
Robust Neural Network Training Using Partial Gradient Probing

Milos Manic
Department of Computer Science

University of Idaho
800 Park, Blvd.

Boise, ID 83712, USA
misko@i)ieee.org

Abstract - Proposed algorithm features fast and robust
convergence for one bidden layer neural networks. Search for
weights is done only io the input layer i.e. on compressed network.
Only forward propagation is performed with second layer trained
automatically with Pseudo-Inversion training, for all patterns at
once. Last layer training is also modified to handle non-linear
problems, not presented here. Through iterations gradient is
randomly probed towards each weight set dimension. The
algorithm further features serious of modifcations, such as
adaptive network parameters that resolve problems like total error
fluctuations, slow convergence, etc. For testing of this algorithm
one of most popular benchmark tests - parity problems were
chosen. Final version of the proposed algorithm typically provides
a solution for various tested parity problems in less than ten
iterations, regardless of initial weight set. Performance of the
algorithm on parity problems is tested and illustrated by figures.

I. INTRODUCTION

The proposed algorithm draws its roots from two distinctive
approaches in iterative search. One is iterative gradient search
method characteristical for neural networks, such as error back
propagation. The other approach considers flexible
approximative techniques for neighborhood search.

Neighborhood search methods are iterative procedures where
for each feasible solution a neighborhood for next solution is
defined. Most popular of those methods are descent method,
Simulated Annealing and Tabu search.

Though Tabu search originates from late 1970s, first results
were independently presented by [1,2]. It was further formalized
by [3,4] and [5]. It is a flexible approximation technique that
uses memories or tabu lists to forbid moves that might lead to
recently visited, i.e. tabu solutions. Tabu lists can help to
intensify the search in 'good' regions or to diversify the search
toward unexplored regions by variable tabu list size.

Error Back Propagation (EBP) neural networks and gradient
methods generally provide very good results [6]. Though
presented a breakthrough in neural network research,
backpropagation algorithm has number of disadvantages, such
as oscillation, slow convergence, sensitivity to network
parameters, etc.

Numerous researchers targeted these problems over the years.
In order to smooth the process, Rumelhart et al. [7] have
proposed weight adaptation, also formulated by Sejnowski and
Rosenberg [SI. To speed up the process, Fahlman [9] proposed a
quickprop algorithm. Wilamowski and Torvik [IO] proposed

Bogdan Wilamowski
College of Engineering

University of Idaho
800 Park, Blvd.

Boise, ID 83712, USA
wilam@ieee.org

solution towards robustness in terms of activation function
derivative modification. Still, no universal solution towards
robust and fast training algorithm has been found.

The proposed algorithm features fast and robust convergence,
achieved through adaptiveness of neural network parameters
(learning constant, network gain, and search radius). This way
algorithm typically provides a solution for various tested parity
problems in less than 10 iterations.

Search for weights is done only in the input layer i.e. not all
weights participate in gradient calculation. Algorithm performs
only forward propagation with second layer trained
automatically with Pseudo-Inversion training for all patterns at
once. In each iteration gradient is randomly probed towards
each weight set dimension.

Algorithm is further modified to alleviate occasional
unwanted algorithm behavior. Those modifications automatize
search for most adequate parameters (adaptive search). This way
problems such ase slow convergence, fluctuations in gradient
search, flat spots, local minima, or sensitivity to initial choice of
network parameters, are resolved

The rest of the paper is organized as following. Second
section discusses weight space reduction and 2"d layer
automatized training. Third section explains steps of proposed
algorithm, and is followed by gradient calculation explanation.
The fourth section illustrates test examples. The fifth section
concludes this paper with directives for future work. Last, sixth
section contains references used in this paper.

11. NETWORK COMPRESSION

This algorithm considers compressed neural architecture. Let us
consider general 2 layer architecture of n+ I neurons, where 1"
layer consists of n-neurons and last layer of single neuron
(illustrated by Fig. la).
The reduction of such network starts fi-om initial number of
weights, that is:

where n+l is number of neurons, and m number of inputs for 1"
layer neurons, m+l is because of added bias.
Last layer (n+ls' neuron) is trained by Pseudo-Inversion
training, reducing the number of weights to n * (m + l) .
Furthermore, bias weights are fixed to 1 therefore not
participating in training. This way, original number of weights is
reduced to input weights of the 1* layer, i.e. n * m weights.

Isflayer + 2"d~ayer=n * (m + I) + 1 * n + 1 (1)

0-7803-8200-5/03/$17.00 02003 IEEE

175

mailto:misko@i)ieee.org
mailto:wilam@ieee.org

For simple 2+1 network architecture (Fig.lh) this
compression reduces initial number of 9 weights to only 4
weights (weights of input connections of the fmt layer).

Second layer training is automatized by Pseudo-Inversion
learning rule:

where X’ = (X T X) - ’ X T is the pseudoinverse of column
matrix X, that exists even when rank is less than the dimension
or when the matrix is not square. This algorihtm implements the
modification of this rule known as Andersen-Wilamowski rule
[11,12] to enable solving non-linear problems:

w = (X T X) - I X T d (2)

d - 0
AW =(XTX)-’XT-((3)

f’
Algorithm is hrther modified to include several steps of this
modified rule. This way algorithm is able to solve not only
linear parity problems presented in this paper.

11. PROPOSED A L G O R I T H M (STEPS)

Before going into algorithm steps, certain parameters should
be determined. Those are network parameters and training
patterns. Network parameters are initial set ofweights, learning
parameter alpha, network gain k, and search radius r. The
advantage of this algorithm is its robustness with respect to
these parameters, therefore all of them can be randomly chosen
and algorithm will adaptively adjust them searching for fastest
convergence.

For tested parity problems (parity 2, 3, and 4), certain initial
values for learning parameter, network gain, and search radius
result in faster convergence and higher algorithm precision.
Those parameters had been heuristically determined, and some
of those tests are illustrated later.

Tests were performed on Intel Pentium 111 lGHz, with
5 12MB SDRAM memory, Windows 2000 Pro machine.

The algorithm steps go as follows.
1. Assign Input values. For the one hidden layer network

(Fig.l.a), those are n * m weights, where n is number of
neurons in 1“ layer, and m is number of their input weights
(1“ layer bias is fixed to 1). In case of simple 3-neuron
network (Fig.lb), these are only 4 weights for inputs of first
layer neurons set (wk./ / , wk.21, w ~ , , ~ , Weights for the
second layer neuron can be arbitrary chosen and do not
influence the calculation.

Initial Pass. One pass through the network is done.
This means net, output, and finally total error (TE) is
calculated for all patterns. This is done through forward
calculation through the first layer, for each pattern, for all
patterns. Now Pseudo inversion takes charge of training of
last layer weights. This 2”d layer hypersonic training is done
for all patterns at once. Once signals are propagated through
the 1“ layer (for all patterns), then the 2”d layer can be
efficiently trained. The outcome of this step is the initial total
error EO

Assign input values for next iteration. These are total
error E, and the same weight set from the la step n * m

2.

3.

Fig. 1. General cases of typicall one hidden layer neural network
architecture used in proposed algorithm.

Fig. 1. Simple three neuron case of typicall one hdden layer neural
network archtecture used in proposed algonthm

weights in general case (wk wk,22 in case of 3
neuron network). For this starting weight sef gradient will be
estimated in next step. Go to a next step (start with
iterations).

4. Start iterations. First calculate the gradient.
Gradient is numerically calculated through gradient probing
around the weight set from previous step. Such quasi-gradient
is calculated in following way. Each of n * m “changeable”
weights (4 in case of 3-neuron architecture), is adaptively
reproduced, one at the time. Therefore, n * m cycles are
performed (again in 3-neuron case, 4 cycles). In each cycle,
only one of those n * m weights gets changed. The rest of the
weight set is being kept the same. Now one feed-forward pass
through the whole network is performed, same as in 2”d step.
The output of each cycle is the total error. This total error for
each cycle (E l , E2, ..., E,,,) is stored for later gradient
evaluation. Gradient in k+l”’ iteration is calculated according
to following formula in vector form (4) where w,epk,ll is

weight reproduced from weight wkn, in iteration k, for input

i and neuronj. E,epk,m is the total error calculated for set of

weights from 3d step where instead of w ~ , ~ , reproduced

weight w ~ ~ ~ ~ , ~ was used.

wk,21,

176

gradk :

- -

4.1. Adaptive reproduction of weights goes as
follows. Weights are randomly changed in certain radius. The
initial radius is specified at the beginning of the algorithm.
Algorithm then adapts the radius value after each iteration.
This adaptiveness helps algorithm to accelerate through flat
spot areas and override eventual local minima problems.

Now the new set of weights is calculated based on the
estimated gradient and set of "changeable" weights. New set
of weights is calculated based on previous formula:

5.

W,,, = W, - a * grad k , (5)

or in vector form (6):

wk,l l

wk,21

...

'%,m1

Wk.1"

......

wk,2n

...

.wL.-n

w,+,=

wk+I,II

wk+l,21

...

Wk+l,ml

..,...

wk+l , ln

wk+1,2n

wk+l,mn '."XI

a*

or in different form (7). Each A is randomly generated
number within search radius. This set of weights is now ready
to be used in next iteration. Go to next step where network
parameters will be prepared for next iteration.

Adapt network parameters: learning parameter alpha,
network gain k, and search radius r. These parameters are
modified depending on trend of total error (TE) change in
previous 4 iterations. Gain and radius are increased if TE is
within 10% change, decreased otherwise. Alpha is modified
in similar fashion; however, criterion for alpha increase is
monotonic TE decrease. In other words, alpha gets decreased
in case of TE fluctuations or non-monotonic TE decrease.
Intervals of these parameters are experimentally determined,
and those are: alpha (0.5,100), gain (l,lO), and radius (0.5,

6.

100). This step was introduced after unwanted behavior
(stuck in local minima, flat spot/slow convergence problems),
has been detected. Related behavior has been illustrated in
details in section with experimental results.

Wk+I =

7.

(7)

,."XI

End of this iteration. Start a new iteration (go to
Initial Pass (2nd step). Keep doing this until the criterion for
the error is satisfied.

8. End of the Algorithm.

Interpretation of learning constant alpha is the following.
Learning constant alpha multiplies all "changeable" weights by
the same number, so practically accelerates the process jumping
over couple of steps that would do the same.

Alpha is experimentally kept in interval [OS, 1001. If it gets
smaller, learning is slowed down too much ("changeable"
weights decreased 10 times if alpha=0.1). This means alpha is
not initialized in each iteration, it rather keeps changing to
accommodate the learning process. Sometimes algorithm stays
for 4-8 iterations with the similar total error. Learning constant
alpha as well as other adaptive parameters do not change sooner
in order to avoid fluctuations. Once the better set of weights is
found, algorithm goes rapidly towards the good gradient.

Adaptivity of learning constant is very importan< and
performance of the algorithm significantly deteriorates without
this improvement.

111. EXPERIMENTAL RESULTS

Experimental results were obtained through various parity
problems. Activation function was bipolar. The effect of
adaptive and network parameters (initial set ofweights, learning
parameter alpha, network gain k, search radius r) will be
illustrated on following examples.

First problem was the XOR problem, tested on network
architecture from Figla, with required total error of 0.5e10-8.
Problems encountered and effect of introduced modifications
will be illustrated.

Though algorithm shows acceptable convergence rate for
small gain values (around O.l), it might experience slow
convergence rate (Fig.3a). For large values of gain (e10,
algorithm exhibits much faster convergence (Fig.3b). Though

177

=I-

* . , ,. <. ,, II Y ., - Y "
I

a

b: dius.

re
0;
i (CPU

e.XnlDlUng uerrer oenavior, a;
minor convergence slow down (Fig.3~). Therefore, to alleviate
this problem, radius needs to probe solutions beyond initially
specified futed radius.

To automate selection of adequate parameter values,
modification that adaptively changes radius, gain, and alpha is
introduced. These changes are governed by the trend of previous
total error behavior.

Fig. 4 illustrates algorithm's behavior with adaptive network
parameters. In this case, algorithm detecting a good total error
trend, increases all parameters which leads to total error of lO-I4.
This is the typical algorithm's behavior.

Typically, once the algorithm would experience a good total
error trend (TE monotonically decreases), it increases all
parameters. This convergence acceleration is supported in 3
ways. First, gradient showing good TE trend is emphasized by
enlarged alpha. Second, good TE trend enables allows enforcing

Fig. 4. Parity 2 problem. Total error WITH adaptive alpha, gain, and
radius - always converges.

of larger network gain. Third, radius is enlarged so the
algorithm can simply jump to even better solution.

This all result in not only accelerated process, but even more
important robust convergence. Robustness relies on adaptable
parameters that override possible problems of local minima or
flat spots.
The architecture used for testing parity 4 problem is given by
Fig.5. The algorithm proved all time convergence. However, the
convergence rate and therefore minimum achievable total error
significantly vary with respect to gain.

Dependence of minimum achievable total error (TE) on
network gain is illustrated by Fig.6. Smaller value of gain
provides smoother convergence achieving smaller total error.
Here, for parity 4, the smaller the gain, the smaller TE can be

Min E forgain (0 1.1.5) In 50 Rerations

loo 0

I / I I I

Fig. 6. Typical minimal total error dependence on
gain (0.1,0.2,. . . , I .5) 50 iterations, 10 repetitions.

Parity 4 problem. Fig. 5. Neural network architecture used for parity 4 testing.

178

obtained. This graph is obtained by selecting best solution while
running 10 repetitions, 50 iterations each. Gain values tested are
from interval (0.1,0.2 ,..., 1.5).

Therefore, adaptive gain would not result in better
algorithm's accuracy. For higher parity problems, an adaptive
gain is excluded from pool of adaptive parameters.

Algorithm shows consistent convergence for smaller gain
(gain=O.l), paying the price in small convergence rate. Fig. 7a
illustrates typical algorithm behavior without adaptive
parameters. Algorithm does converge to total error of order I O 5
taking over 35 iterations. With larger gain (1.0) even for smaller
radius algorithm can not achieve total error better than 10-I. This
undesirable behavior is illustrated by Fig.7b.

As said previously, adaptive gain is excluded from set of
adaptive network parameters.
Algorithm exhibits exhibits best behavior with adaptive alpha

102 TE thmugh neratlans 103 alpha lhmugh nerations

I i I I I I

loJ

1 6

E

Io, alpha though ltantiam

f 100 l Q 1 ~

0 '10 20 30
10-2

b) (enfuns

Fig. 8. a) Parity 4 problem. Total error WITH adaptive alpha and radius,
but without adaptive gain! b) same WITH adaptive gain.

C) -
Fig. 7. Parity 4 problem. Typical TE through iterations, alpha=l.O
a) gain=0.1, radius-0.5 =>CPU time=2.7140et000 (seconds),

TE=4.9501e-005,36 iterations.
b) gain=0.1, radius=1.5, CPU time=5.2280eHlOO (seconds),

c) gain=l.O, radius4.5, CPU time=1.0836e+001 (seconds),
TE=4.0362e-005,67 iterations.

TE=1.3319e-001, 150 iterations.

and radius keeping the gain fixed. This way algorithm achieves
robust and smooth convergence in least amount of time possible
(Fig.8). The least ammount of fluctuations leads to fastest
convergence.

Demonstration of negative influence of adaptive gain is given
at Fig.8b. Fluctuations slow down the learning process, while
with fixed gain gradient search is smooth and takes about 3
times less iterations.

Parity 7 algorithm handles in similar, smooth and robust
fashion. On specified machine proposed algorithm typically
takes only about 2 minutes of CPU time (Fig. 9).

Typical gradient search while solving parity 8 problem is
given by Fig.10. Algorithm typically takes 5-6 minuts of CPU
time to solve this problem. Even difficult problem of parity 10
converges in smooth and robust fashion. It achieves satisfactory
total error in about 76 minutes on specified machine (Fig.11).

lE 1- #eratins alpha t- h d m

I
1 0" I 1 0'

iteram batim

Fig. 9. Parity 7 -with adaptive alpha and radius, without adaptive gain!
Always converges smoothly.

Parameters: gain=.l; alpha=l; req_em=.5e-04; TERR=le3; radius=.5;
rad-ww-ini=1.5; Elapsed time=l.O275eHlO2 (seconds).
Final iteration = 9 TERR=8.5127e-006; alpha=2,4300et002;
radius=8.0526e-001; gain=] ,0000e-00 1

179

Fig. 10. Parity 8 -with adaptive alpha and radius, without adaptive gain!
Always converges smoothly.

Parameters: gain=.l; alpha=]; req-en=.5e-04; TERR=le3; radius=.5;
Elapsed time=3.2061@302 (seconds).
Final iteration= 9; TERR=2.2358e-005; aIpha=2.4300@302;
radius=8.0526e-001; gain=l.OOOOe-001.

IV. CONCLUSION

New gradient search approach is proposed. Further
modifications to the approach were made to resolve problems of
slow convergence and fluctuations. Those modifications
automatize search for most adequate parameters (adaptive
search). Final version of the proposed algorithm results in fast
(typically less than 10 iterations) and robust (random network
parameters) convergence on tested parity problems.

Adaptivity is responsible for two important issues. One is
rapid and robust search that avoids flat spots, slow convergence,
and local minima. The other is that adaptivity reduces
fluctuations during the gradient search leading to faster
convergence.

For smaller parity problems (xor2 or xor3), even a very large
gain (>lo) leads to not only a quick but also a smooth
convergence. This algorithm allows use of gain values where
other algorithms such as error back propagation even fail at all.
However, the more complex the parity problem, the smaller gain
needs to be used to maintain the original smoothness. This was
incorporated in algorithm’s adaptive logic.

Algorithm allows larger random span of initial weight set
with higher parity problems, while still maintaining smooth
convergence. Simply, even though higher parity is more
complex, algorithm has less troubles finding gradient as flat
spots and local minima have less influence.

For smaller parity problems larger initial weight set
randomness radius can still provoke fluctuations in total error
decrease through iterations.

Further research includes different directions. Algorithm will
be added to set of online neural network training tools,
previously produced by authors and available as freeware
at:httD://huskv.eneboi .uidaho.edu/nnl.

Even though highly dependent on type of the problem and
network architecture, mutual dependence (relationship) among

beratims

Fig. 11. Parity 10 -with adaptive alpha and radius, without adaptive gain!
Always converges smoothly.

Parameters: gain=.l; alpha=l; req_en=.5e-04; TERR=le3; radius=S;
paty=lO; rad-ww-ini=3.5; Elapsed time=4.S846eH)03 (seconds).
Final iteration=l3; TERR=7.4343e-006; alpha=7.2900&02;
w u s = l . 1790ei400; gain=1.0000e-001.

total error, search radius, learning constant and network gain
would be significant step towards ultimate robustness of this
learning algorithm. These parameters were heuristically
established for illustrated problems. Authors believe that further
employment of Genetic Algorithms (GA) might provide
satisfactory robustness regardless of problem type.

V. REFERENCES

[I] Glover, F., “Future paths for integer programming and links to artificial
intelligence”, Computers & Operations Research 13, pp.533-549, 1986.

[2] Hansen, P., “The steepest ascent mildest descent heuristic for combinatorial
programming”, Talk presented at the Congresss on Numerical Methods in
Combinatorial Optimization, Capri, 1986.

[3] Glover, F., Tabu Search:prt I. ORSA Journal on Computing 1, pp. 190-206,
1989.

[4] Glover, F., Tabu Search:part 11. ORSA Journal on Computing 2, pp.4-32,
1990.

[5] de W m , D., Hertz, A., “Tabu search techniques: a tu1orial and an
application to neuralnetworkr”, OR Spektrurn 11, pp.131-141, 1989.

[6] J.M. Zurada, Artificial Neural Systems, PWS Publishing Company, St. Paul,
MN, 1995.

[7] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning internal
representation by error propagation, Parallel Distributed Processing, Vol. 1,
pp.318-362, MIT Press, Cambridge, MA., 1986

[8] Sejnowski T.J., Rosenberg, C.R., Parallel networks t h t learn lo pronounce
English text, Complex Systems 1:145-168, 1987.

[9] Fahlman S.E., “Faster-learning variations on backpropagation: An
empirical study”, Proceedings of the Connectionist Models Summer School,
eds. D.Touretzky, G. Hinton, and TSejnowski, Morgan Kaufmann, San
Mateo, CA, 1988.

[IO] Wilamowski, M., Torvik, L., "Modification ofgradient computation in the
back propagalion algorifhm”, Artificial Neural Network in Engineering,
Nov., St.Louis,Mssou., 1993.

[I I] RJ. Schalkoff, Artificial Neural Network, McGraw-Hill, New York, 1997.
[12] Wilamowski, B. M., ”Neural iietworks and F u w S w a n s ” chapters 124.1

to 124.8 in The Electronic Handbook. CRC Press 1996, pp. 1893-1914.

180

