) 
I. Delta learning nile 

The LMS method assumes linear activation h c t i o n  net = 0, 

and the obtained solutibn is sometimes far horn optimum. If 
error is defined as 

P 

Error, = (ojp - dip)' 
p=l 

then the derivative of the error with respect to the weight wij is 

Note, that this derivative is proportional to the derivative of the 
activation function f (ne@ 

Using the cumulative approach, the neuron weight wli should 
be changed with a direction of gradient 

P 

Awq = c xi  ( a j p  - o j p )  fjz (17) 
p=l 

in case of the incremental training for each applied pattern 

A wij = c xi f j t  (dj - oj) (18) 
the weight change should be proportional to input signal x,, to 
the difference between desired and actual outputs db-ojp, and to 
the derivative of the activation functionf;,. 

J.  Error Backpropagation learning 
The delta learning rule can be generalized for multilayer 

networks. Using a similar approach, as it is described for the 
delta rule, the gradient of the global error can be computed in 
respect to each weight in the network. 

0, =F{~(w,x,,+w,x,,+...+I-v,x,)} (19) 

K Levenberg-Marquardt Algorithm (Liy, 
Steepest descent method (error backpropagation) 

W k + l = w k - a g  (22) 

where g is gradient vector 
aE 

3E 

- 

grudient g = G  

ai 
h" 

Newton method 

J =  

A=2JTJ  and g=2Jre (27) 
Gauss-Newton method: 

wk+l = Wt -(J;J, I-' J L ~  (28) 

Levenberg - Marquardt method: 
, Wt+,  = w k  -(J:J, +PI)' J:. (29) 

The LM algorithm requires computation of the Jacobian J 
matrix at each iteration step and the inversion of JTJ square 
matrix. Note that in the LM algorithm an N by N matrix must 
be inverted in every iterations. This is the reason why for 
large size neural networks the LM algorithm is not practical. 

Fig. 6. One layer neural network with nonlinear polynomial terms. 
VI. SPECIAL FEEDFORWARD ARCHITECTURES 
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A. Polynomial Networks 
Using nonlinear terms with initially determined hct ions,  the 
actual number of inputs supplied to the one layer neural network 
is increased. In the simplest case nonlinear elements are higher 
order polynomial terms of input patterns. Fig. 6 
shows an example of hnctional Link networks. 

B. Functional link networks 
One layer neural networks are relatively easy to train, 

but these networks can solve only linearly separated problems. 
One possible solution for nonlinear problems was elaborated by 
Pa0 [9] using the functional link network shown in Fig. 7. Note 
that the functional link network can be treated as a one layer 
network, where additional input data are generated off h e  using 
nonlinear transformations. 

Fig. 7. One layer neural network with arbitrary nonlinear terms. 

Note, that when the functional link approach is used, this 
difficuIt problem becomes a trivial one. The problem with the 
functional link network is that proper selection of nonlinear 
elements is not an easy task 

C. Fee@oonuard version of the counteipropagation network 
The counterpropagation network was originally proposed by 

Hecht-Nilsen [lo]. This network, which is shown in Fig. 8, 
requires numbers of hidden neurons equal to the number of 
input pattems, or more exactly, to the number of input clusters. - 

Kohonen 
laver r-. n 

summing 
unipolar circuits 
nmrow 

Fig. 8. Counterpropagation network 

When binary input patterns are considered, then the input 
weights must be exactly equal to the input pattems. In th~s case, 

(30) net = xt w = (n - ~ H D ( x , w ) )  

where n is the number of inputs, w are weights, x is the input 
vector, and HD(w,x) is the Hamming distance between input 
pattem and weights. Since for a given input pattern, only one 
neuron in the first layer may have the value of one and 
remaining neurons have zero values, the weights in the output 
layer are equal to the required output pattern. 

The counterpropagation network is very easy to design. The 
number of neurons in the hidden layer should be equal to the 
number of patterns (clusters). The weights in the input layer 
should be equal to the input patterns and, the weights in the 
output layer shouId be equal to the output patterns. 

D. L VQ Learning Veefor Qzraniization 
At LVQ network the first layer detects subclasses. The 

second layer combines subclasses into a single class (Fig. 9). 
First layer computes Euclidean distances between input 
pattern and stored patterns. Winning “neuron” is with the 
minimum distance 

summing 
unipolar circuits 
netlmns 

Fig, 9. LVQ Learning Vector Quantization 

E. PTA architecture 
The winner takes all WTA network was proposed by 

Kohonen [7]. This is basically a one layer network used in the 
unsupervised training algorithm to extract a statistical property 
of the input data. At the first step all input data is normalized so 
the-length of each input vector is the same, and usualIy equal to 
unity. The activation hc t ions  of neurons are unipolar and 
continuous. The learning process starts with a weight 
initialization to small random values. ;* m1= f (ne t )  

x3 

x, 

x, 

Fig, 10. Neuron as the Hamming distance classifier 

If inputs of the neuron of Fig. I O  are binaries, for example 
X=[I, -1, 1, -1, -11 then the maximum value of net 

i=l 
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is when weights are identical to the input pattern W=[ 1, -1, 1, 
-1, -11 In this case net = 5. For binary weights and patterns 
net value can be found using equation: 

n 

net = c x i w i  = XWT = n - 2HD (32) 
i=l 

where n is the number of inputs and HD is the Hamming 
distance between input vector X and weight vector W. This 
concept can be extended to weights and patterns with analog 
values as long as both lengths of the weight vector and input 
pattem vectors are the same. 

The Euclidean distance between weight vector W and 
input vector X is 

(33) 

IIW - XI1 = JwwT - 2 W X T  + XXT (34) 
When the lengths of both the weight and input vectors are 
normalized to value of one 

flXll= 1 and llWll= 1 (35) 

I(w - XI1 = J T F i i F  
Then the equation simplifies to 

(36) 
Please notice that the maximum value of net value net=l is 
when W and X are identical 

F. Cascade correlation architecture 
The cascade correlation architecture was proposed by 

Fahlrnan and Lebiere (fig. 1 I)  The process of network building 
starts with a one layer neural network and hidden neurons are 
added as needed. 

hdden neurom 

In each t r d g  step, the new hidden neuron is added and its 
weights are adjusted to maximize the magnitude of the 
correlation between the new hidden neuron output and the 
residual error signal on the network output that we are trying to 
eliminate. The output neurons are trained using the delta 
(backpropagation) algorithm. Each hidden neuron is trained just 
once and then its weights are frozen. The network learning and 

building process is completed when satisfied results are 
obtained. 

G. RBF -Radial bask firnction networks 
The structure of the radial basis network is shown in Fig. 12. 
This type of network usually has only one hidden layer with 
special "neurons". Each of these "neurons" responds only to the 
inputs signals close to the stored pattern. 

hidden "neumns" 

Fig. 12. Radial barisfirnclion networkq 

The output signal hi of the i-th hidden "neuron" is computed 
using formula 

(37) 

Note, that the behavior of this "neuron" significantly differs 
form the biological neuron. In this "neuron", excitation is not a 
function of the weighted sum of the input signals. Instead, the 
distance between the input and stored pattern is computed. If 
this distance is zero then the "neuron" responds with a 
maximum output magnitude equal to one. This "neuron" is 
capable of recognizing certain patterns and generating output 
signaIs being functions of a similarity. 

H. Input pattern transformation 
The network shown in Fig. 13 has similar property 

(and power) like RBF networks, but it uses only traditional 
neurons with sigmoidal activation functions. 

Fig. 13, 
neurons the RBF properties. 

Transformation, which are required to give a traditional 

7 

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore.  Restrictions apply.



VII. Networks for solulion ofPuriy Nprablems Genetic Algorithms 
J Suitable for any nonlinear optimization process 
J System converges always to good solution, but not 

optimal one 
For the pa r i ty4  problem with layered neural networks 

containing one hidden layer, the weight calculations for the 
hidden neurons are: 
wi,j=l fop. i , j = 1 , 2 , . . , N  (38) 

wN+l,j  = 2 j - N - 1  for j = 1 , 2 , - . - N  (39) 

v, = 2mod, (N)  - 1 

v .  I for j = 2 , 3 , . - . N  (41) 
vN+, = mod, ( N )  - 1 

While weights for the output neurons are: 
(40) 

(42) 
For example, the architecture for the parity-8 probIem with 
bipolar neurons is shown in Fig. 15 

Fig. 15. Layered bipolar neural network with one hidden layer for 
the parity-8 problem. 
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Fig. 14. Reading Mass. 
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can be implemented 
Neural networks could perform better than teacher 
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Trained neural networks will work, but humans are not 
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Any nonlinear transfer function can be implemented, 
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