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SUMMARY

This paper describes a novel error extraction approach for exploiting the strength of Levenberg–
Marquardt (LM) optimization technique in intelligent control systems. Since the target value of the control
signal is unknown, tuning of the controller parameters becomes a tedious task if the knowledge about the
system and the environment is limited. The suggested methodology utilizes the sliding model control
(SMC) technique. The error extraction scheme postulates the form of error on the applied control signal
using the discrepancy from the prescribed reaching dynamics. The devised approach has been tested on the
non-linear Duffing oscillator, which has been forced to follow a periodic orbit radically different from the
natural one. The results obtained through a series of simulations have confirmed the high precision and
robustness advantages without knowing the analytical details of the system under investigation. The issues
of observation noise and the stability in the parametric space have approximately been addressed from the
point of SMC perspective. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Autonomous and intelligent control have constituted core research fields in the recent years and
tremendous amount of research outcomes have reported the methods to overcome uncertainties
and to improve the precision of the realization by flexible structures such as neural networks,
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fuzzy systems and those hybrid combinations with the methods of artificial intelligence. A
significant breakthrough in the context of parameter adjustment was the discovery of Error
Backpropogation (EBP) algorithm [1]. The studies appeared in the literature after the
resurgence of neural networks have focused on the improvement of convergence speed of EBP
through momentum addition and variable learning rates [2]. Among many alternatives existing
in the literature, the methods exploiting the second order derivatives of the cost hypersurface
have been proved to be more successful in terms of realization precision however with extra
computational burden. Gauss–Netwon method, LM optimization technique and conjugate
gradient algorithm are just a few examples [3–7] used for training of intelligent systems.

When the tuning is performed for the purpose of control, the designer is faced to the
alleviation of several difficulties stemming from the uncertainties, corrupted observations and
nonlinearities inherently existing in the system dynamics. Therefore the adopted control scheme
must adequately be equipped to compensate these difficulties through the refinement of the
information content of an intelligent controller. From a stability and robustness point of view,
variable structure systems (VSS) theory offers high performance solutions to the problem of
parameter tuning. A particular design framework in VSS theory is known as sliding mode
control and has extensively been used for motion control systems. A good deal of material
addressing the conventional SMC design issues. relevance of intelligence and SMC, practical
aspects and SMC in discrete time cases can be found in References [8–13].

The idea of tuning the parameters of an intelligent controller is not new. Some examples
utilizing VSS theory have successfully demonstrated that the approach can be utilized for
tracking control of uncertain systems and identification purposes [14, 15]. The underlying idea is
to integrate the robustness and invariance properties of SMC technique with the power of
knowledge based systems like neural networks and fuzzy inference systems. If the task to be
achieved in the SMC of a plant with SMC in tuning scheme, one should notice that the tuning
mechanism would entail an error critic qualifying the output of the controller. Although the
nature of the control problems does not allow the existence of a supervisory information on the
controller outputs, it can be shown that an appropriate error measure can be constructed
particularly for SMC purposes.

In what follows, the LM optimization technique is briefly presented. The third section figures
out the structure of the controller, and postulates the LM updates with the extracted error
measure based on SMC framework. In the fourth section, we present a series of simulation
studies demonstrating the efficacy of the presented novelties. The concluding remarks constitute
the last part of the paper.

2. LEVENBERG–MARQUARDT OPTIMIZATION TECHNIQUE

The LM algorithm is an approximation to the Newton’s method, and both of them have been
designed to solve the nonlinear least squares problem [6]. Consider an intelligent system having
K outputs, and N adjustable parameters denoted by the vector

%
o: If there are P data points (or

patterns) over which the interpolation is to be performed, a cost function qualifying the
performance of the interpolation can be given as Eð

%
oÞ ¼

PP
p¼1

PK
k¼1 ðt

n
kp � tkpð

%
oÞÞ2; where tkp

is the observation at the kth output of the structure in response to the pth pattern, and tnkp
is the corresponding target entry. The parameter update prescribed by Newton’s algorithm is
given as

%
onþ1 ¼

%
on � ðr2

oEð
%
onÞÞ

�1 roE ð
%
onÞ: Knowing r2

oEð
%
onÞ ¼ 2J ð

%
oÞT J ð

%
onÞ þ gð

%
onÞ and
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roEð
%
onÞ ¼ 2J ð

%
onÞ

T

%
eð
%
onÞ with

%
e and J being the error vector and the Jacobian as given in

(1) and (2) respectively, the Gauss–Newton algorithm can be formulated as
%
onþ1 ¼

%
on � ðJ ð

%
oÞT J ð

%
onÞÞ

�1 J ð
%
onÞ

T

%
eð
%
onÞ; and the LM update can be constructed as

%
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on � ðm IN�N þ J ð

%
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%
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�1 J ð
%
onÞ

T

%
eð
%
onÞ where m>0 is a scalar design parameter. Clearly,

the Gauss-Newton method assumes that the entries of the matrix gð
%
onÞ are negligible small in

magnitude, and the LM technique improves the rank deficiency problem of the matrix
J ð
%
onÞ

T J ð
%
onÞ:
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Contrary to what is postulated in the case of EBP method, the framework of LM
optimization technique utilizes the second order partial derivatives of the cost measure, and
therefore extracts a better path towards the goal in the adjustable parameter space. The cost of
this is the computational burden primarily due to the matrix inversion taking place at each
iteration.
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3. NEUROCONTROLLER AND THE ERROR EXTRACTION SCHEME

Assume that the plant is to be controlled by a feedforward neural network, which has the input
output relation given as

%
t ¼ WR

%
XðWL

%
u�

%
BLÞ �

%
BR: This representation reveals that the network

has one hidden layer, the neurons in which have the activation functions forming the vector
%
X;

two matrices denoted by WR and WL, and two vectors acting as the multiplying weights of the
bias inputs of value minus unity. The output layer has linear neurons. Concatenating WL, WR,

%
BL and

%
BR in a single column forms the adjustable parameter vector

%
o and the structure is

excited by the input vector denoted by
%
u:

Consider the control system structure depicted in Figure 1, in which the plant inside the
dashed rectangle is a SISO one, whose states are assumed to be observable. The inputs to the
plant and the observed states are sampled by Zero Order Holders (ZOH) as shown in the figure.
Note that the subscript n stands for discrete time index, and the dynamics inside the dashed
rectangle is governed by a set of difference equations of the form given below.

%
xnþ1 ¼

%
f ð
%
xnÞ þ

%
h nð Þtn ð3Þ

where
%
xn ¼ x1n x2n . . . xMn½ �T is the state vector,

%
f ð
%
xnÞ is a non-linear vector function of the

system state and is unavailable, whereas
%
h nð Þ is a vector function of time and the sign of it is

known. The system above can compactly be written as
%
xnþ1 ¼

%
f n þ

%
hntn: According to Figure 1,

the error vector at time n is defines as
%
un ¼

%
xn �

%
rn; where

%
rn is the vector of reference state

trajectories at time n. Define the switching function as

sn ¼
%
aT

%
un ð4Þ

in which the vector
%
a is selected such that the dynamics determine by sn=0 is stable, and it is

assumed that
%
aT

%
hn > 0: Now adopt a closed loop switching dynamics described generically as

sn+1=Q(sn), and the evaluate sn+1 as given below.

snþ1 ¼
%
aTð

%
f n þ

%
hntn �

%
rnþ1Þ ð5Þ

Using sn+1=Q(Sn) and solving for tn gives the control sequence formulated as below.

tn ¼ �ðaT
%
hnÞ

�1ð
%
aTð

%
f n � rnþ1Þ � QðsnÞÞ ð6Þ

Figure 1. Structure of the feedback control system.
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If the values of the vector functions
%
f n and

%
hn were known explicitly, the application of this

sequence to the system of (3) would result in sn+1=Q(sn), where Q must satisfy the condition
below to ensure reaching [11,12].

sn snþ1 � snð Þ ¼ sn Q snð Þ � snð Þ50 ð7Þ

If the condition above is satisfied for 8n � 0; the system is driven towards the dynamics
characterized by sn=0. However in practice, sn=0 is rarely observed as the problem is described
in discrete time. A realistic observation is snj j5e; where e is some positive number. In the
literature, this phenomenon is called quasi-sliding mode, or equivalently pseudo-sliding mode
[12,16,17]. This mode has useful invariance properties in the face of uncertainties and time
variations in the plant and/or environment parameters. Once the quasi-sliding regime starts, the
error signal behaves as what is prescribed by snj j5e:

Define the task as the discrete time sliding mode control (DTSMC) of a plant of the form given
in (3), whose ultimate behaviour is to be enforced towards what is prescribed by sn+1=Q(sn).
Consider Figure 1, which demonstrates that the quantity sCn would be the error on the applied
control signal if we had a supervisor providing the desired value of the control denoted by tnn :
However, the nature of the problem does not allow the existence of such a supervisory
information; instead, the designer is forced to extract the value of sCn from the available
quantities. In what follows, we present a method to extract the error on the control signal.

Assumption 3.1

The vector functions
%
f n and

%
hn of (3) are such that a desired quasi-sliding mode can be created

with a suitable selection of the design parameters; more explicitly, we assume that the DTSMC
task is achievable.

Remark 3.2

A control sequence leading to desired DTSMC can be formulated if the dynamics of the system
described by (3) is totally known or if the nominal representation is known with the bounds of
the uncertainties. It must be noted that the disturbances and uncertainties are assumed to enter
the system through the control channel [8]. When the control sequence in (6) is applied to the
system of (3), we call the resulting behaviour as the target DTSMC and the input signal leading
to it as the target control sequence (tn). If at least the explicit forms of the nominal
representations of the vector functions

%
f n and

%
hn are not known, it should be obvious that the

target control sequence cannot be constructed under such an uncertainty by following the
traditional DTSMC design approaches.

Definition 3.3

Given an uncertain plant, which has the structure described as in (3), and a command trajectory

%
rn for n50, the input sequence denoted by tnn satisfying the following difference equation is
defined to be the idealized control sequence, and the difference equation itself is defined to be the
reference DTSMC model. In this representation,

%
rn ¼ ½r1n r2n . . . rMn�T stands for the vector of

command trajectories.

%
rnþ1 ¼

%
f ð
%
rnÞ þ

%
hðnÞtnn ð8Þ
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Mathematically, the existence of such a model and the sequence means that the system of (3)
perfectly follows the command trajectory ð

%
rnÞ if both the idealized control sequence ðtnnÞ is

known and the initial conditions are set as
%
x0 ¼

%
r0; more explicitly

%
un �

%
0 for 8n � 0:

Undoubtedly, the reference DTSMC model is an abstraction as the functions appearing in it are
not available. However, the concept of idealized control sequence should be viewed as the
synthesis of the command signal

%
rn from the time solution of the difference equation in (8).

Fact 3.4

If the target control sequence formulated in (6) were applied to the system of (3), the idealized
control sequence would be the steady state solution of the control signal, i.e. limn!1 tn ¼ tnn :
However, under the assumption of the achievability of the DTSMC task, the difficulty here
again is the unavailability of the functional forms of

%
f n and

%
hn: Therefore, the aim is to discover

an equivalent form of the discrepancy between the control applied to the system and its target
value by utilizing the idealized control viewpoint. This discrepancy measure is denoted by
sCn ¼ tn � tnn : If the target control sequence of (6) is rewritten by using (8), one gets

tn ¼ �
%
aT

%
hn

� ��1

%
aT

%
f

%
xn

� �
�

%
f

%
rn

� �
�

%
hntnn

� �
� Q snð Þ

� �

¼ �
%
aT

%
hn

� ��1

%
aT

%
f

%
xn

� �
�

%
f

%
rn

� �� �
� Q snð Þ

� �
þ tnn

¼ �
%
aT

%
hn

� ��1

%
aT Df

n
� Q snð Þ

� �
þ tnn ð9Þ

where Df
n
¼

%
f ð
%
xnÞ �

%
f ð
%
rnÞ: The target control sequence becomes identical to the idealized

control sequence, i.e. tn ¼ tnn as long as
%
aTDf

n
� Q snð Þ ¼ 0 holds true for 8n � 0: However, this

condition is of no practical importance as the analytic form of the function
%
f n is not available.

Therefore, one should consider this equality as an equality to be enforced instead of an equality
that holds true all the time, because its implication is sCn=0, which is the ultimate goal of the
design. It is obvious that to enforce this equality to hold true will let us synthesize the target
control sequence, which will eventually converge to the idealized control sequence by the
adaptation algorithm yet to be discussed. Consider sn+1 given below.

snþ1 ¼
%
aT

%
xnþ1 �

%
rnþ1

� �

¼
%
aT

%
f

%
xn

� �
þ

%
hntn �

%
f rnð Þ �

%
hntnn

� �

¼
%
aT Df

n
þ

%
hnsCn

� �

¼QðsnÞ þ
%
aT

%
hnsCn ð10Þ

Solving the above equation for sCn yields the following:

sCn ¼
%
aT

%
hn

� ��1

snþ1 � Q snð Þð Þ ð11Þ
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The interpretation of the above control error measure is as follows: since we are in pursuit of
enforcing sn+1=Q(sn) in the closed loop, during the time until which this equality does not hold
true, the applied control sequence carries some error. However, if the tuning activity in the
neurocontroller enforces (11) to approach zero, this enforces

%
aTDf

n
� QðsnÞ ¼ 0 to approach

zero. i.e. snþ1 ! QðsnÞ; consequently tn ! tnn as n increases.

Remark 3.5

Notice that the application tnn for 8n � 0 to the system of (3) with zero initial errors will lead to

%
un �

%
0 for 8n � 0: On the other hand, the application of tn for 8n � 0 to the system of (3)

will lead to sn=0 for 8n � nh; where nh is the hitting time index, at which the quasi-sliding
regime starts. Therefore, the adoption of (11) as the equivalent measure of the control error
loosens

%
un �

%
0 for 8n � 0 requirement and enforces snþ1 ! QðsnÞ: Consequently, the

tendency of the control scheme will be to generate the target DTSMC sequence tn of (6).

Remark 3.6

Referring to (11), it should be obvious that if sCn sC nþ1 � sCnð Þ50 is satisfied sn snþ1 � snð Þ50 is
enforced. In other words, if the control signal approaches the target control sequence, the
DTSMC task is achieved and the plant follows the command signal.

Remark 3.7

For an on-line training strategy, there occurs only one training pair at a time (P=1). Since
sCn ¼ tn � tnn ; and since the plant is a SISO one, the cost at each instant of time can be defined as

ECn ¼ s2Cn ¼ e
%
on

� �2

ð12Þ

which instantly qualifies the similarity between tn and tnn. If the parameters of the
neurocontroller are tuned with LM strategy, the cost in (12) is enforced toward zero and the
task implied by sCn=0 is achieved. More explicitly, the update rule takes the form

%
onþ1 ¼

%
on � mIN�N þ J ð

%
onÞ

TJ ð
%
onÞ

TsCn: This apparently suggests that a system of structure (3) in the
feedback loop illustrated in Figure 1 can be driven towards a predefined quasi-sliding mode if
the training algorithm for the adopted neurocontroller enforces the minimization of the cost
measure given in (12), which is enforced by the above tuning law.

It should again be emphasized that the design presented here does not assume the availability of
the functions seen in the dynamics of the system of (3). Therefore, one might argue the usability
of (11) due to the causality requirement. However, in the implementation stage, the information
provided by (11) supervises the controller as a task specific estimate, therefore, at time n, the
quantity calculated from the available signals is constructed and used as the control error, i.e.
the control error is estimated as sCn ¼ kðsn � Qðsn�1ÞÞ; where k is a constant of known sign due
to

%
aT

%
hn > 0:
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4. SIMULATION STUDIES

Understanding the chaotic behaviour has constituted a challenge for years as the outputs from
which represent the entire richness of nonlinear phenomena during the course of even the finite-
time observations. The behavioural diversity in chaos is therefore attributed to its deterministic
unpredictability or the unpredictable determinism, which exists in the nature of the system.
Furthermore, sensitive dependence to the initial conditions makes the chaotic systems attractive
test beds to test the performance of novel control algorithms.

In the simulation studies, we discuss the Duffing system studies in Reference [18], which
focuses on the identification and control issues for a number of chaotic systems. The dynamics
of the system in continuous time is given as follows:

’xx1 ¼ x2 and ’xx2 ¼ �j1x1 � j2x
3
1 � sx2 þ rcos btð Þ þ t ð13Þ

where, j1=1.1, j2=1, s=0.4, r=2.1 and b=1.8. The control problem is to enforce the states
to the periodic orbit described as follows:

’rr1 ¼ r2 and ’rr2 ¼ �sin r1ð Þ; r1 0ð Þ ¼ 1; r2ð0Þ ¼ 0 ð14Þ

When the system of (13) and the reference dynamics of (14) are discretized with first order
Euler approximation, one ends up with the generic representation of (3), and the approach
discussed becomes applicable. The response of the uncontrolled system for several different
initial conditions is illustrated together with the desired periodic orbit in Figure 2. It can easily
be seen that the desired orbit is sufficiently away from the natural limit cycle of the system, and
therefore a continuous control action is required to enforce the system towards the reference
dynamics. Parallel to what is discussed in Reference [12], in the simulations, we used the
following reaching behaviour.

Q snð Þ ¼ �L1T ssgnðsnÞ � ð1� L2T sÞsn ð15Þ

Figure 2. The behaviour of the uncontrolled Duffing oscillator for five different initial conditions
and the desired periodic orbit.
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where Ts is the sampling period, and L1 and L2 are positive valued design parameters. The
continuous time representation of the enforced reaching law with (15) becomes ’ss ¼ �L1 sgn
sð Þ � L2s; which corresponds to constant plus proportional rate reaching law of SMC
terminology [8]. In the simulations, we set L1=L2=5 with Ts=2.5ms satisfying the condition
1�L2Ts >0. Furthermore, in order to reduce the effect of chattering phenomenon, we use the
approximation sgnðsnÞ � sn= snj j þ dð Þ with d=0.05. The vector characterizing the sliding motion
is set as

%
a ¼ ½1 1�T.

Under these conditions, according to the feedback control structure depicted in Figure 1, the
states of the oscillator are measured and corrupted by Gaussian distributed, zero mean noise
sequences. Both noise sequences are in � 0.001 interval in magnitude, and have variances equal
to 6e�8.

Initial parameters of the neurocontroller have been set randomly to numbers from the interval
[0, 0.1] and the same initial parameters have been used in all trials presented in this paper. The

initial value of the adjustable parameter vector norm ð
ffiffiffiffiffiffiffiffiffiffiffiffi
%
oT

0
%
o0

q
Þ is calculated to be 0.2522.

The controller has the structure 2-6-1 with hyperbolic tangent functions in the neuronal

Figure 3. Simulation results.
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activation of the six hidden neurons. With the chosen neural controller N=25,
%
un ¼

rðtÞ � xðtÞð Þ ’rrðtÞ � ’xxðtÞð Þ½ �T
��
t¼nTs

and we set m=10 for the LM update strategy.
Under the conditions described above, five sets of simulations have been performed, and in

each case the initial conditions of the Duffing oscillator have been set to different values. The
results are depicted in Figures 3 and 4. The subplots on each column illustrate the results of an
individual trial. In Figure 3, the desired and observed states of the system and the tracking
errors are depicted. Clearly, the error dynamics has a convergent characteristic in each case.
Figure 4 illustrates the extracted control signal error (sCn), the applied control signal (t), the
evolution of the norm of the parameter vector

ffiffiffiffiffiffiffiffiffiffiffiffi
oT

non

p� �
in logarithmic time axis and the

behaviour in the phase space for each case. It is apparent that the extracted control signal
produced displays a smooth characteristic, which is an important feature recommending the
algorithm for nonlinear control application. From the third row of Figure 2, it can be claimed
that the parameters evolve bounded, which indicates that the parametric stability (or the
internal stability of the training dynamics) has been achieved. The last row of Figure 2
demonstrates the proof of the concept introduced. The error vector hits the sliding line
characterized by

%
a ¼ ½1 1�T (or equivalently d(r�x)/dt=�(r�x)) and moves towards the origin

as imposed by the differential dynamics above.

Figure 4. Simulation results.
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Lastly, the computational aspects should be assessed. For the given neurocontroller structure
(i.e. N=25), a single forward pass for control calculation and a single backward pass for
parameter tuning requires 38,408 floating point operations. This fact constitutes a drawback,
however, it is still affordable for today’s high speed microprocessors.

5. CONCLUSIONS

This paper describes a task specific calculation of an error critic for intelligent control systems.
A simple feedforward neural network structure has been used as the controller. The parameters
of the controller have been tuned by LM optimization technique. The approach addresses the
use of the devised tuning scheme for the sliding mode control of an unknown non-linear system
in discrete time basis. The method introduced is in good compliance with the objectives of the
control engineering. It has been observed that the proposed scheme is capable of alleviating the
uncertainties and compensating the disturbances. The results observed justify the analytical
claims of the paper and the prescribed design specifications have been met through the use of the
strategy discussed.
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