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Abstract-Proposed algorithm exhibits 2 significant 
advantages: easier hardware implementation and robust 
convergence. Proposed algorithm considers one hidden layer 
neural network architecture and consists of following major 
phases. First phase is reduction of weight set. Second phase is 
gradient calculation on such compressed network. Search for 
weights is done only in the input layer, while output layer is 
trained always with pseudo-inversion training. Algorithm is 
further improved with adaptive network parameters. Final 
algorithm behavior exhibits robust and fast convergence. 
Experiniental results are illustrated by figures and tables. 

firrle.u Terna-neural networks, random weight search, 
overdrterniine. pseudoinverse. 

1. IKTRODUCTION 
The proposed algorithm in this paper is motivated by two 

different approaches to iterative search methods. First 
approach is neural network iterative gradient search 
method. Second approach encompasses flexible 
approximate techniques for neighborhood search. 

Error Back Propagation (EBP) neural networks and 
gradient methods generally provide very good results [ 11. 
Though presented a breakthrough in neural network 
research, backpropagation algorithm has number of 
disadvantages, such as oscillation, slow convergence, 
sensitivity to network parameters, etc. 

Numerous researchers targeted these problems over the 
years. I n  order to smooth the process, Rumelhart et al. [2] 
have proposed weight adaptation, also fonnulated by 
Sejnowski and Rosenberg [3]. To speed up the process, 
Fahliiian [4] proposed a quickprop algorithm. Wilamowski 
and Torvik [ 5 ]  proposed solution towards robustness in 
terms of activation ftinction derivative modification. Still, 
no universal solution towards robust and fast training 
algorithm has been found. 

Neigliborhood search methods are iterative procedures in 
which for each feasible solution a neighborhood for 
searched for next solution is defined. Most popular 
neighborhood search methods for finding an approximation 
to the minimum value of a real value function are gradient 
method, Simulated Annealing and Tabu search. 

Roots of Tabu search go back to the 1970s, first 
presented by Glover and Hansen [6,7], independently. 
Further was formalized by Glover [8,9] and De Werra & 
Hertz [lo]. It is a flexible approximation technique that uses 
memories or tabu lists to forbid moves that might lead to 
recently visited solutions, tabu solutions. Tabu lists can help 
to intensify the search in 'good' regions or to diversify the 
search toward unexplored regions by variable tabu list size. 

Overvieu, of combination of neural network gradient 
search and Tabu search with applications can be found in 
[ 11-15]. The proposed algorithm combines these two 
approaches to achieve fast and robust convergence. 
Furthermore, easy hard\vare iniplementation is facilitated by 
simplified gradient calculation. Main characteristics of the 
algorithm will be briefly overviewed. 

The algorithm considers one hidden layer neural network 
architecture and has been tested on parity problems. The 
algorithm consists of following phases. First phase is 
reduction of weight set. Second phase performs the forward 
calculation where second layer gets trained with Pseudo- 
Inversion algorithm. Therefore, search Tor weights is done 
only in the input layer. while the output layer is 
automatically trained. I n  third phase, gradient is estimated 
on such compressed network, i.e. reduced weight space. 

Gradient is estimated from set of overdetermined 
equations. Each equation defines one pass through the 
network (randomly generated weights resulting in certain 
error). Only forward calculation is performed vs. EBP that 
performs both forward and backpropagation. The reduced 
weight set participates in gradient calculation, vs. EBP that 
includes complete weight set. Finally, the second layer is 
trained automatically with pseudo-inversion training for all 
patterns at once. vs. EBP that performs both forward and 
backpropagation on all layers for single pattern at the time. 

The rest of the paper is organized as following. Second 
section discusses weight space reduction. Third section 
explains steps of proposed algorithm, and is followed by 
gradient calculation explanation. The fifth seclion illustrates 
test examples. The sixth section concludes this paper with 
directives for future work. Last, seventh section contains 
references used in this paper. 

11. WEIGHT SPACE REDUCTION 
The proposed algorithm considers 2 layer neural 

networks of n+Z neurons, where Is' layer consists of n- 
neurons and last layer of single neuron. Each 1'' layer 
neuron has all inputs. This network is shown at Fig. I .  

The weight reduction portion of algorithm will be 
explained on this general 2-layer architecture. 

For the network given by Fig. 1, the reduction goes as 
follow~s. Initial number of weights in general case is: 

where n+Z is number of neurons, and i n  number of inputs 
for I "  layer neurons, m+l is because of added bias. 

Last layer ( n f Z "  neuron) is always trained by pseudo- 
inversion training algorithm. This way, initial number of 
weights is reduced to n * ( m  + 1 ) .  From now on, only these 
weights from the 1 layer are considered. 

I"lu~,e1.+2"'la?ie/-=n*(m+1)+1*n+1 (1 1 
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Second reduction step reduces ?I * (172 + 1) first layer 
weights to 11 * m weights. Now the considered weights are 
only input weights of the first layer. Bias for these I ”  layer 
neurons is fixed to I .  

111. PROPOSED ALGORITHMS (STEPS) 
The algorithm steps go as follows: 

Assign h7pZit values. For the network with one 
hidden layer (Fig. 1 .), those are I? * ni weights. where 17 is 
number of neurons in  I ”  layer, and i n  is number of their 
input weights ( I ”  layer bias is fixed to 1). In case of 
simple 3-neuron network (Fig.2.), these are only 4 
weights for inputs of first layer neurons set ( M , ~ , ~ ~ ,  lvk,,/. 
~ i : ~ , , ~ ,  M ! ~ , , ~ ) .  Weights for the second layer neuron can be 
arbitrary chosen and do not influence the calculation. 

Initial Pass. One pass through the network is done. 
This means net, oiitput, and finally toto1 error (TE) is 
calculated for all patterns. This is done through forward 
calculation through the first layer, for each pattern, for all 
patterns. Now Pseudo inversion takes charge of training 
of last layer weights. This 2”“ layer hypersonic training is 
done for all patterns at once. The outcome of this step is 
the initial total error Eo. 

Assign i n p i i t  values for ne.rt iteration. These are 
total error E ,  same weight set from the 1 ’’ step ( 11 * 117 

weights i n  general case, or w ~ ~ , ~ , .  I V / ~ , ~ , ,  ~ v / ~ , ~ ~ ,  wk,22 in case 
of n-to-1 network. For this starting weight set, gradient 
will be estimated in next step. Go to a next step (start 
with iterations). 

4. Start iterations (pecfo/*iii cycles). Each iteration 
consists of certain number of cycles. Number of cycles 
should be at least twice as number of “changeable” 
weights. Each cycle performs the following. First. one set 
of increments (  AM;,.^ ) is created, one increment per 

changeable weight. These delta values are randomly 
created within specified radius (in cycle c in k-th 
iteration): 

or, in different form: 

1. 

2. 

3 .  

( 3 )  

Secondly, new weight set for this cycle w ~ ~ , , , ~ ~ , ~  is created 

by adding these increments to a weight set initially 
defined in step 3 for the whole iteration: 

l+;.qwA,‘. = bTim,.r + A w h . c  = 

K‘<pr c.k = 1’1:..k _ I  I , %.A . I2 >. . .? M;. .k . ,  117 7.. .? 11;‘ .k.”,l ,-. .1”5,m . # J J , ?  1 

C b”iij,ik,c.zj +AM;.~.!; 1 (4) 
i=t,n: /=I.,,,: 

which can be represented by the following weight vector: 

> ( 5 )  

where c-cycle index (goes from 1 to C-number of cycles), 
k-iteration index, 17-number of neurons in Is‘ layer, and ni- 

number of inputs of each l” layer neuron. Thirdly, one 
forward pass, same as initial pass in step2 is performed. 
This forward calculation returns total error. For each 
cycle, deltas and a respective total error for such weight 
modification are stored. Output from k-iteration of C 
cycles is the total error vector TE, and delta matrix AWk. 
Those are given as: 

Fig. I .  General one hidden layer neural network architecture used in  
proposed algorithm. 

Delta matrix Awh is given by: 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , . , . , . . . . . . . . . . . . . . . . . . . . . . . . . . . 
‘.I I, .,/ 

(9) 

5 .  Colculnte tl7e gradient. Gradient is numerically 
calculated from values from previous step. Such quasi- 
gradient is calculated in following way. First AE, is 
calculated as: 
AEA. = TE, - Ek,[, . (10) 
where E,,,, is the total error obtained before iterations 

began, i.e. TE with initial set ofweights from step 2 .  
Then, gradient is calculated as: 

where k fphv  is Moore-Penrose pseudoinverse of 
A & .  

6. Select the appropriate learning constunt ulylm 
Different techniques for finding appropriate value for 
learning constant alpha can be applied. Those are alpha 
jump and random alpha probing. These techniques are 
explained separately. For each value of alpha, one 
fonvard pass is performed and obtained total error stored. 
Now, the alpha that resulted in minimal total error is 
selected to be used in next step. 

Now new’ set of weights is calculated based on the 
estimated gradient, previously selected alpha, and set of 
“changeable” weights from step 3. New set of weights is 
calculated based on following formula: 

gradA = M P h ( A  W, ) * AE; . ( 1  1 )  

7.  

W,+, = W, - a h. * grad, . (12) 
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Again, only "changeable" weights are updated (lst layer 
weights without bias). This set of weights is now ready 
to be used in next iteration. Go to next step where 
network parameters will be prepared for next iteration. 

Adapt network parametem: network gain k ,  and 
search radius r.  These steps are not tested in algorithm 
yet. 

End of this iteration. Start N /iew iteration (go to 
Initial Pass (2'Id step). Keep doing this until the criterion 
for the error is satisfied. 

8. 

9. 

I O .  Eud of the Algorithm. 

IV. GRADIENT CALCULATION 

Gradient is calculated through overdetermined system of 

grad, = MPIiiv(A W, ) * AE: 
More precisely. gradient is calculated as: 
gradk = MPInv(A W, ) * A E ~  = 

equations. 
(13) 

l.11 A"'~ i . 2 1  ... A1l'l.~.,rrl ... A ' " l . A . ~ t r  ... A1t'l.h W ,  

AI$.? ... Aw, k.,,21 ... Au.: h , l , ,  ... A I I . ~ . ~  ,,,,, 
= i\,IP/r71' 

where 1\4PItw is Moore-Penrose pseudoinverse of A ,iV, 

The reason lor using Moore-Penrose pseudoinverse is 
the following. 

IF matrix A@', is square and not singular, there is a 

single solution to inverse( AWh ), and then MPZnv(A W,, is 

an expensive way to compute AWi-' [ 161. Unfortunately, 
problem here is that A W, can have various dimensions and 

therefore does not necessarily have to have inverse matrix 
CAW, matrix can be non-square matrix, can be singular 
matrix, etc.). Aw, is not square, or is square and singular, 

then A@';' does not exist, which is exactly the case here. 
Matrix AW, can have more rows than colunuis and is not 

of full rank. In these cases, MPIm(AWk ) has some though 

not all the properties of A i + - ' .  

V. EXPERIMEKTAL RESULTS 
Parity problems, as one of most frequently used 

benchmarks for testing neural network training algorithms 

-0 

Fig. 2. Simple one hidden layer neural network architecture. 

were chosen for testing of proposed algorithm. Activation 
function used was bipolar. Network parameters like initial 
set qfweighrs. learning parameter alpha, and search radius I' 
were randomly chosen. 

Randomness of initial set of weights is in range (- 1 ,  +I ): 
otherwise net values get saturated, causing algorithm 
oscillations or very slow convergence. 

Tests were performed on lntel Pentium III  IGHz, with 
5 12MB SDRAM memory, Windows 2000 Pro machine. 

A .  Pasit?) 2 (XORZ) Problein 

First problem was the XOR problem, tested on network 
architecture from Fig. 2 .  Examples show behavior uith 
adaptive learning constant alpha. followed by acceleration 
achieved through adaptive search radius. 

llerallOnS iterations 

Fig. 3. Total error and alpha through iterations with initial parameters: 
gain-ini=l; alpha-ini=l; req-err=.5e-08; TERR=le3; radius=.5; 

cycleNo=6; 

Parameters thi.otiglt iterations: 
iteration= I TERR= 1.6598e+000 Alpha=l.O000e+000 
iteration= 2 TERR=1.2256e-001 Alpha=2.0000e+000 

iteration=38 TERR=7.1542e-004 Alpha=l.O000e+OOO 
iteration=39 TERR=6.9201 e-003 Alpha=2.0000e+000 
iteration=40TERR=6.8695e-004 Alpha=2.0000e+000 

Elapsed tinie=2.2930e+000 (seconds) 
CPU time=2.3030e+000 (seconds) 
Stopwatch time=2,2830e+000 (seconds) (Time through iterations only) 

............................................... 

**************** 

680 



\ 

0 10 20 30 40 
iterations iterations 

Fig. 4. Total error and alpha through ite~itions \ i i t h  initial parameters: 
gniii_ini=I : alphn-ini=l: req-eri=.je-O8: TERR=lc3;  

radius=.5; cycleNo=6: 

Purciiiirrer.s rhroiigh ircrcrtioiis: 
iteration= I TERR= I ,3056e-002 Alpha=2.0000et000 
iteration= 2 TERR=6.6966r-003 Alphn=1.0000e+000 
iteration= 3 TERR=j.S l86e-003 Alpha='.000Oe+0l10 
iteration= 4 TERR=?. 1 X63e-003 Alpha=2.0000e+OOO 
iteration= 5 TERR=3.77 I Xe-003 Alpha=2.0O~)Oe+O00 

iteration=39 TERR=4.0052e-004 Alpha= I .?X94e+000 
iteration=40TERR=4.4369e-004 Alpha=7.0000~+000 

Elapscd tinic =2.4940e+000 (seconds) 
CPU tiine=2.4940e+000 (seconds) 
Stopwatch tiine=2,4710e+000 (seconds) (Time through iterations only): 

................................................ 

**************** 

TE through iterations 

............... 

...... ............... ................ 

............ 

10.8 ....... 

iterations 

10' 

10 

10' 

10 

10' 

alpha through iterations 

iterations 

Fig. 5. Total error and alpha through iterations \vith initial parameters: 
gain-ini=l; alpha-ini=l: req_crr=Se-08; TERR=I e3: 

radius=.5; cycleNo=h: 

Puraiitcters tliroiigh itercrrioiis: 
iteration= I :TE=I .3 131e+000;alpha=2.0000e+000 
iteration= 2;TE=3.9407e-007;alpha=4.O000e+000 
iteration= 3;TE=4.9356e-007;alpha=8.0000e+000 

iteration= 18;TE=I .2522e-0 1 O:alpha=2.2390e+002 
iteration=19;TE=6.1849e-O I 1 ;alpha=-6.4058e+001 
iteration=20:TE=l.0387e-0 12:alpha=- 1.2039e+001 

Elapsed time=4.7100e-001 (seconds): 
CPU tiine=4.7 100e-001 (seconds) 
Stopwatch tirne=4.6100e-001 (seconds) (Time through iterations only): 

................................................ 

***C***********t 

//? f l  \ 
0 

Fig. 7. Neural network architecture used for parity 4 testing. 

First two examples (Fig. 3 & 4) illustrate algorithm's 
behavior with alpha reinitialized for every iteration. 
Convergence is smooth and takes about 40 iterations. 
Number of cycles is 8 per iteration. 

With alpha cumulatively changed (not reinitialized at the 
beginning of each iteration). algorithm exhibits faster 
convergence (Fig. 5). Convergence is not smooth anymore. 
rather algorithm jumps following best found gradient, and it 
takes around half of iterations needed then with alpha 
reinitialized for every iteration. 

Finally, algorithm's best performance is exhibited with 
adaptive radius introduced (Fig. 6). 

TE through iterations alpha through iterations .olo 

.......... 

0-10 .......... ..+ .. 

............ 

0 2 4 6 0 2 4 
iterations 

radius through iterations 
100, I 

iterations 
radius through iterations 

I o 0 ~  

10-1 
2 4 E 2 4 E 

iterations 
alpha through iterations 

........... 

: \  
i ,  

...................... 

2 4 6 
iterations iterations 

Fig. 6. Total error and alpha through iterations with initial parameters: 
gain=l: alpha=l : req-err=.je-O4; TERR=Ie3; rddius=.5; cycleNo=8: 

Puranieters tliroiigh iterariori.s: 
iteration= 1 ;TERR=2.8769e+O00:alpha=2.0000e+000:radius=5.000Or-001 
iteration= 2;TERR=6.0568e-00 1 :alpha=2.0000e+000;radius=5.000Oe-00 1 
iteration= 3:TERR=6.105 1 e-00 1 :aIpha=2.0000e+000;radius=5.0000e-001 
iteration= 4;TERR=6.0624e-00 1 ;alpha=4.0000e+000;radius=5.000Oe-00 1 
iteration= 5:TERR=5.3890e-00 1 ;alpha=2.4000e+001 ;radius=5.5000e-001 
iteration= 6;TERR=2.4647e-01 ?;alpha=-l.1479e+003;radius=6.0500e-O0 I 

Elapsed time=3.3 100e-001 (seconds); 
CPU time=3.3100e-001 (seconds): 
Stopwatch time=3.0000e-001 (seconds) (Time through iterations only): 

* * * * * * e * * * * * * * * *  
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B. Pal-ity 4 (XOR4) Probleni 

Second tested problem was parity 4. The architecture 
used for testing parity 4 problem is given by Fig.7. The 
algorithm proved all time convergence. However, the 
convergence rate and therefore minimum achievable total 
error significantly vary with respect to gain 

1 on 
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0 10 20 30 40 
-1 oG 

0 10 20 30 40 

Par.an7erer.c rhrough itevcitior~s: 
iteration= 1 TE=3.59 I3ei000 alpha=] .0000e+000 
iteration= 2 TE=4.0880et000 alpha= 1.0000e+000 
iteration= 3 TE=3.5935et000 alpha=2.0000e+000 

TE through iterations 

1 O 0 ~ ~  

j 

1 o - ~  
5 10 15 0 
iterations 

5 10 15 
iterations iterations 

Fig. 9. With adaptive radius 
Initial network parameters: gain=.2: alpha=. 1 ; reqerr=,5e-O3; TERR=I e3: 

radius=S: cpcleNo=8; 
f ~ / ~ U i l 7 C / e ~ S  //1~01ig// ~ l C ~ ~ i ~ ~ O l l , \ :  

iteration= 1;  TERR=3.0072~-002 alpha= 1.0000e-01 :radius=5.0000e-01 
iteration= 2: TERR=3.0 142e-002 alpha=l .OOOOe-Ol :radius=5.0000e-0 I 
iteration= 3; TERR=3.01 Me-002 alpha= I .0000e-0 I :radius=5.0000e-01 

iteration=13; "ERR=] .0266e-004: alpha=2.0736e+003;radius=l. I790ei00 
iteratioii=l4: TERR=I ,0001 e-003: alpIia=4.1472e+003:radius=l.2969e+00 
iteration=lj: TERR=I. I246e-005: alpha=4.1472e+003;radius=I .4266e+00 

Elapsed time=2.8340e+000 (seconds) 
CPU tinie=1,8440e+000 (seconds) 
Stopwatch tiine=2.7840e+000 (seconds) (Time through iterations only) 

***+**********+* 

iteration=39 TE=7.4661 e-003 alpha=-5.1760e+008 
iteration40 TE=3.6879e-003 alpha=-l.0352e+009 

Elapsed time =5.8090e+000 (seconds) 
CPU time =5.8 190e+000 (seconds) 

**************** 

Stopa tch  tinie=5.7580e+000 (seconds) (through iterations only) 

Fig. 8. Total error and alpha through iterations with initial parameters: 
gain-ini=l: alpha_ini=l: req_err=Se-lO; 

TERR=I e3; radius=.5: cycleNo=6: 

Following examples (Fig.8. a & b) illustrate convergence 
with alpha cumulatively changed. Convergence is smooth 
and it takes about 40 iterations, with 8 cycles each. 

However. with introduced adaptive search radius, 
algorithm achieves its best performance, in less than half as 
many iterations compared to previous examples (Fig. 9). 
This is the example with adaptive search radius and 
learning constant alpha. Algorithm converges nicely and 
smoothly. 
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VI. CONCLUSION 
Apart from novel approach, certain modifications were 

made. However, "plain" method did not result in all-time 
convergence. Adaptive network parameters provided 
expected improvements. 

Further research would include different directions. 
Dependence between algorithm's convergence and other 
parameters should be established. Those parameters are: 
degrec of overdeterminance, learning constant, search 
radius, network gain, etc. Interdependence of these 
parameters would be a next step, and that interdependence 
should be fonnulated in form of certain rules. If these 
modifications prove further results, algorithm U ill  be tested 
on more difficult problems. 
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