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Abstrace - Several neural network architectures for computing parity
problems are described. Feedforward networks with one hidden
layer require N neurons in the hidden layer. I fully connected feed-
forward networks are considered, the number of neurons in the
hidden layer is reduced to N/2. In the case of fully connected
networks with neurons connected in cascade, the minimum number
of hidden neurons is between log;(N+1)-1 and log,(N+1). This
paper also describes hybrid neuron architectures with linear and
threshold-like activation functions. These hybrid architectures
require the least number of weights. The described architectures are
suitable for hardware implementation since the majority of weights
equal +1 and weight multiplication is not required. The simplest
network structures are pipeline architectures where all neurons and
their weights are identical. All presented architectures and equations
were verified with MATLAB code for parity-N problems as large as
N=100.

I. INTRODUCTION

There has been a significant research effort made toward
optimum design of threshold logic networks for many decades
{I-8]. The resuits of this effort can be applied to unipolar neural
networks based on the McCulloch and Pitts model [9], but
cannot be applied to networks with bipolar neurons. There is
also a parallel effort by many researchers to solve parity-N
problems using “neurons” with special activation functions [10-
14}. However, the work presented here 1s limited to neural
networks with classical McCulloch-Pitts neurons or neurons
with sigmoid-like activation functions.

In 1961, Minnink [1] showed that threshold networks with
one hidden layer require N hidden threshold units to solve the
parity-N problem. Stork and Allen [14] reduced this problem
to two hidden units with diode-like activation functions. Fung
and Li [15] also demonstrated that the minimum size of the
hidden layer required to solve the N-bit parity problem is N
neurons. If the network is fully connected (output neuron 1s
also directly connected to inputs) then, as shown by Minnink
[1], the number of hidden threshold units can be reduced by
half. In this case, only N/2 neurons are required in the hidden
layer for the parity-N problem. More recently, Paturi and
Saks [3] showed that only N/log:N neurons are required. Siu,
Roychowdhury, and Kailath [6] showed that when one more
hidden Iayer is introduced, the total number of hidden units
could be only ZW . Cotofana and Vassiliadis [8]
demonstrated many compact neural network architectures.
They derived an asymptotic bound for O{log N) for the neural
realization size and depth for a larger class of symmetric
functions. They also stated that “...the realization of generic
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symmetric functions, possibly O(log N} depth and size
network still remain open and subject of further research...”
This paper addresses this issue and demonstrates neural
networks for parity-N problems with the total number of
neurons equal to log,N. We also demonstrate several
modifications of these minimal networks where the number
of weights is minimal too. In contrast to all previously
published results, we demonstrate both unipolar and bipolar
implementations of parity-N networks.

1. SOLVING PARITY-N PROBLEMS USING BOOLEAN LOGIC

The XOR and parity-N problems are used very frequently in
digital systems. For example, conversion of Gray code to
binary code uses a chain of XOR operators, Parity-N circuits
are essential for emror detection and correction. Digital
additions and multiplications also require parity-N circuits.
Parity-N systems are often used in digital transmission to
detect errors or to detect hardware failures in digital memory.

Logic function implementation of XOR and XNOR gates
is more complicated than implementation of NAND and
NOR gates. The most common XOR realizations require
several digital primitives. Parity-N problems are usually
implemented in digital system by cascading XOR gates. This
solution for the parity-N problem requires N-1 XOR gates.
Circuits for parity-N computations consist of several layers
and introduce significant delays,

Franco and Cannas [17} introduced modular neural
networks suitable to solve parity problems. Their concept
basically follows the traditional digital approach where
parity-N problems can be solved using cascade connected
XOR blocks. Two advantages of their architectures are a
limited number of inputs for each neuron and an error surface
with less local minima. These architectures lead to multi-
layer networks and a larger number of neurons than in other
architectures.

II1. XOR AND PARITY-3 PROBLEMS IN NEURAL NETWORK
IMPLEMENTATIONS.

Both the XOR and parity-3 problems can be visually
illustrates in two and three dimensions respectively as shown
i Fig. 1. For simplicity purposes, let us consider hard
threshold bipolar neurons with signal levels —1 and + 1. As
shown in Fig. 1(a), the hidden neuron separation lines are
described by:
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Fig. 1. Graphieal interpretation of pattern separation by hidden layer and
network implementation for (a) the XOR problem and (b) Parity-3 problem,

One may notice that for the XOR problem:
(1) All weights in the hidden layer connecied to inputs
are equal to +1.
{2) Biasing weighis for the two hidden neurons are +1
and —1. This fulfills (1).
(3) Weights for the output neuron are +1 and -1 and the
biasis —1.

In the case of the Parity-3 problem (see Fig. I(b)), the
equations for the neurons in the hidden layer are given by:

x+y+z~2>0 3)
x+y+z+0>0 4
xX+y+z+2>0 (5)

Please notice that (3) is only fulfilled when all inputs are +1,
{4) is fulfilied when at least two inputs are +1, and (5) is
fulfilled if one or more inputs are +1. In other words, the
hidden neurons are counting the number of opes on the
inputs. Neurcn 1 only responds if there are three ones on the
input. Neuron 2 responds if there are two or more ones on the
inputs, and neuron 3 responds if there is a one on any input.
For the parity-3 problem, one may notice that:
(1) All weights in the hidden layer connected to inputs
are equal to +1.
(2) Biasing weights for the three hidden neurons are +2,
0, and —2. This fulfills (3), (4}, and {5).

{3) Weights for the output neuron are +1, -1, and +1
and the bias is 0.
The same architectures can be used for bipolar neurons, but -
the weights have to be transformed accordingly. For bipolar
neurons: ‘

N
net = ZW,X?EP +Wwy, for xe ("' 1’+1) ©)
i1

The bipolar signal x4, (in ~1 to +1 range) can be computed
as a function of the unipolar signal x,,,; (in 0 to +1 range):

x* = 2x" 1 o
By inserting (7) into {6) one may obtain:
N . N
net= 2wx!” =3 w +w,, for xe(0+1) (3
i=t i=1
The division of both sides of (8) by 2 leads to:
L ) N
0.5nef = Zwlxj"" + 0.5(— Zw,. + me] for xe (U,+l) ®
i=i i=1

Therefore, to transform bipolar networks into unipolar
networks, only the bias weights (thresholds) have to be
recalculated. The input weights remain the same,

wi =wf""’ for i=12,--N (10)
N

W;”L = 0_5(\4’?11 = waip] )
i=1

Using (10) and (11), the bipolar circuits from Fig. 1 can be

transformed to the unipolar circuits shown in Fig. 2.
weights =1 +1

weights =(-0.5, -1.5)
(a) (b}
Fig. 2. Unipolar implementations of (a) XOR. and {b) Parity-3 problems.

gights =(-0.5, -1.5, -2.5)

By using a fully connected network, the number of neurons in
the hidden layer can be reduced. Fig. 3 and Fig. 4 illustrate
two implementations of the XOR problem using only one
neuron m the hidden layer. These circuits can be easily
derived from functional link networks [16-17]. In the first
circuit, the AND operator is used as the nonlinear element
while in the second circuit, the OR operator is used as the
nenlinear element.
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Fig 3. XOR implemetation with one nedron in the hidden layer performing
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Fig 4. XOR implementation with one neuron in the hidden layer performing
OR operation {a) graphical interpretations and (b) diagram.

This time, the graphical interpretations of the circuits were
done for unipolar neurons. These unipolar circuits can be
transformed into bipolar ones using the following formulas:

N ,
w =w"  for

I i

i=12,-N (12)

N
bip uni i
Wily = 2wyl + wa {13)
i=l

These formulas are derived by a method similar to (10) and

{an.

[V. SOLUTION FOR PARITY-N PROBLEM IN NETWORKS WITH
ONE HIDDEN LAYER

Solutions presented in Fig. 1 for the XOR and parity-3
problems can be generalized to parity-N cases. The values for
the hidden neurons are given by:

net = (2~ N)+{N +1~2j)
where :

(2i- N)is the sum of inputs
(M +1-2/)is the bias

N is total number of inputs

(14

i is the number of inputs with + 1 signal
"/ is the hidden neuron number

Please notice that:

+1 for iz
net = L
-1 for i<j
Therefore, the first neuron only responds if all N inputs are
+1. The j-th neuron only responds if more than j-/ inputs are
activated with +1. For the A-th neuron, no inputs must be

activated. As one can see from (14), the bias for the j-th
neuron is:

(15)

hias, =2j - N -1 (16)

The output neuron performs the AND operation on all
outputs of odd neurons with negation from all outputs of even
neurons. This may be accomplished by assigning +1 weight
values to all inputs coming from neurons with odd numbers
and —1 weight values to the remaining inputs.

For the parity-N problem with layered neural networks
containing one hidden layer, the weight calculations for the
hidden neurons are:

w =1 for i,j=12,--N )
wN+|,j:2j—N—-1 for j=42,---N {18)
While weights for the output neurons are:

v, = 2mod, (¥} -1 (19)
vi=—v,, for j=23.-N (20)
vy = mod, (N) -1 21

all weights =1
bipolar

IO
40

‘—._\_‘_\
+1 7-5-3;-1,1, 3,67
Fig. 5. Layered bipolar neural network with one hidden layer for the parity-8
problem. :
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For example, the architecture for the parity-8 problem with
bipolar neurons is shown in Fig. 5. The same architecture
can be used for a vnipolar network. In this case:

IWN+I,]' = O-S_j fOP‘ j:='].i,2,"'N

for N=8 22)
= (—0.5,—1.5,—.2.5,-3‘.55,—-4-.5,—5.5,——6.5;,—7.5)
Jor N=8
Vg =0.5-mod,(N) = 05 (23)

Please notice that in a layered féed forward network (no
direct connections between inputs and the outputneuron) for.
the parity-N problem, the number ofthidden neurons is equal’
to N, The network complexity can be reduced if a fully:
connected network is considered. This issue is discussed in
the next section.

V. FULLY CONNECTED NETWORK WITH ONE HIDDEN LAYER

The XOR architecture shown in Fig. 4 can be expanded for
parity-N problems. Please notice that parity-N probléms are
symmetrical. This means that when inputs are mutoally
switched, the output remains the seme. In other words, i is
not important which inputs are excited, only that the total
number of excited inputs is the same. Figure 6 shows the
architecture for the parity-5 problem with iwo hidden
unipolar neurons. Fig. 7 is a table that describes the state of
the network for all possible input combinations.

weights = +1

unipolar

Fig. 6. Parity-5 implemented with 2 hidden neurons

J Lo, o,
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0 t 0 1
2 1 0 0 i 0
3 | L |1 1 Q i 1
3 'BE ] w ] o
5 1 8 3 o L

Fig. 7. Table describing:all. possible states of network from Fig. 6
Similar architectures. can be used for bipolar networks. The
network diagram for the parity-11 problem is shown in Fig. 8

and the corresponding table describing all possible states is
shown in Fig. 5.

weights = +1 4\
X "” 2 !
.',".1( L - bipolar
7.7 {PoRN
" weights = -2,
' /
I
A - 1
\ 1
1Y
- LS
A
ouf’
'
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Y e weights
+1 (-8, -4,0,4,8)
Fig. 8. Parity-11 implemented in fully connected bipelar neural networks
with five neurons in the hidden layer.
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Fig. 9. Parity-11 case with the net and out values calculated for the bipolar
architecture in Fig. 8.

Notice that the examples shown in Fig. 6 and Fig. 8 can be
generalized for any value of N. Both bipolar and vnipolar
implementations are possible. Weights associated with all
inputs, are equal to +1. The bias weights for the hidden
TIenrons, j;. are;

Wya, =2Q7-J=1) for j=12,-J (24)
The weights for the output neuron are:
vy==2 Jjor j=42,--J (25)
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VI. FULLY CONNECTED NETWORK WITH ONE NEURON PER
LAYER

By connecting neurons in cascade, the number of required
neurons can be significantly reduced. Fig. 10 shows the
architecture for the parity-15 problem. Notice that only three
hidden neurons are needed for this complex problem.

weights = +1

unipolar
1 7.5 8
77y :
+1
35 @ 4
+1-1.5
@2
+1
.5
s out
!

Fig. 10. Parity-15 implemented with 4 neurons in one cascade
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Fig. 11. State table for parity-15 with threc hidden unipolar neurons in
cascade connection as show in Fig. 10.

VII. HYBRID NETWORKS

One may notice that the networks described in previous
sections contain a large number of weights (see Fig. 8 and
10). These networks can be further simplified by introducing
a linear neuron, which operates as a simple summator of the
incoming signals. Figure 10 can be reduced to the diagram in
Fig. 12. ,

Further network simplification is possible when each
neuron is considered as a composition of a summator and a
threshold unit. Figure 13 shows a pipline network
architecture where all hidden neurons are identical and only

have two weights. The connection coming from the
summator of the previous neuron always has a weight of +2.
The connection coming from the output of the previous
neuron always has a weight of —(& +1)/2 (for parity 16 this
is —8). The state-table for the bipolar pipeline architecture is
shown in Fig. 14.

weights = +1 unipolar - - -

Fig. 12, Parity-15:implemented in hybride architecture with 5 neurons in one
cascade and one neuron with a linear activation function,

bipolar

1
o weights = +1

Fig. 13 Parity-15 implemented with 4-bipolar neurons in plpelme hybncl

architccture with identical neurons and weights.
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Fig. 14 State-table for parity-15 implemented with 4 neurons in pipeline
architecture with identicat neurons and weights.
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VIII. EXPERIMENTS

It is not practical io test the described neural network
architectures for all possible patterns. For example, if N=24,
there are 2** = 16,777,216 24-bit patterns to be applied to the
system for full verification. The testing procedure can be
significantly shortened. To verify correctness of the network,
it is enough to apply N patterns (24 patterns for the given
example).

Notice that the number of patterns required to test a
network depends on the network architecture. To verify the
architecture, there is no need to apply ali possible patterns. It
is enough to:

(A) Prove that the same response will be obtained for the
same number of ones at the input, no matter which
inputs are activated.

{B) Apply only N test patterns with a different number
of ones in each pattern:

(1,00,...0), (1,1,0,...0), (1,1,1,....0), ....(1,L,1,...1),
The proof (A) is very simple. Notice that the weights for all
inputs are the same, +1. Therefore, inputs are exchangeable.
This means that only the number of +1's and —I’s is
important, not their association with a particular input.

IX. CONCLUSION

Several neural network architectures for computing parity
problems were described and tested. All architectures can be
implemented with both bipolar and unipolar neurons.
Feedforward networks with one hidden layer as described in
Section 1V require N nevrons in the hidden layer. If a fully
connected feed forward network is considered (Section V),
then the number of neurons in the hidden layer is reduced to
N/2. In the case of a fully connected network with neurons
connected in cascade (Section VI), the minimum number of
hidden neurons is between log,(N+1)-1 and log,(N+1), The
paper described hybrid neuron architectures with linear and
threshold-like activation functions. These hybrid architectures
{Section VII) require the least number of connections. The
described architectures are all suitable for hardware
implementation since the majority of the weights are equal to
+1 and a weight multiplication process is not required. The
simplest network structure is the pipeline architecture where
all neurons and their weights are identical. All presented
architectures and equations were verified with MATLAB
code for parity-N problems as large as N=100.
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