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Abstract - Proposed algorithm features fast and robust 
convergence for one bidden layer neural networks. Search for 
weights is done only io the input layer i.e. on compressed network. 
Only forward propagation is performed with second layer trained 
automatically with Pseudo-Inversion training, for all patterns at 
once. Last layer training is also modified to handle non-linear 
problems, not presented here. Through iterations gradient is 
randomly probed towards each weight set dimension. The 
algorithm further features serious of modifcations, such as 
adaptive network parameters that resolve problems like total error 
fluctuations, slow convergence, etc. For testing of this algorithm 
one of most popular benchmark tests - parity problems were 
chosen. Final version of the proposed algorithm typically provides 
a solution for various tested parity problems in less than ten 
iterations, regardless of initial weight set. Performance of the 
algorithm on parity problems is tested and illustrated by figures. 

I. INTRODUCTION 

The proposed algorithm draws its roots from two distinctive 
approaches in iterative search. One is iterative gradient search 
method characteristical for neural networks, such as error back 
propagation. The other approach considers flexible 
approximative techniques for neighborhood search. 

Neighborhood search methods are iterative procedures where 
for each feasible solution a neighborhood for next solution is 
defined. Most popular of those methods are descent method, 
Simulated Annealing and Tabu search. 

Though Tabu search originates from late 1970s, first results 
were independently presented by [ 1,2]. It was further formalized 
by [3,4] and [5]. It is a flexible approximation technique that 
uses memories or tabu lists to forbid moves that might lead to 
recently visited, i.e. tabu solutions. Tabu lists can help to 
intensify the search in 'good' regions or to diversify the search 
toward unexplored regions by variable tabu list size. 

Error Back Propagation (EBP) neural networks and gradient 
methods generally provide very good results [6]. Though 
presented a breakthrough in neural network research, 
backpropagation algorithm has number of disadvantages, such 
as oscillation, slow convergence, sensitivity to network 
parameters, etc. 

Numerous researchers targeted these problems over the years. 
In order to smooth the process, Rumelhart et al. [7] have 
proposed weight adaptation, also formulated by Sejnowski and 
Rosenberg [SI. To speed up the process, Fahlman [9] proposed a 
quickprop algorithm. Wilamowski and Torvik [IO] proposed 
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solution towards robustness in terms of activation function 
derivative modification. Still, no universal solution towards 
robust and fast training algorithm has been found. 

The proposed algorithm features fast and robust convergence, 
achieved through adaptiveness of neural network parameters 
(learning constant, network gain, and search radius). This way 
algorithm typically provides a solution for various tested parity 
problems in less than 10 iterations. 

Search for weights is done only in the input layer i.e. not all 
weights participate in gradient calculation. Algorithm performs 
only forward propagation with second layer trained 
automatically with Pseudo-Inversion training for all patterns at 
once. In each iteration gradient is randomly probed towards 
each weight set dimension. 

Algorithm is further modified to alleviate occasional 
unwanted algorithm behavior. Those modifications automatize 
search for most adequate parameters (adaptive search). This way 
problems such ase slow convergence, fluctuations in gradient 
search, flat spots, local minima, or sensitivity to initial choice of 
network parameters, are resolved 

The rest of the paper is organized as following. Second 
section discusses weight space reduction and 2"d layer 
automatized training. Third section explains steps of proposed 
algorithm, and is followed by gradient calculation explanation. 
The fourth section illustrates test examples. The fifth section 
concludes this paper with directives for future work. Last, sixth 
section contains references used in this paper. 

11. NETWORK COMPRESSION 

This algorithm considers compressed neural architecture. Let us 
consider general 2 layer architecture of n+ I neurons, where 1" 
layer consists of n-neurons and last layer of single neuron 
(illustrated by Fig. la). 
The reduction of such network starts fi-om initial number of 
weights, that is: 

where n+l is number of neurons, and m number of inputs for 1" 
layer neurons, m+l is because of added bias. 
Last layer (n+ls' neuron) is trained by Pseudo-Inversion 
training, reducing the number of weights to n * ( m + l ) .  
Furthermore, bias weights are fixed to 1 therefore not 
participating in training. This way, original number of weights is 
reduced to input weights of the 1* layer, i.e. n * m weights. 

Isflayer + 2"d~ayer=n * (m + I) + 1 * n + 1 ( 1 )  
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For simple 2+1 network architecture (Fig.lh) this 
compression reduces initial number of 9 weights to only 4 
weights (weights of input connections of the fmt layer). 

Second layer training is automatized by Pseudo-Inversion 
learning rule: 

where X’ = ( X T X ) - ’ X T  is the pseudoinverse of column 
matrix X, that exists even when rank is less than the dimension 
or when the matrix is not square. This algorihtm implements the 
modification of this rule known as Andersen-Wilamowski rule 
[11,12] to enable solving non-linear problems: 

w = ( X T X ) - I X T d  (2) 

d - 0  
AW =(XTX)-’XT-((3) 

f’ 
Algorithm is hrther modified to include several steps of this 
modified rule. This way algorithm is able to solve not only 
linear parity problems presented in this paper. 

11. PROPOSED A L G O R I T H M  (STEPS) 

Before going into algorithm steps, certain parameters should 
be determined. Those are network parameters and training 
patterns. Network parameters are initial set ofweights, learning 
parameter alpha, network gain k, and search radius r. The 
advantage of this algorithm is its robustness with respect to 
these parameters, therefore all of them can be randomly chosen 
and algorithm will adaptively adjust them searching for fastest 
convergence. 

For tested parity problems (parity 2, 3, and 4), certain initial 
values for learning parameter, network gain, and search radius 
result in faster convergence and higher algorithm precision. 
Those parameters had been heuristically determined, and some 
of those tests are illustrated later. 

Tests were performed on Intel Pentium 111 lGHz, with 
5 12MB SDRAM memory, Windows 2000 Pro machine. 

The algorithm steps go as follows. 
1. Assign Input values. For the one hidden layer network 

(Fig.l.a), those are n * m  weights, where n is number of 
neurons in 1“ layer, and m is number of their input weights 
(1“ layer bias is fixed to 1). In case of simple 3-neuron 
network (Fig.lb), these are only 4 weights for inputs of first 
layer neurons set (wk./ / ,  wk.21, w ~ , , ~ ,  Weights for the 
second layer neuron can be arbitrary chosen and do not 
influence the calculation. 

Initial Pass. One pass through the network is done. 
This means net, output, and finally total error (TE) is 
calculated for all patterns. This is done through forward 
calculation through the first layer, for each pattern, for all 
patterns. Now Pseudo inversion takes charge of training of 
last layer weights. This 2”d layer hypersonic training is done 
for all patterns at once. Once signals are propagated through 
the 1“ layer (for all patterns), then the 2”d layer can be 
efficiently trained. The outcome of this step is the initial total 
error EO 

Assign input values for next iteration. These are total 
error E, and the same weight set from the la step n * m  

2. 

3. 

Fig. 1. General cases of typicall one hidden layer neural network 
architecture used in proposed algorithm. 

Fig. 1. Simple three neuron case of typicall one hdden layer neural 
network archtecture used in proposed algonthm 

weights in general case (wk wk,22 in case of 3 
neuron network). For this starting weight sef gradient will be 
estimated in next step. Go to a next step (start with 
iterations). 

4. Start iterations. First calculate the gradient. 
Gradient is numerically calculated through gradient probing 
around the weight set from previous step. Such quasi-gradient 
is calculated in following way. Each of n * m “changeable” 
weights (4 in case of 3-neuron architecture), is adaptively 
reproduced, one at the time. Therefore, n * m  cycles are 
performed (again in 3-neuron case, 4 cycles). In each cycle, 
only one of those n * m weights gets changed. The rest of the 
weight set is being kept the same. Now one feed-forward pass 
through the whole network is performed, same as in 2”d step. 
The output of each cycle is the total error. This total error for 
each cycle ( E l ,  E2, ..., E,,,) is stored for later gradient 
evaluation. Gradient in k+l”’ iteration is calculated according 
to following formula in vector form (4) where w,epk,ll is 

weight reproduced from weight wkn, in iteration k, for input 

i and neuronj. E,epk,m is the total error calculated for set of 

weights from 3d step where instead of w ~ , ~ ,  reproduced 

weight w ~ ~ ~ ~ , ~  was used. 

wk,21, 
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gradk : 

- - 

4.1. Adaptive reproduction of weights goes as 
follows. Weights are randomly changed in certain radius. The 
initial radius is specified at the beginning of the algorithm. 
Algorithm then adapts the radius value after each iteration. 
This adaptiveness helps algorithm to accelerate through flat 
spot areas and override eventual local minima problems. 

Now the new set of weights is calculated based on the 
estimated gradient and set of "changeable" weights. New set 
of weights is calculated based on previous formula: 

5. 

W,,, = W, - a * grad k ,  ( 5 )  

or in vector form (6): 

wk,l l  

wk,21 

... 

'%,m1 

Wk.1" 

...... 

wk,2n 

... 

.wL.-n 

w,+,= 

wk+I,II 

wk+l,21 

... 

Wk+l,ml 

..,... 

wk+l , ln 

wk+1,2n 

wk+l,mn '."XI 

a* 

or in different form (7). Each A is randomly generated 
number within search radius. This set of weights is now ready 
to be used in next iteration. Go to next step where network 
parameters will be prepared for next iteration. 

Adapt network parameters: learning parameter alpha, 
network gain k, and search radius r. These parameters are 
modified depending on trend of total error (TE) change in 
previous 4 iterations. Gain and radius are increased if TE is 
within 10% change, decreased otherwise. Alpha is modified 
in similar fashion; however, criterion for alpha increase is 
monotonic TE decrease. In other words, alpha gets decreased 
in case of TE fluctuations or non-monotonic TE decrease. 
Intervals of these parameters are experimentally determined, 
and those are: alpha (0.5,100), gain (l,lO), and radius (0.5, 

6. 

100). This step was introduced after unwanted behavior 
(stuck in local minima, flat spot/slow convergence problems), 
has been detected. Related behavior has been illustrated in 
details in section with experimental results. 

Wk+I = 

7. 

(7) 

,."XI 

End of this iteration. Start a new iteration (go to 
Initial Pass (2nd step). Keep doing this until the criterion for 
the error is satisfied. 

8. End of the Algorithm. 

Interpretation of learning constant alpha is the following. 
Learning constant alpha multiplies all "changeable" weights by 
the same number, so practically accelerates the process jumping 
over couple of steps that would do the same. 

Alpha is experimentally kept in interval [OS, 1001. If it gets 
smaller, learning is slowed down too much ("changeable" 
weights decreased 10 times if alpha=0.1). This means alpha is 
not initialized in each iteration, it rather keeps changing to 
accommodate the learning process. Sometimes algorithm stays 
for 4-8 iterations with the similar total error. Learning constant 
alpha as well as other adaptive parameters do not change sooner 
in order to avoid fluctuations. Once the better set of weights is 
found, algorithm goes rapidly towards the good gradient. 

Adaptivity of learning constant is very importan< and 
performance of the algorithm significantly deteriorates without 
this improvement. 

111. EXPERIMENTAL RESULTS 

Experimental results were obtained through various parity 
problems. Activation function was bipolar. The effect of 
adaptive and network parameters (initial set ofweights, learning 
parameter alpha, network gain k, search radius r)  will be 
illustrated on following examples. 

First problem was the XOR problem, tested on network 
architecture from Figla, with required total error of 0.5e10-8. 
Problems encountered and effect of introduced modifications 
will be illustrated. 

Though algorithm shows acceptable convergence rate for 
small gain values (around O.l), it might experience slow 
convergence rate (Fig.3a). For large values of gain (e10, 
algorithm exhibits much faster convergence (Fig.3b). Though 
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minor convergence slow down (Fig.3~). Therefore, to alleviate 
this problem, radius needs to probe solutions beyond initially 
specified futed radius. 

To automate selection of adequate parameter values, 
modification that adaptively changes radius, gain, and alpha is 
introduced. These changes are governed by the trend of previous 
total error behavior. 

Fig. 4 illustrates algorithm's behavior with adaptive network 
parameters. In this case, algorithm detecting a good total error 
trend, increases all parameters which leads to total error of lO-I4.  
This is the typical algorithm's behavior. 

Typically, once the algorithm would experience a good total 
error trend (TE monotonically decreases), it increases all 
parameters. This convergence acceleration is supported in 3 
ways. First, gradient showing good TE trend is emphasized by 
enlarged alpha. Second, good TE trend enables allows enforcing 

Fig. 4. Parity 2 problem. Total error WITH adaptive alpha, gain, and 
radius - always converges. 

of larger network gain. Third, radius is enlarged so the 
algorithm can simply jump to even better solution. 

This all result in not only accelerated process, but even more 
important robust convergence. Robustness relies on adaptable 
parameters that override possible problems of local minima or 
flat spots. 
The architecture used for testing parity 4 problem is given by 
Fig.5. The algorithm proved all time convergence. However, the 
convergence rate and therefore minimum achievable total error 
significantly vary with respect to gain. 

Dependence of minimum achievable total error (TE) on 
network gain is illustrated by Fig.6. Smaller value of gain 
provides smoother convergence achieving smaller total error. 
Here, for parity 4, the smaller the gain, the smaller TE can be 

Min E forgain (0 1.1.5) In 50 Rerations 

loo 0 

I /  I I I 

Fig. 6. Typical minimal total error dependence on 
gain (0.1,0.2,. . . , I  .5) 50 iterations, 10 repetitions. 

Parity 4 problem. Fig. 5. Neural network architecture used for parity 4 testing. 
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obtained. This graph is obtained by selecting best solution while 
running 10 repetitions, 50 iterations each. Gain values tested are 
from interval (0.1,0.2 ,..., 1.5). 

Therefore, adaptive gain would not result in better 
algorithm's accuracy. For higher parity problems, an adaptive 
gain is excluded from pool of adaptive parameters. 

Algorithm shows consistent convergence for smaller gain 
(gain=O.l), paying the price in small convergence rate. Fig. 7a 
illustrates typical algorithm behavior without adaptive 
parameters. Algorithm does converge to total error of order I O 5  
taking over 35 iterations. With larger gain (1.0) even for smaller 
radius algorithm can not achieve total error better than 10-I. This 
undesirable behavior is illustrated by Fig.7b. 

As said previously, adaptive gain is excluded from set of 
adaptive network parameters. 
Algorithm exhibits exhibits best behavior with adaptive alpha 

102 TE thmugh neratlans 103 alpha lhmugh nerations 

I i I I I I 

loJ 

1 6  

E 

Io, alpha though ltantiam 

f 100 l Q 1 ~  

0 '10 20 30 
10-2 

b) (enfuns 

Fig. 8. a) Parity 4 problem. Total error WITH adaptive alpha and radius, 
but without adaptive gain! b) same WITH adaptive gain. 

C) - 
Fig. 7. Parity 4 problem. Typical TE through iterations, alpha=l.O 
a) gain=0.1, radius-0.5 =>CPU time=2.7140et000 (seconds), 

TE=4.9501e-005,36 iterations. 
b) gain=0.1, radius=1.5, CPU time=5.2280eHlOO (seconds), 

c) gain=l.O, radius4.5, CPU time=1.0836e+001 (seconds), 
TE=4.0362e-005,67 iterations. 

TE=1.3319e-001, 150 iterations. 

and radius keeping the gain fixed. This way algorithm achieves 
robust and smooth convergence in least amount of time possible 
(Fig.8). The least ammount of fluctuations leads to fastest 
convergence. 

Demonstration of negative influence of adaptive gain is given 
at Fig.8b. Fluctuations slow down the learning process, while 
with fixed gain gradient search is smooth and takes about 3 
times less iterations. 

Parity 7 algorithm handles in similar, smooth and robust 
fashion. On specified machine proposed algorithm typically 
takes only about 2 minutes of CPU time (Fig. 9). 

Typical gradient search while solving parity 8 problem is 
given by Fig.10. Algorithm typically takes 5-6 minuts of CPU 
time to solve this problem. Even difficult problem of parity 10 
converges in smooth and robust fashion. It achieves satisfactory 
total error in about 76 minutes on specified machine (Fig.11). 

lE 1- #eratins alpha t- h d m  

I 
1 0" I 1 0' 

iteram batim 

Fig. 9. Parity 7 -with adaptive alpha and radius, without adaptive gain! 
Always converges smoothly. 

Parameters: gain=.l; alpha=l; req_em=.5e-04; TERR=le3; radius=.5; 
rad-ww-ini=1.5; Elapsed time=l.O275eHlO2 (seconds). 
Final iteration = 9 TERR=8.5127e-006; alpha=2,4300et002; 
radius=8.0526e-001; gain=] ,0000e-00 1 
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Fig. 10. Parity 8 -with adaptive alpha and radius, without adaptive gain! 
Always converges smoothly. 

Parameters: gain=.l; alpha=]; req-en=.5e-04; TERR=le3; radius=.5; 
Elapsed time=3.2061@302 (seconds). 
Final iteration= 9; TERR=2.2358e-005; aIpha=2.4300@302; 
radius=8.0526e-001; gain=l.OOOOe-001. 

IV. CONCLUSION 

New gradient search approach is proposed. Further 
modifications to the approach were made to resolve problems of 
slow convergence and fluctuations. Those modifications 
automatize search for most adequate parameters (adaptive 
search). Final version of the proposed algorithm results in fast 
(typically less than 10 iterations) and robust (random network 
parameters) convergence on tested parity problems. 

Adaptivity is responsible for two important issues. One is 
rapid and robust search that avoids flat spots, slow convergence, 
and local minima. The other is that adaptivity reduces 
fluctuations during the gradient search leading to faster 
convergence. 

For smaller parity problems (xor2 or xor3), even a very large 
gain (>lo) leads to not only a quick but also a smooth 
convergence. This algorithm allows use of gain values where 
other algorithms such as error back propagation even fail at all. 
However, the more complex the parity problem, the smaller gain 
needs to be used to maintain the original smoothness. This was 
incorporated in algorithm’s adaptive logic. 

Algorithm allows larger random span of initial weight set 
with higher parity problems, while still maintaining smooth 
convergence. Simply, even though higher parity is more 
complex, algorithm has less troubles finding gradient as flat 
spots and local minima have less influence. 

For smaller parity problems larger initial weight set 
randomness radius can still provoke fluctuations in total error 
decrease through iterations. 

Further research includes different directions. Algorithm will 
be added to set of online neural network training tools, 
previously produced by authors and available as freeware 
at:httD://huskv.eneboi .uidaho.edu/nnl. 

Even though highly dependent on type of the problem and 
network architecture, mutual dependence (relationship) among 

beratims 

Fig. 11. Parity 10 -with adaptive alpha and radius, without adaptive gain! 
Always converges smoothly. 

Parameters: gain=.l; alpha=l; req_en=.5e-04; TERR=le3; radius=S; 
paty=lO; rad-ww-ini=3.5; Elapsed time=4.S846eH)03 (seconds). 
Final iteration=l3; TERR=7.4343e-006; alpha=7.2900&02; 
w u s = l .  1790ei400; gain=1.0000e-001. 

total error, search radius, learning constant and network gain 
would be significant step towards ultimate robustness of this 
learning algorithm. These parameters were heuristically 
established for illustrated problems. Authors believe that further 
employment of Genetic Algorithms (GA) might provide 
satisfactory robustness regardless of problem type. 
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