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ABSTRACT
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This paper provides the first published research
paper on the technique of neural network fore-
casting as applied to the airline industry. It
compares this new method with the traditional
forecasting techniques (moving averages, expo-
nential smoothing, regression, etc.). The data
were provided by a major international carrier.
All the methods were compared on the basis of
a standard error measure — mean absolute per-
centage error (MAPE). The vesults of the
study are promising. The most basic neural net-
work  structures provided better forecasts than
traditional forecasting methods.

INTRODUCTION

Having attended the meetings of the Air-
line Group International Federation of
Operations Research (AGIFORS) Study
Group on Yield Management and Reser-
vations, the authors realise that there has
been a dearth of research on new forecast
methods and ideas. Certainly, no topic
could have greater impact in this realm
than improving forecasting accuracy. All
the mathematically sophisticated overbook-
ing models, seat allocation models, net-
work models have at their heart a reliance
on an accurate forecast of demand or no-
show rates or some other input. It was
therefore decided to pursue some research
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along the lines of looking for improved
forecasting methodology that may have
been developed in separate fields, which
would have some positive impact on airline
forecasts (Gentry and Weatherford, 1995).

Forecasting has been called both an art
and a science. It 1s an ability to recognise
patterns through a logical and analytical
approach. There i1s no philosophy more
important in business than gaining an
advantage or opportunity over the com-
petition. Forecasting permits airlines to esti-
mate unknown variables (eg demand for
seats) with a certain degree of reliability.

New technologies and tools are con-
stantly entering the atrline industry. For an
airline to remain competitive, it must be
aware of all opportunities to improve its
methods of doing business. One recent
technological advancement that has begun
to provide airlines with an array of oppor-
tunities in pdttern recognition is the neural
network. The network represents an
opportunity to solve many airline-specific
problems (including scheduling, optimisa-
tion and forecasting) more accurately.

The purpose of this paper is to compare
the forecasting ability of traditional fore-
casting methods and the forecasting ability
of wvarious neural network structures to
predict the total number of passengers
booked on a given flight. The study mea~
sured the methods’ abilities for both a
short-term and a long-term forecast. This
next section will describe the data format,
provide an overview of the forecasting

Figure 1: Graphical representation of data set

methods, and review the accuracy mea-
surement methods used to evaluate the
forecasting ability.

THE DATA
The data were a set of time-series numbers
provided by a major international carrier.
The information represented the final
number of reservations on a specific flight
described by two signatures: day of week
and passenger fare class. Any distinguishing
characteristics about the data’s source (exact
flight numbers, type of aircraft, origin/desti-
nation, specific fare class and time of week,
month or year) were disguised. A total of 85
weeks of data (over 1.5 years) were col-
lected. These data are shown in Figure 1.
The scope of the research was narrowed
to studying the abilities to forecast the final
number of reservations on the flight for both
a short-term (one week ahead) and a long-
term (three weeks ahead) horizon. The accu-
racy of each forecasting model will be evalu-
ated based on its performance of predicting
the actual values during the holdout sample
(weeks 31-85). In the accuracy measure-
ments, the first 30 points are referred to as
the ‘training set’ and the last 55 points are the
‘holdout’ sample. By observing the graph in
Figure 1, it was determined that no obvious
seasonality was present in the data.

TRADITIONAL FORECASTING MODELS

" Three main methods of quantitative fore-

casting were used: moving averages; expo-
nential smoothing; and regression.
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Moving averages

Two different types of moving averages
were studied in this research. The assump-
tion behind these models is that the average
performance of the recent past is a good
predictor of future performance. These
models are good at removing the effects of
random fluctuations.

Simple .
The simple moving average forecast is
shown in equation (1).

Xip1 =

X+ X1+ X+ Xes + o+ Xongt
N

(1)

The X,4+; term is the estimated value of
the forecast one period ahead (t+1). The
other values of X, are the previous period’s
actual values up to a given number of N
past periods. The key decision in using
moving average models is the proper selec-
tion of the number of past periods, N, to
use. Values of N ranging from two weeks
to eight weeks were explored.

Weighted

The weighted moving average permits the
forecast to emphasise more recent demand
over earlier demands. The sum of the
weights in a weighted moving average
usually equals one. Equation (2) illustrates
the weighted moving average forecast and
shows how each historic demand has an
associated weight.

XH—I =
W1Xz + WZXr—l + W3X[—2 (2)
+ WiXi3+ ... + WnXi—nt1

Exponential smoothing

In the study, single exponential smoothing
and exponential smoothing with trend
techniques were both used. A major advan-
tage of using exponential smoothing tech-
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niques over the moving average techniques
is the smaller amount of stored data and
calculations required.

Single exponential smoothing

Single exponential smoothing methods are
similar to weighted moving average tech-
niques. Exponential smoothing calculates
the average of a time series by allocating
more weight or importance to recent peri-
ods of data. Equation (3) illustrates the
single exponential smoothing method
(Makridakis et al., 1983).

X =aX, +(1-a)X (3)

The value of alpha (%) can range from zero
to one. The higher the value of alpha, the
more weight allocated to the most recent
data observation.

Exponential smoothing with trend
Exponential smoothing with trend is simi-
lar to single exponential smoothing except
a trend component is introduced into the
forecast. The trend component is defined
below in equation (4).

T, = ﬁ(xr - Xr—l) + (1 - ﬂ) Ty (4)

Similar to the alpha value, beta (ff) is a
smoothing constant between zero and one.
A higher value of beta indicates a larger
portion of the most recent trend being
added to the next period’s forecast. The
complete formula for exponential smooth-
ing with trend is provided in equation (5).

Xpm=aoX+(1-a)X, +T, (5

Regression

Regression 1s a causal forecasting method
that fits curves to the entire data set to
minimise the forecasting errors. Time
(measured in weeks) is the independent
variable (x axis) and total passengers
booked is the dependent variable (y axis).
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Neural network forecasting for airlines

This paper looked at three forms of regres-
sion techniques: linear, quadratic and cubic.

Linear regression

Linear regression is nothing more than fit-
ting a straight line to the data set. The line
consists of two elements, the slope (b) and
y intercept (a). The general equation form
1s given as equation (6).

nga“{"b[ (6)

Quadratic regression

Similar  to regression, quadratic
regression fits a second-order polynomial
curve to the data. The model allows for
one bend or inflection forming a {_J(or (M)
shaped curve. The general form is provided
below as equation (7).

linear

X, = a+ bt + of (7)

Cubic regression

The final method used is the cubic regres-
sion model. The model fits a third-order
polynomial curve to the data. The third-
order curve is characterised by two bends
or inflections typical in an ‘S’ shaped curve.
The cubic regression curve is described by
equation (8).

X, =a+bt+c® +df (8)

Measuring forecasting accuracy
Accuracy can be defined as ‘goodness of fit’
or how well the forecasting model is able
to reproduce data that are already known.
The error can be defined as the difference
between the actual value and the forecasted
value as shown in equation (9).

e, = Xy — Xr (9)

Given this definition of error, there have
been many other standard, statistical mea-
sures that have been defined: mean error,
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mean absolute error, sum of squared errors,
mean squared error, standard deviation of
errors, etc. This study used mean absolute
per cent error (MAPE), as it has been cited
by Weatherford and Kimes (2002) as an
appropriate error measure in revenue man-
agement situations. The MAPE is the abso-
lute difference of the error expressed as a
percentage, thus showing a percentage of
the error made by the forecast. The MAPE
equation is provided in equation (10).

n ([x,—k,i>
=1 X
TN 5 L 100%  (10)

n

MAPE =

NEURAL NETWORKS

Neural networks represent a promising
generation of intelligent machines that are
capable of processing large and complex
forms of information. The pursuit of the
neural network started when McCulloch
and Pitts (1943) developed the first formal
synthetic neuron model. The model oper-
ates by individual inputs entering a system
whereby each input (X)) is multiplied by a
unique weight (W,). The summation of
the weighted inputs are compared with
the neuron’s threshold value (T) to deter-
mine whether the neuron is activated or
not. Figure 2 illustrates the model.

In its most basic form, a neural network
is nothing more than a powerful classifier
of patterns. The network is capable of clas-
sifying any linear or non-linear orientation.
It is capable of quickly recognising patterns
and variable associations. Similarly struc-
tured to the human brain, a network 1s
composed of serially arranged neurons con-
nected in parallel. Each network starts with
an input layer and ends with an output
layer. Depending upon the complexity of
the classification, several intermediate or
hidden layers may be needed and inserted
between the input and output layers.

A single neuron is capable of linear



Figure 2: McCulloch—Pitts neuron model
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separation. For complex, higher-order clas-
sification, multiple neuron and multiple
layered networks are required. In these
multiple-layered networks, the output of
one layer becomes the input to the next
layer. As the data are transferred, the net-
work assigns a weight value to each
neuron connection.

Figure 3 provides a generalised depiction
of a neural network. The model illustrates
an input and output layer separated by one
hidden layer. Each neuron layer is con-
nected by various, individualised weights

Figure 3: Generalised neural network mode/

N
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designated by W (the values of W are not
necessarily the same). The training of the
neural nerwork assigns positive
weights .to more important data (excita-
tory) and assigns more negative weights
for less important data (inhibitory)
(Hruschka, 1993). Every neuron sums the
products of the inputs (X;, X; X3) and
associated weights (W). The sum of each
neuron is then compared with its threshold
value to determine whether that neuron
will be activated. The type of the neuron’s
activation function (discrete, binary, con~

more

Hidden layer

Input layer

Threshold value

Output layer

Neurons
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tinuous, etc.) determines the classification
characteristics and abilities of the neural
network.

Training

The neural network is a technology that
learns: it learns from being trained. Train-
ing occurs when patterns of given inputs
and known outputs are repeatedly applied
to the network. Through the repetition,
the network iteratively adjusts each weight
until the difference between the desired or
expected output and actual output is below
a predetermined value. The difference
between the desired and actual output
values is called the error (Proctor, 1992).
Once the learning is complete, the network
should be able to identify correctly any
pattern close to the pattern it was trained
with and match the input pattern to an
output pattern. The training technique
used in this study was a modified regres-
sion method that leads to an immediate
solution (Anderson and Wilamowski,
1995). In this study, a Gaussian distribution
was used to place more emphasis on the
more current data and less emphasis on the
older data.

Network structures

There is literally an unlimited number of
neural network structures that can be
designed. The structures can vary in the
number of layers, the number of neurons,
the numbers of inputs and outputs, type of
activation functions, feedback information,
etc. Combinations of these variables give

Figure 4: Single-layer feedforward network
Xa

designers a variety of options to implement
the neural network for thousands of differ-
ent applications.

This study was interested in comparing
the basic power of the neural network in
forecasting applications by using the sim-
plest network structures. Therefore, only
two structures were used: a single-layer,
feedforward neural network and a vari-
able-order, feedforward, functional link
neural network. Given that the simplest
structures were used, even better results
than those reported in this paper could be
possible with more advanced neural net-
work structures.

Single-layer, feedforward network

The first network used in the study was a
simple, one neuron design. The neuron
was given eight inputs of past data (X,
Xp1..-X,—7). The structure of the network
is given in Figure 4.

Functional link network

Single-layer neural networks are easier to
train than complex, multi-layer networks.
However, recall that single-layer networks
can only solve linearly separable problems.
To avoid working with complex, multi-
layer networks and their training algo-
rithms, Pao (1989) developed the func-
tional link network that still allowed him
to introduce non-linear separation abilities.
The functional link works by introducing
non-linear input terms (eg ¢, £ ) into the
network. The network can be reduced to a
single layer, which also increases the speed

X o
"~ Threshold
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Figure 5: Functional link network
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and ease of training. Figure 5 shows the
network structure.

RESULTS
The results for the following sections have
been divided into two parts, ‘training set’
and ‘holdout sample’. Recall, the training
set is the first 30 data points, and the holdout
sample is the last 55 data points. The accu-
racy measurements of each forecasting
method will show an error measurement for
both the training set and holdout sample.
The study’s results will be presented via
a graphical representation of the forecasting

Weatherford, Gentry and Wilamowski

errors. In the graphical representation, the
forecasting method that provided the best
forecast will be in bold in the legend.

Short-term forecast (one week ahead)

Moving averages

Figure 6 provides a graphical representa-
tion of the moving average forecast results.
The results labelled ‘training set’ are the
predicted forecasting errors of the first 30
data points or the known, first 30 weeks of
data. The ‘holdout sample’ is the actual

Figure 6: Predicted vs actual forecasting error for moving averages

120.00%
100.00%
OM.A.=2
80.00% OMA=3
) N
% M.A.=4
> O,
E 60.00% M.A.=5
<§: HEMA=6
40.00% WMA=7
N M.A =8
20.00%
0.00%

Training set

Holdout Sampie

Page 325



errors from the last 55 data points or the
unknown, last 55 weeks of data.
The two-period moving average pro-

vided the best forecast of the seven
averages tested. The predicted MAPE
based on the training set value for a two-
period moving average was 68.82 per cent,
and actual MAPE over the hold-out
sample was 71.55 per cent.

Another moving average forecast that
was performed was the eight-period,
weighted moving average. The one-week
ahead weighted moving average forecast
yielded a 63.8 per cent error over the train-
ing set and a 73.1 per cent error over the
holdout sample, making it the best in the
training set, but worse than the two-period
moving average in the holdout sample.

Exponential smoothing
Figure 7 illustrates the exponential smooth-
ing results with and without a trend com-
ponent. Once an optimum alpha and beta
were found by minimising MAPE, those
values were used for the entire holdout
sample predictions. The values were not
updated for each forecasting period.

The best exponential smoothing forecast

yielded a predicted error of 71 per cent and
an actual error of 67.8 per cent.

Regression

Of the three regression techniques used, the
cubic regression provided the best forecast.
Figure 8 illustrates this. The predicted
MAPE of the cubic regression was 52.1 per
cent, and the actual MAPE was 84.7 per
cent. In a similar manner to the exponen-
tial smoothing analysis, the linear, quadra-
tic and cubic coefficients of the regression
analyses were determined based on the
training set and held constant over the
holdout sample.

Neural networks

Figure 9 shows the forecasting results of
both network structures. The single-layer,
multiple-input neural network vyielded a
predicted MAPE of 61.2 per cent and an
actual MAPE of 60.96 per cent.

Overall comparison

The following results take the best of each
forecasting technique and presents them in
a manner to compare which method
yielded the best overall results.

Figure 7: Predicted vs actual forecasting error for exponentiai smoothing
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Figure 8: Predicted vs actual forecasting error for regression
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Of all four general forecasting methods
(moving average, exponential smoothing,
regression and neural networks), the single-
layer multiple-input neural network pro-
vided the best one-week-ahead forecast.
Figure 10 illustrates the results. The pre-
dicted MAPE was 61.2 per cent, and the
actual MAPE was 60.96 per cent.

Long-term forecast (three weeks ahead)
To test the accuracy of the methods
beyond a one-week ahead forecast, a three-
week ahead forecast was used.

O Linear regression
Quad regression
& Cubic regression

Holdout sample

Moving averages

Figure 11 provides a summation of the
moving average forecasting results. The
eight-period moving average was best of
all moving average periods with a 84.04
per cent predicted MAPE and 109.8 per
cent actual value over the holdout sample.
An eight-period weighted moving average
forecast was also tested. The results showed
a MAPE of 87.5 per cent during the train-
ing set and a MAPE of 93.7 per cent over
the holdout sample. The results were
among the worst in the training set and the
best in the holdout sample.

Figure 9: Predicted vs actual forecasting error for neural networks
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Figure 10: Predicted vs actual forecasting error for best of all methods
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Exponential smoothing

The three-week-ahead exponential smooth-
ing results, shown in Figure 12, show that
an exponential smoothing technique with a
trend component (that seeks to minimise
the MAD) provides the best forecast in the
holdout sample. The forecast error in the
training set was 86 per cent, while the fore-
cast error in the holdout sample was 103
per cent.

Holdout sample

Regression

Figure 13 summarises the results of the
regression techniques for a three-week-
ahead forecast. The cubic regression
yielded the best forecast in the holdout
sample with a MAPE of 84.5 per cent, and
51.6 per cent in the training set.

Neural networks

Of the two neural network structures

Figure 11: Predicted vs actual forecasting error for moving averages (three weeks ahead)
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Figure 12: Predicted vs actual forecasting error for exponential smoothing (three weeks ahead)
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Figure 13: Predicted vs actual forecasting error for regression (three weeks ahead)
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Figure 14: Predicted vs actual forecasting errors for neural networks (three weeks ahead)
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Figure 15: Predicted vs actual forecasting error for best of all methods (three weeks ahead)
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tested, the single-layer, multiple-input net-
work provided the best three-week-ahead
forecast. As shown in Figure 14, the single-
layer, multiple-input structure had a train-
ing set MAPE of 71.4 per cent and a hold-
out sample MAPE of 86.6 per cent.

Overall comparison

A comparison of the best of all methods, as
shown in Figure 15, illustrates that the
cubic regression and single-layer, multiple-
mnput neural network structure provided
the best three-week-ahead forecasts (84.5
per cent MAPE and 86.6 per cent MAPE,
respectively), and they could be chosen as
the most robust forecasts. The neural net-
work showed less deterioration in going
from the training set to the holdout sample
(71.4 per cent — 86.6 per cent) compared
with cubic regression (51.6 per cent — 84.5
per cent).

CONCLUSIONS

The results of the forecasting comparisons
tlustrate how the most basic neural net-
work (a single neuron) can outperform the
traditional forecasting methods of moving
averages, exponential smoothing and
regression. Based on MAPE error value,
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the single-layer, multiple-input neural net-
work provided the best short-term and the
second-best long-term forecast.

The single-layer, multiple-input neural
network’s success was probably due to its
superior ability to combine data from the
past eight periods (exponential smoothing,
moving average (8) and regression also
used data from the last eight periods, but
not as well). The neural network was able
to provide consistent results for either a
one-week-ahead forecast or a three-week-
ahead forecast.

A comparison of the predicted MAPE
error values of the training set and the
MAPE error values of the holdout sample
shows that a single-layer, multiple-input
neural network had the most forecasting
consistency over all other forecasting meth-
ods. If one forecast method was to be
selected over all others regardless of fore-
cast period, the single-layer, multiple-input
neural network would be the best choice.

The neural network has proven itself to
be a formidable substitute in many tradi-
tional problematic situations ranging from
medicine to forecasting (Hill et al., 1996).
The general challenge with neural net-
works 1s finding the proper structure, the



correct number of variables, the right data
transformation to use, etc.

This paper is only the beginning. A mul-
tivariate approach can be initiated to pre-
dict the total number of passengers booked
in a certain fare class on a specific flight (ie
a five-week-ahead forecast of the number
of passengers booked in First Class on an
early morning flight from Denver to Los
Angeles). If additional signatures were pro-
vided such as competitor information, eco-
nomic indicators and an array of other
information, the neural network structure
could be designed to provide a more accu-
rate and comprehensive forecasting system.
The neural network structure is able to
perform complex forecasts much more
easily than any commonly used forecasting
technique.

Given the good performance of rela-
tively simple neural networks that has been
demonstrated in this paper, one has to
wonder why neural networks have not
made greater progress into the airline
industry as a forecasting tool? To the
authors’ knowledge, only one major US
airline has adopted such a forecasting tech-
nique. Certainly, part of the reason for the
reluctance could be the increased data sto-
rage requirements and increased computa-
tional resources required. Perhaps airlines
consider it too great an investment/change
in exchange for too small an improvement
in forecasting accuracy.

Weatherford, Gentry and Wilamowski
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