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Abstract—Proposed  algorithm exhibits 2 significant
advantages: easier hardware implementation and robust
convergence. Proposed algorithm considers one hidden layer
neural network architecture and consists of following major
phases. First phase is reduction of weight set. Second phase is
gradient calculation on such compressed network. Search for
weights is done only in the input layer, while output layer is
trained always with pseudo-inversion training. Algorithm is
further improved with adaptive network parameters. Final
algorithm behavior exhibits robust and fast convergence.
Experimental results are illustrated by figures and tables.

Index Terms—neural networks, random weight search,
overdetermine, pseudoinverse.

1. INTRODUCTION

The proposed algorithm in this paper is motivated by two
different approaches to iterative search methods. First
approach is neural network iterative gradient search
method.  Second  approach  encompasses  flexible
approximate techniques for neighborhood search.

Error Back Propagation (EBP) necural networks and
gradient methods generally provide very good results [1].

Though presented a breakthrough in neural network
research, backpropagation algorithm has number of
disadvantages, such as oscillation, slow convergence,

sensitivity to network parameters, etc.

Numerous researchers targeted these problems over the
years. In order to smooth the process, Rumelhart et al. [2]
have proposed weight adaptation, also formulated by
Sejnowski and Rosenberg [3]. To speed up the process,
Fahlman [4] proposed a quickprop algorithm. Wilamowski
and Torvik [5] proposed solution towards robustness in
terms of activation function derivative modification. Still,
no universal solution towards robust and fast training
algorithm has been found.

Neighborhood search methods are iterative procedures in
which for each feasible solution a neighborhood for
searched for next solution is defined. Most popular
neighborhood search methods for finding an approximation
to the minimum value of a real value function are gradient
method, Simulated Annealing and Tabu search.

Roots of Tabu search go back to the 1970s, first
presented by Glover and Hansen [6,7], independently.
Further was formalized by Glover {8,9] and De Werra &
Hertz {10]. It is a flexible approximation technique that uses
memories or tabu lists to forbid moves that might lead to
recently visited solutions, tabu solutions. Tabu lists can help
to intensify the search in ‘good’ regions or to diversify the
search toward unexplored regions by variable tabu list size.
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Overview of combination of neural network gradient
search and Tabu search with applications can be found in
[11-15]. The proposed algorithm combines these two
approaches to achieve fast and robust convergence.
Furthermore, easy hardware implementation is facilitated by
simplified gradient calculation. Main characteristics of the
algorithm will be briefly overviewed.

The algorithm considers one hidden layer neural network
architecture and has been tested on parity problems. The
algorithm consists of following phases. First phase is
reduction of weight set. Second phase performs the forward
calculation where second layer gets trained with Pseudo-
Inversion algorithm. Therefore, search for weights is done
only in the input layer, while the output layer is
automatically trained. In third phase, gradient is estimated
on such compressed network, i.e. reduced weight space.

Gradient is estimated from set of overdetermined
equations. Each equation defines one pass through the
network (randomly generated weights resulting in certain
error). Only forward calculation is performed vs. EBP that
performs both forward and backpropagation. The reduced
weight set participates in gradient calculation, vs. EBP that
includes complete weight set. Finally, the second layer is
trained automatically with pseudo-inversion training for all
patterns at once, vs. EBP that performs both forward and
backpropagation on all layers for single pattern at the time.

The rest of the paper is organized as following. Second
section discusses weight space reduction. Third section
explains steps of proposed algorithm, and is followed by
gradient calculation explanation. The fifth section illustrates
test examples. The sixth section concludes this paper with
directives for future work. Last, seventh section contains
references used in this paper.

II. WEIGHT SPACE REDUCTION

The proposed algorithm considers 2 layer neural
networks of n+/ neurons, where 1* layer consists of n-
neurons and last layer of single neuron. Each 1% layer
neuron has all inputs. This network is shown at Fig. 1.

The weight reduction portion of algorithm will be
explained on this general 2-layer architecture.

For the network given by Fig. 1, the reduction goes as
follows. Initial number of weights in general case is:

1" layer + 2™ layer=n+*(m+1)+1%n+1 43]
where n+/ is number of neurons, and m number of inputs
for 1* layer neurons, m+1 is because of added bias.

Last layer (n#+]" neuron) is always trained by pseudo-
inversion training algorithm. This way, initial number of
weights is reduced to »*(m+1). From now on, only these

weights from the 1% layer are considered.
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Second reduction step reduces nx(m+1) first layer

weights to n*m weights. Now the considered weights are
only input weights of the first layer. Bias for these 1* layer
neurons is fixed to 1.

IIL. PROPOSED ALGORITHMS (STEPS)

The algorithm steps go as follows:

1. Assign Input values. For the network with one
hidden layer (Fig.1.), those are n*m weights, where # is
number of neurons in 1* layer, and m is number of their
input weights (1% layer bias is fixed to 1). In case of
simple 3-neuron network (Fig.2.), these are only 4
weights for inputs of first layer neurons set (wy ;,, Wy 5/
W o Wy o). Weights for the second layer neuron can be
arbitrary chosen and do not influence the calculation.

2. Initial Pass. One pass through the network is done.
This means net, output, and finally roral error (TE) is
calculated for all patterns. This is done through forward
calculation through the first layer, for each pattern, for all
patterns. Now Pseudo inversion takes charge of training
of last layer weights. This 2™ layer hypersonic training is
done for all patterns at once. The outcome of this step is
the initial total error E).

3. Assign input values for next iteration. These are
total error E,, same weight set from the 1¥ step (n*m
weights in general case, or wy_;,, Wy ,/, Wy Wy 5> iN case
of n-to-1 network. For this starting weight set, gradient
will be estimated in next step. Go to a next step (start
with iterations).

4. Start iterations (perform cycles). Each iteration
consists of certain number of cycles. Number of cycles
should be at least twice as number of “changeable”
weights. Each cycle performs the following. First, one set
of increments ( Aw, k) is created, one increment per

changeable weight. These delta values are randomly
created within specified radius (in cycle ¢ in k-th
iteration):
AW = lAw

el AW e AV s A SAw, .Ime )

ekl ok

or, in different form:

R
=t

(3)

Secondly, new weight set for this cycle W e is created

&
by adding these increments to a weight set initially
defined in step 3 for the whole iteration:

W, =Wiie + AW, = Z Winigcy T AW ey » )

reprkc = initk.e
i=tnj=lon;

which can be represented by the following weight vector:

4 = ) ] ) 9
W ek = ekt Wokdzsees Weoktmresss Wkt o+ We b (5)
s

where c-cycle index (goes from 1 to C-number of cycles),
k-iteration index, n-number of neurons in 1* layer, and m-
number of inputs of each 1 layer neuron. Thirdly, one
forward pass, same as initial pass in step2 is performed.
This forward calculation returns total error. For each
cycle, deltas and a respective total error for such weight
modification are stored. Output from k-iteration of C
cycles is the total error vector 7E, and delta matrix AW,

Those are given as:
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Fig. 1. General one hidden layer neural network architecture used in
proposed algorithm.

TE, =|TE,, TE, oy .. TE, ,y o TE,,, TE,, . TE, ) +(0)
or in different form:
TE, = [TEA»J/ ]/:Ln. . (7)
J=lam.
Delta matrix AW, is given by:
AWy gy AWy AWy e Ay AW A (8)
A, = Awy oy A Avp g e Ab AW, Ay
Awg, “Am:, e AW e AW AW, e AW Comen
or in different form:
AVVA = [A“'.«-.A.th':ltj«s . 9
=l
S. Calculate the gradient. Gradient is numerically

calculated from values from previous step. Such quasi-
gradient is calculated in following way. First AE, is

calculated as:
AE =TE, -E, . (10)
where E.o is the total error obtained before iterations

began, i.e. TE with initial set of weights from step 2.
Then, gradient is calculated as:

grad, = MPIn(AW,)* AE] , (1hH
where MPInv is Moore-Penrose pseudoinverse of
AW,

6. Select the appropriate learning constant alpha.
Different techniques for finding appropriate value for
learning constant alpha can be applied. Those are alpha
jump and random alpha probing. These techniques are
explained separately. For each value of alpha, one

forward pass is performed and obtained total error stored.
Now, the alpha that resulted in minimal total error ¢ , is

selected to be used in next step.

7. Now new set of weights is calculated based on the
estimated gradient, previously selected alpha, and set of
“changeable” weights from step 3. New set of weights is
calculated based on following formula:

Wiw=W,—a  *grad,. (12)



Again, only “changeable” weights are updated (1" layer
weights without bias). This set of weights is now ready
to be used in next iteration. Go to next step where
network parameters will be prepared for next iteration.

8. Adapt network parameters: network gain k, and
search radius r. These steps are not tested in algorithm
yet.

9. End of this iteration. Start a new iteration (go to
Initial Pass (2™ step). Keep doing this until the criterion
for the error is satisfied.

10. End of the Algorithm.

I1V. GRADIENT CALCULATION

Gradient is calculated through overdetermined system of
equations.

grad, = MPInv(AW )Y+ AE] (13)
More precisely. gradient is calculated as:
grad, = MPInv (AW, )* AE] =
Ay Aw oy Ay AL A
= MPIn Waen BWosny Wa ko W kan AW, "
AWep AWe i o o AW, e A“'c.t.umJL,”M
AE,
AE, )
AE
k)
' m (]4)
ol -
AL,
AELZU
LA b ] e

where MPInv is Moore-Penrose pseudoinverse of AW, .

The reason for using Moore-Penrose pseudoinverse is
the following.
If matrix AW, is square and not singular, there is a

single solution to inverse( AW, ), and then MPInv(AW,) is
an expensive way to compute AW, [16]. Unfortunately,
problem here is that AW, can have various dimensions and

therefore does not necessarily have to have inverse matrix
(AW, matrix can be non-square matrix, can be singular

matrix, etc.). AW, is not square, or is square and singular,
then AW,(AI does not exist, which is exactly the case here.
Matrix AW, can have more rows than columns and is not
of full rank. In these cases, MPInv(AW,) has some though
not all the properties of AW,

V. EXPERIMENTAL RESULTS

Parity problems, as one of most frequently used
benchmarks for testing neural network training algorithms
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Fig. 2. Simple one hidden layer neural network architecture.

were chosen for testing of proposed algorithm. Activation
function used was bipolar. Network parameters like initial
set of weights, learning parameter alpha, and search radius r
were randomly chosen.

Randomness of initial set of weights is in range (-1, +1):
otherwise net values get saturated, causing algorithm
oscillations or very slow convergence.

Tests were performed on Intel Pentium I1I 1GHz, with
512MB SDRAM memory, Windows 2000 Pro machine.

A. Parity 2 (XOR2) Problem

First problem was the XOR problem, tested on network
architecture from Fig. 2. Examples show behavior with
adaptive learning constant alpha, followed by acceleration
achieved through adaptive search radius.

TE through iterations alpha through iterations
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Fig. 3. Total error and alpha through iterations with initial parameters:
gain_ini=1; alpha_ini=1; req_err=.5e-08; TERR=1e3; radius=.5;
cycleNo=6;

Parameters through iterations:

iteration= 1 TERR=1.6598¢+000 Alpha=1.0000e+000

iteration= 2 TERR=1.2256e-001 Alpha=2.0000e+000

iteration=38 TERR=7.1542¢-004 Alpha=1.0000e+000

iteration=39 TERR=6.9201¢-004 Alpha=2.0000e+000

iteration=40 TERR=6.8695¢-004 Alpha=2.0000e+000

4 3k s koK 3 ok K ok ok oK ok ok Kok

Elapsed time=2.2930e+000 (seconds)

CPU time=2.3030e+000 (seconds)

Stopwatch time=2.2830e+000 (seconds) (Time through iterations only)
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Fig. 4. Total error and alpha through iterations with initial parameters:
gain_ini=1; alpha_ini=1: req_err=.5¢-08; TERR=1¢3;
radius=.5; cycleNo=6:

Purameters through iterations:

iteration= 1 TERR=1.3056¢-002
iteration= 2 TERR=6.6966¢-003
iteration= 3 TERR=3.5186¢-003
iteration= 4 TERR=4.1863¢-003
iteration= 5 TERR=3.7718¢-003

Alpha=2.0000e+000
Alpha=2.0000e+000
Alpha=2.0000e+000
Alpha=2.0000e+000
Alpha=2.0000e+000

iteration=39 TERR=4.0052¢-004 Alpha=1.4894¢+000

iteration=40 TERR=4.4369¢-004 Alpha=2.0000e+000
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Elapsed time  =2.4940¢+000 (seconds)

CPU time=2.4940e+000 (scconds)

Stopwatch time=2.4740¢+000 (seconds) (Time through iterations only):
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Fig. 5. Total error and alpha through iterations with initial parameters:
gain_ini=1; alpha_ini=1; req_err=.5e-08; TERR=1¢3:
radius=.5; cycleNo=6;

Parameters through iterations:

iteration= 1;TE=1.3131e+000;alpha=2.0000e+000
iteration= 2;TE=4.9407¢-007:alpha=4.0000¢+000
iteration= 3;TE=4.9356e-007;alpha=8.0000e+000
iteration=18;TE=1.2522e-010;alpha=2.2390e+002
iteration=19;TE=6.1849¢-01 1 ;alpha=-6.4058e+001
iteration=20;TE=1.0387¢-012:alpha=-1.2039¢+001
e ok 3k ok ok oK b ok 3k O ok % ok sk ok ok

Elapsed time=4.7100e-001 (seconds);

CPU time=4.7100e-001 (seconds)

Stopwatch time=4.6100e-001 (seconds) (Time through iterations only);

Fig. 7. Neural network architecture used for parity 4 testing.

First two examples (Fig. 3 & 4) illustrate algorithm’s
behavior with alpha reinitialized for every iteration.
Convergence is smooth and takes about 40 iterations.
Number of cycles is 8 per iteration.

With alpha cumulatively changed (not reinitialized at the
beginning of each iteration), algorithm exhibits faster
convergence (Fig. 5). Convergence is not smooth anymore,
rather algorithm jumps following best found gradient, and it
takes around half of iterations needed then with alpha
reinitialized for every iteration.

Finally, algorithm’s best performance is exhibited with
adaptive radius introduced (Fig. 6).
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Fig. 6. Total error and alpha through iterations with initial parameters:
gain=1; alpha=1: req_err=.5¢-04; TERR=1e3; radius=.5; cycleNo=8:

Parameters through iterations:

iteration= 1; TERR=2.8769e+000;alpha=2.0000e+000;radius=5.0000e-001
iteration= 2; TERR=6.0568¢-001;alpha=2.0000¢+000;radius=5.0000e-001
iteration= 3:TERR=6.1051e-001;alpha=2.0000e+000;radius=5.0000e-001
iteration= 4, TERR=6.0624e-001;alpha=4.0000e+000;radius=5.0000e-001
iteration= 5;TERR=5.3890e-001;alpha=2.4000e+001;radius=5.5000e-001
iteration= 6;TERR=2.4647¢-014;alpha=-1.1479¢+003;radius=6.0500e-00
3 3 ok sk ofe o ok ok ke ok ok oK ok ok ok K

Elapsed time=3.3100e-001 (seconds);

CPU time=3.3100¢-001 (seconds):

Stopwatch time=3.0000e-001 (seconds) (Time through iterations only);
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B. Parity 4 (XOR4) Problem

Second tested problem was parity 4. The architecture
used for testing parity 4 problem is given by Fig.7. The
algorithm proved all time convergence. However, the
convergence rate and therefore minimum achievable total
error significantly vary with respect to gain,

TE through iterations alpha through iterations
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Paramerters through iterations:
iteration= | TE=3.0707¢-001
iteration= 2 TE=3.0707e-001
iteration=3 TE=3.0707e-001

alpha=-3.9466e+000
alpha=-3.9466¢+000
alpha=-7.8933e+000

alpha=-2.5865¢+005
alpha=-2.5863¢+005
alpha=-2.5865¢+005

6896¢-001
iteration=33 TE=1.5690e-001
iteration=34 TE=5.0536e-031
Sk ok ok ko R K K ok ok e

Elapsed time =4.9870e-+000 (seconds)

CPU time =4.9870e+000 (seconds)

Stopwatch time=4.9170¢+000 (seconds) (Time through iterations only)

TE through iterations aipha through iterations
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Paramerers through iterations:

iteration=1 TE=3.5913e+000 alpha=1.0000e+000
iteration= 2 TE=4.0880e+000 alpha=1.0000e+000
iteration=3 TE alpha=2.0000¢+000

iteration=39 TE=7.4661¢-003 alpha=-5.1760e+008
iteration=40 TE=3.6879¢-003 alpha=-1.0352e+009
ok ok ok ok ok ok ok ok ROk Kok ok R ok
Eiapsed time  =5.8090e+000 (seconds)
CPU time =5.8190e+000 (seconds)
Stopwatch time=5.7580e+000 (seconds) (through iterations only)

Fig. 8. Total error and alpha through iterations with initial parameters:
gain_ini=1; alpha_ini=1; req_err=.5e-10;
TERR=le3; radius=.3: cycleNo=6;
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Fig. 9. With adaptive radius
Initial network parameters: gain=.2: alpha=.1; req_err=.5e-04; TERR=1e3;
radius=.5: cycleNo=8;

Parameters through irerations:
iteration= 1; TERR=3.0072¢-002 alpha=1.0000e-01:radius=35.0000e-01
iteration= 2; TERR=3.0142e-002 alpha=1.0000e-01:radius=5.0000e-01
iteration=3; TERR=3.0186e-002 alpha=1.0000e-01:radius=5.0000e-01
iteration=13; TERR=1.0266¢-004: alpha=2.0736¢+003;radius=1.!790e+00
iteration=14: TERR=1.0001e-004: alpha=4.1472e+003:radius=1.2969¢+00
iteration=15; TERR=1.1246¢-005; alpha=4.1472¢+003;radius=1.4266e+00

sk ok sk ok o ok sk o s ok ok

Elapsed time=2.8340e+000 (seconds)
CPU time=2.8440e+000 (seconds)
Stopwatch time=2.7840e+000 (seconds) (Time through iterations only)

Following examples (Fig.8. a & b) illustrate convergence
with alpha cumulatively changed. Convergence is smooth
and it takes about 40 iterations, with 8 cycles each.

However, with introduced adaptive search radius,
algorithm achieves its best performance, in less than half as
many iterations compared to previous examples (Fig. 9).
This is the example with adaptive search radius and
learning constant alpha. Algorithm converges nicely and
smoothly.



VI. CONCLUSION

Apart from novel approach, certain modifications were
made. However, “plain” method did not result in all-time
convergence. Adaptive network parameters provided
expected improvements.

Further research would include different directions.
Dependence between algorithm’s convergence and other
parameters should be established. Those parameters are:
degree of overdeterminance, learning constant, search
radius, network gain, etc. Interdependence of these
parameters would be a next step, and that interdependence
should be formulated in form of certain rules. If these
modifications prove further results, algorithm will be tested
on more difficult problems.
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