
2004 IEEE International Conference an Industrial Technology (ICIT)

Methods of Computational Intelligence
Bogdan M. Wilamowski, Fellow Member, IEEE

Auburn University, USA

Abstract - Comparison of various methods of computational
intelligence are presented and illustrated with exampIes. These
methods include neural networks, fuzzy systems, and
evolutionary computation. The presentation is focused on
neural networks, their learning algorithms and special
architectures. General learning rule as a function of the
incoming signals is discussed. Other learning rules such as
Hebbian learning, perceptron learning, LMS - Least Mean
Square learning, delta learning, WTA - Winner Take All
learning, and PCA - PrincipaI Component Analysis are
presented as a derivation of the general learning rule.
Architecture specific learning algorithms for cascade
correlation networks, Sarajedini and Hecht-Nielsen networks,
functional link networks, poIynomial networks,
counterpropagation networks, REF-Radial Basis Function
networks are described.

1. LNTRODUCTION

AS a likely result of the on-going development of
computer technology we may expect that massive parallel
processing and soft computing will significantly enhance
traditional computation methods. The methods of
computational intelligence includes neural networks, fuzzy
systems, and evolutionary computation. They provide a
practical alternative for solving mathematically intractable
and complex problems.

The mathematical power of computational intelligence is
commonly attributed to the neural-like system architecture
used and the fault tolerance arising from the massively
interconnected structure. Such systems are characterized by
heavy parallel processing. The last feature is unfortunately
lost if algorithms are implemented using conventional
microprocessors or digital computers.

Another aspect of soft computing systems is that instead
of “zero” and “one” digital levels, they use fuzzy/continuous
levels and in this way much more information is passed
through the system. Conventional digital computers are not
we11 suited for such signal processing.

A third feature of computational intelligence is their
ability to find a close to optimum solutions for very complex
cases which are difficult to handle by analytical methods,

LI. NEURAL NETWORKS

The feedfonvard neural networks allow only for one
directional signa1 flow. Furthermore, most of feedforward
neural networks are organized in layers. An example of the
three layer feedforward neural network is shown in Fig. 1.

0-7803-8662-0/04/$20.00 02004 IEEE 1

Fig. 1. Feedfonvard neural networks

A single neuron can divide only linearly separated patterns.
In order to select just one region in n-dimensional input space,
more than n+l neurons should be used. For example to
separate a rectangular pattern 4 neurons are required as it is
shown in Fig, 2. If more input clusters should be selected then
the number of neurons in the input (hidden) layer should be
properly multiplied. If the number of neurons in the input
(hidden) layer is not lirmted, then all classification problems can
be solved using the three layer network.

y x>i x < 2 neuronequations

x-1 > o
- x + 2 > 0

-y+2.5 > 0

y - o 5 > 0 +I

Fig. 2. Separation of input space by the set of four neurons.

The feedforward neural network can be used for nonlinear
transformation (mapping) of a multidimensional input variable
into another multidimensional variable in the output. Presently,
there is no satisfactory method to define how many neurons
should be used in hidden layers. Usually this is found by trial

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

and error method In general, it is known that if more neurons
are used more complicated shapes can be mapped. On the
other side, networks with large number of neurons lose their

variables are generated. The purpose of hzzification is to
convert an analog variable input into a set of fuzzy variables.
For higher accuracy, more fuzzy variables will be chosen.

ability for generalization, and it is more likely that such network
will try to map noise supplied to the input also.

Until now we have mastered only these feedforward
neural networks. [1,2,3]. But biological neurons are connected
in many loops. Unfortunately until now there are no good
methods to analyze neural networks with multiple feedback.
The power of these systems was already proven but more
research is needed to analyze and design these recurrent
networks.

III. FUZZY SYSTEMS Fig. 4. An example of fuzzy system

In our digital world we are using Boolean algebra to perform
basic AND, OR and NOT function. It is interesting that if the
AND operator is replaced with MIN operator (returning
minimum value of any input) and OR operator is replaced with
MAX operator (returning maximum value of any input) then the
same logic h c t i o n will be performed. This approach however
gives an ability to process not only zero and one signals but also
any analog signals within a range between zero or one. Fig. 3
illustrates similarity and dflerences between Boolean operators
(AND, OR) and ~LIZZY operators (MIN, MAX)

Boolean operators

For proper design of the fuzzification stage, certain practical
rules should be used:
> Each point of the input analog variable should belong to

at least one and no more than two membership functions.
k For overlapping functions, the sum of two membership

functions must not be larger than one. This also means
that overlaps must not cross the points of maximum
values (ones).
For higher accuracy, more membership functions should
be used. However, very dense functions lead to frequent
system reaction and sometimes to system instability.

R

AND OR

Fuzzy operators

0.7 0.3 0.3
0.7 0.8 0.7

MIN
Fig. 3. Comparison Boolean

MAX
and i7m-y operators

The principle of operation of the fuzzy systems significantly
differs from neural networks. The block diagram of a fuzzy
controller is shown in Fig. 4. In the first step, analog inputs
are converted into a set of fuzzy variables. In this step, for
each analog input, several fuzzy variables typically are
generated. Each fuzzy variable has an analog value between
zero and one. In the next step, a fuzzy logic is applied to the
input fuzzy variables and a resulting set of output variables is
generated. In the last step, known as defizzzlfication, from a
set of output fuzzy variables, one or more output analog

1V. EVOLUTIONARY COMPUTATIONS

The success of the artificial neural networks encouraged
researchers to search for other patterns in nature to follow.
The power of genetics through evolution was able to create
such sophisticated machines as the human being. Genetic
algorithms foIlow the evolution process in nature to find
better solutions to some compIicated problems. The
foundations of genetic algorithms are given by Holland [4]
and Goldberg [5] . After initialization, the steps selection,
reprodziction with a crossov~r, and.mututian are repeated for
each generation. During this procedure, certain strings of
symbols, known as chromosomes, evaluate toward a better
solution. The genetic aIgorithm method begins with coding
and an initialization. All significant steps of the genetic
algorithm will be explained using a simple example of
finding a maximum of the function (sin2(x) - 0.5 * x)’ with
the range of x kom 0 to 1.6 (Fig. 5) Note that in this range,
the function has a global maximum at ~ 1 . 3 0 9 , and a local
maximum at ~ 0 . 2 6 2 .

At first, the variable x has to be represented as a string of
symbols. With longer strings, the process usually converges
faster, so the fewer symbols for one string field that are used,
the better. Although this string may be the sequence of any
symbols, the binary symbols 0 and 1 are usually used. In our
example, six bit binary numbers are used for coding, having a
decimal value of 40x. The process starts with a random

2

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

generation ofthe initial population given in Table .1.

3

4

1
U o z 0 4 18 us 1 12 I . ,I

Fig. 5. Function (sin'(x) - 0 . 5 ~) ~ for which the minimum must be
found

llOl0I 53 1.325 0.0774. 0.1766

OIUOOI 41 Id25 0.0475 0.1084

Table. 1 Initial Population

smng string k i m d vanable f,"chon Fnchon
n m k value value value of total

3

4

5

6

7

8

1) I I 101101 I 45 I 1.125 1 0.0633 I 0.6465 11

0lOl00 20

100101 37

V O l V l 0 10

IIVQOI 49

l0OIIi 39

000IOO 4

II II

0.500

0,925

0.250

1,225

0.975

0.100

0.0004 0.0016

0.0307 0.1197

0.0041 0.0158

0.0743 0.2895

0,0390 0.1521

0.0016 0.0062

Selection of the best members of the population is an
important step in the genetic algorithm. Many different
approaches can be used to rank individuals. In this example,
the ranking fhction is given. Highest rank is member
number 6 , and lowest rank is member number 3: Members
with higher rank should have higher chances to reproduce.
The probability of reproduction for each member can be
obtained as a fraction of the sum of all objective function
vaIues. This fraction is shown in the last column of Table 1.
Note that to use this approach, our objective function should
always be positive. If it is not, the proper normalization
should be introduced at first.
The numbers in the last column of Table I show the
probabilities of reproduction. Therefore, most likely
members number 3 and X will not be reproduced, and
members 1 and 6 may have two or more copies. Using a
random reproduction process, the following population,
arranged in pairs, could be generated:
l0llOl 3 45 ll000l 9 49 l0OlOl + 37 llO0Ol +49
1001 1 I + 39 101 101 + 45 110001 + 49 101000+40
If the size of the population from one generation to another

is the same, two parents should generate two children. By
combining two strings, two other strings should be generated.

The simplest way to do this is to split in half each of the
parent strings and exchange substrings between parents, For
example, from parent strings, 010100 and 10011 1, the
following child strings will be generated 0101 11 and 100100.
This process is known as the crossover. The resultant
children are
101111 + 47 I l O l O l +53 100001 4 33 110000 +48
l0OlOL + 37 101001 3 4 1 110101 + 5 3 lo1001 +41
The second population is shown in Table 2.

TABLE 2 Population ot'Sccond Gcnmtion

oftotal

0l0 l I l I.175 0.0696 0.1587
I II

II

5 I 100001 1 33 I 0.525 I 0.0161 1 0.0368

Total

In general, the string need not be split in half. It is usually
enough if only selected bits are exchanged between parents.
it is only important that bit positions are not changed.
Note that two identicaI highest ranking members of the
second generation are very close to the solutionx=I.309. The
randomly chosen parents for the third generation are:
01011 I 3 4 7 l l O l O I +53 110000 +48 101001 4 4 1
110101 3 5 3 110000 +48 101001 +41 110101 +53
which produces the following children:
010101+21 110000+48 110001--f49 101101+45
I l O l l l 3 5 5 IlOlOl+53 101000340 llOOOl+49

The best result in the third population is the same as in the
second one. By careful inspection of all strings from the
second or third generation, it may be concluded that using
crossover, where strings are always split in half, the best
solution 1 10 100 + 52 will never be reached, regardless of
how many generations are created. This is because none of
the population in the second generation has a substring
ending with 100. For such crossover, a better result can be
only obtained due to the mutation process, which may require
many generations. Better results in the fbture generation also
can be obtained when strings are split in random places.
Another possible solution is that only randomly chosen bits
are exchanged between parents.
The genetic algorithm almost always leads to a good

3

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

solution, but sometimes many generations are required. This
solution is usually close to global maximum, but not the best.
In the case of a smooth function the gadinet metHods are
converging much faster and to a better solution. CA are much
slower, but more robust.

V. CORE LEARNING ALGORITHMS FOR NEURAL
NETWORKS

Similarly to the biological neurons, the weights in artificial
neurons are adjusted during a training procedure. Various
learning algorithms were developed and only a few are suitable
for multilayer neuron networks. Some use only local signals in
the neurons, others require information fiom outputs, some
require a supervisor who knows what outputs should be for the
given patterns, other - unsupervised algorithms do not require
such information.

A. Hebbian Ieaming rule
The Hebb [6] learning rule is based on the assumption

that if two neighbor neurons must be activated and deactivated
at the same time, then the weight connecting these neurons
should increase. For neurons operating in the opposite phase,
the weight between them shouId decrease. If there is no
correlation, the weight should remain unchanged. This
assumption can be described by the formula

where wq is the weight kom i-th to j-th neuron, c is the learning
constant, xi is the sipid on the i-th input and uj is the output
signal.
B. Comelation learning rule

The correlation learning rule is based on a similar
principle as the Hebbian learning rule. It assumes that weights
between simultaneously responding neurons should be largely
positive, and weights between neurons with opposite reaction
should be largely negative. Mathematically, this can be written
that weights should be proportional to the product of states of
connected neurons.

(1)
I A W ~ - C x i O j

A w ~ = C x i d j (2)

C. Instar learning rule
If input vectors, and weights, are normahzed, or they

have only binary bipolar values (- I or + I) , then the net value
will have the largest positive value when the weights have the
same values as the input signals. Therefore, weights should be
changed only if they are dflerent fiom the signals

Awi = C (X ~ - wi) (3)

D. W A - Winner Takes All
The WTA is a modification of the instar algorithm

where weights are modified only for the ne&n with the highest
net value. Weights of remaining neurons are left unchanged.
This unsupervised algorithm (because we do not know what are

desired outputs) has a global character. The net values for all
neurons in the network should be compared in each training
step. The WTA aIgorithm, developed by Kohonen [7] is often
used for automatic clustering and for extracting statistical
properties of input data.

E. Outstar Ieaming rule
In the outstar learning rule it is required that weights

connected to the certain node should be equal to the desired
outputs for the neurons connected through those weights

A WQ = .(dj - wij) (4)
where 4 is the desired neuron output and c is small learning
constant which further decreases during the learning procedure.
This is the supervised training procedure because desired
outputs must be known. Both instar and outstar learning rules
were developed by Grossberg [SI

F. Percepptron leuming iule
Awi = c 6 x i (5)

6 = d - 0 (6)
(7) Awi = a xi (d -sign(net))

net = C wixi
1-1

G. Widmw-Hoff ('IUS) learning rule
Widrow and Hoff developed a supervised training algorithm

which allows training a neuron for the desired response. This
rule was derived so the square of the difference between net and
output value is minimized.

P

p = l

where Errorj is the error for j-th neuron, P is the number of
applied patterns, c& is the desired output forj-th neuron whenp-
fh pattern is applied, and net is given by equation (7). This rule
.is'also known is the LMS (Least Mean Square) rule. By
calculating a derivative of (8) with respect to wi, one can find a
formula for the weight change.

P

Awg = C X ~ (djp - netjp) (10)
p = l

H. Linear regression
The LMS learning rule requires hundreds or thousands of

iterations before it converges to the proper solution. Using the
linear regression the same result can be obtagzd in only one
step.

Considering one neuron and using vector notation for a set
of the input patterns X applied through weights w the vector of
net values net is calculated using

or
Xw = net (1 1)

4

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

Note that the s h e of the input patterns is always augmented by
one, and this additional weight is responsible for the threshold.
This method, similar to the LMS rule, assumes a linear
activation hc t ion , so the net values net should be equal to
desired output values d

Usuallyp > n+l , and the above equation can be solved only in
the least mean square error sense

xw = d (13)

W = (X'X)-' XT d (14)
I. Delta learning nile

The LMS method assumes linear activation h c t i o n net = 0,

and the obtained solutibn is sometimes far horn optimum. If
error is defined as

P

Error, = (ojp - dip)'
p=l

then the derivative of the error with respect to the weight wij is

Note, that this derivative is proportional to the derivative of the
activation function f (ne@

Using the cumulative approach, the neuron weight wli should
be changed with a direction of gradient

P

Awq = c xi (a j p - o j p) fjz (17)
p=l

in case of the incremental training for each applied pattern

A wij = c xi f j t (dj - oj) (18)
the weight change should be proportional to input signal x,, to
the difference between desired and actual outputs db-ojp, and to
the derivative of the activation functionf;,.

J. Error Backpropagation learning
The delta learning rule can be generalized for multilayer

networks. Using a similar approach, as it is described for the
delta rule, the gradient of the global error can be computed in
respect to each weight in the network.

0, =F{~(w,x,,+w,x,,+...+I-v,x,)} (19)

K Levenberg-Marquardt Algorithm (Liy,
Steepest descent method (error backpropagation)

W k + l = w k - a g (22)

where g is gradient vector
aE

3E

-

grudient g = G

ai
h"

Newton method

J =

A=2JTJ and g=2Jre (27)
Gauss-Newton method:

wk+l = Wt -(J;J, I-' J L ~ (28)

Levenberg - Marquardt method:
, Wt+, = w k -(J:J, +PI)' J:. (29)

The LM algorithm requires computation of the Jacobian J
matrix at each iteration step and the inversion of JTJ square
matrix. Note that in the LM algorithm an N by N matrix must
be inverted in every iterations. This is the reason why for
large size neural networks the LM algorithm is not practical.

Fig. 6. One layer neural network with nonlinear polynomial terms.
VI. SPECIAL FEEDFORWARD ARCHITECTURES

5

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

A. Polynomial Networks
Using nonlinear terms with initially determined hct ions, the
actual number of inputs supplied to the one layer neural network
is increased. In the simplest case nonlinear elements are higher
order polynomial terms of input patterns. Fig. 6
shows an example of hnctional Link networks.

B. Functional link networks
One layer neural networks are relatively easy to train,

but these networks can solve only linearly separated problems.
One possible solution for nonlinear problems was elaborated by
Pa0 [9] using the functional link network shown in Fig. 7. Note
that the functional link network can be treated as a one layer
network, where additional input data are generated off h e using
nonlinear transformations.

Fig. 7. One layer neural network with arbitrary nonlinear terms.

Note, that when the functional link approach is used, this
difficuIt problem becomes a trivial one. The problem with the
functional link network is that proper selection of nonlinear
elements is not an easy task

C. Fee@oonuard version of the counteipropagation network
The counterpropagation network was originally proposed by

Hecht-Nilsen [lo]. This network, which is shown in Fig. 8,
requires numbers of hidden neurons equal to the number of
input pattems, or more exactly, to the number of input clusters. -

Kohonen
laver r-. n

summing
unipolar circuits
nmrow

Fig. 8. Counterpropagation network

When binary input patterns are considered, then the input
weights must be exactly equal to the input pattems. In th~s case,

(30) net = xt w = (n - ~ H D (x , w))

where n is the number of inputs, w are weights, x is the input
vector, and HD(w,x) is the Hamming distance between input
pattem and weights. Since for a given input pattern, only one
neuron in the first layer may have the value of one and
remaining neurons have zero values, the weights in the output
layer are equal to the required output pattern.

The counterpropagation network is very easy to design. The
number of neurons in the hidden layer should be equal to the
number of patterns (clusters). The weights in the input layer
should be equal to the input patterns and, the weights in the
output layer shouId be equal to the output patterns.

D. L VQ Learning Veefor Qzraniization
At LVQ network the first layer detects subclasses. The

second layer combines subclasses into a single class (Fig. 9).
First layer computes Euclidean distances between input
pattern and stored patterns. Winning “neuron” is with the
minimum distance

summing
unipolar circuits
netlmns

Fig, 9. LVQ Learning Vector Quantization

E. PTA architecture
The winner takes all WTA network was proposed by

Kohonen [7]. This is basically a one layer network used in the
unsupervised training algorithm to extract a statistical property
of the input data. At the first step all input data is normalized so
the-length of each input vector is the same, and usualIy equal to
unity. The activation hc t ions of neurons are unipolar and
continuous. The learning process starts with a weight
initialization to small random values. ;* m1= f (ne t)

x3

x,

x,

Fig, 10. Neuron as the Hamming distance classifier

If inputs of the neuron of Fig. I O are binaries, for example
X=[I, -1, 1, -1, -11 then the maximum value of net

i=l

6

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

is when weights are identical to the input pattern W=[1, -1, 1,
-1, -11 In this case net = 5. For binary weights and patterns
net value can be found using equation:

n

net = c x i w i = XWT = n - 2HD (32)
i=l

where n is the number of inputs and HD is the Hamming
distance between input vector X and weight vector W. This
concept can be extended to weights and patterns with analog
values as long as both lengths of the weight vector and input
pattem vectors are the same.

The Euclidean distance between weight vector W and
input vector X is

(33)

IIW - XI1 = JwwT - 2 W X T + XXT (34)
When the lengths of both the weight and input vectors are
normalized to value of one

flXll= 1 and llWll= 1 (35)

I(w - XI1 = J T F i i F
Then the equation simplifies to

(36)
Please notice that the maximum value of net value net=l is
when W and X are identical

F. Cascade correlation architecture
The cascade correlation architecture was proposed by

Fahlrnan and Lebiere (fig. 1 I) The process of network building
starts with a one layer neural network and hidden neurons are
added as needed.

hdden neurom

In each t r d g step, the new hidden neuron is added and its
weights are adjusted to maximize the magnitude of the
correlation between the new hidden neuron output and the
residual error signal on the network output that we are trying to
eliminate. The output neurons are trained using the delta
(backpropagation) algorithm. Each hidden neuron is trained just
once and then its weights are frozen. The network learning and

building process is completed when satisfied results are
obtained.

G. RBF -Radial bask firnction networks
The structure of the radial basis network is shown in Fig. 12.
This type of network usually has only one hidden layer with
special "neurons". Each of these "neurons" responds only to the
inputs signals close to the stored pattern.

hidden "neumns"

Fig. 12. Radial barisfirnclion networkq

The output signal hi of the i-th hidden "neuron" is computed
using formula

(37)

Note, that the behavior of this "neuron" significantly differs
form the biological neuron. In this "neuron", excitation is not a
function of the weighted sum of the input signals. Instead, the
distance between the input and stored pattern is computed. If
this distance is zero then the "neuron" responds with a
maximum output magnitude equal to one. This "neuron" is
capable of recognizing certain patterns and generating output
signaIs being functions of a similarity.

H. Input pattern transformation
The network shown in Fig. 13 has similar property

(and power) like RBF networks, but it uses only traditional
neurons with sigmoidal activation functions.

Fig. 13,
neurons the RBF properties.

Transformation, which are required to give a traditional

7

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

VII. Networks for solulion ofPuriy Nprablems Genetic Algorithms
J Suitable for any nonlinear optimization process
J System converges always to good solution, but not

optimal one
For the pa r i ty4 problem with layered neural networks

containing one hidden layer, the weight calculations for the
hidden neurons are:
wi,j=l fop. i , j = 1 , 2 , . . , N (38)

wN+l,j = 2 j - N - 1 for j = 1 , 2 , - . - N (39)

v, = 2mod, (N) - 1

v . I for j = 2 , 3 , . - . N (41)
vN+, = mod, (N) - 1

While weights for the output neurons are:
(40)

(42)
For example, the architecture for the parity-8 probIem with
bipolar neurons is shown in Fig. 15

Fig. 15. Layered bipolar neural network with one hidden layer for
the parity-8 problem.

REFERENCES

[l] Wasserman, P.D. 1989. Neural Computing Thewy and

121 Wilamowski, B.M. Neural network architectures and
learning 2003 IEEE Internatbnul Conference on
Industrid Technology 10-12 Dec. 2003 pp. TU1 - TI2

1 [3] Wilamowski, B.M, Neural Networks and Fuzzy Systems,
chapter 32 in Mechatronics Handbook edited by Robert R.
Bishop, CRC Press, pp. 33-1 to 32-26,2002.
Holland, J.H. 1975. Adaptutiun in Natural und Artificial
Systems. Univ. of Michigan Press, Ann Arbor, MI.

. [5] Goldberg, D.E. 1989. Genetic Algorilhm in Search,
Optimization und Machine Learning. Addison-Wesley,

[6] Hebb, D.O. 1949. The Urganizafion of Behivior, a
Neuropsychological Theory. John Wiley, New York

[7] Kohonen, T. 1990. The self-organized map, Proc. IEEE

Practice. Van Nostrand Reinhold, New York.

10

141

-10 -10

Fig. 14. Solution of two spiral problem using transformation from
Fig. 14. Reading Mass.

VII. CONCLUSIONS

Neural Networks 78(9): 1464-1480.
J Any nonlinear transfer function in multi dimensions [8] Grossberg, S. 1969. Embedding fields: a theory of learning

can be implemented
Neural networks could perform better than teacher
(trainer)
Trained neural networks will work, but humans are not

with physiological implications. Journal of Mathematical

[9] Y. H. Pao, Adaptive Pattern Recognition and Neural
Networks, Reading, Mass. Addison-Wesley Publishing Co.
1989

to trace and details Of their Operation. [lo] Hecht-Nielsen, R. 1987. Counterpropagation nerworks.
Appl. Opt. 26(23):4979-4984.

psycho lo^ 6:209-239.

J

Fuzzy Systems
J

J

Any nonlinear transfer function can be implemented,
but limited to several bens ions .
Relatively simple and transparent design process

a

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:54 from IEEE Xplore. Restrictions apply.

