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Abstract — this paper presents a solution for digital
multiplier implemented with cascade connected neural
network architecture. Proposed solution uses multilevel logic
where information is compressed. To facilitate VLSI
implementation, low voltage current mode operation is being
used in this paper. Multiplier design is presented as a
summator where the result is provided in one clock cycle. The
system is fully simulated with SPICE and the chip is
fabricated in the AMI 1.5um MOSIS process.

1. INTRODUCTION

Hardware implementation can be a very difficult and
expensive process due to complex learning algorithm
computations. Many references provide literature review on
this subject. Specific implementations include VLSI and
CMOS implementation [1-5], FPGA’s [6], probabilistic
RAM, and others [7-10].

The problem considered in this paper was VLSI
multiplier realized by multilevel logic neural network.
Proposed algorithm aims to impose the minimum
requirements for hardware implementation by simplifying
computational process.

Objective was to implement VLSI multiplier through a
summator realized through neural network. The idea was to
propose a low voltage current mode operation of neuron
that would facilitate VLSI implementation. To develop an
algorithm that would provide one clock time result through
a single pass through the network. Proposed solution uses
multilevel logic where information is compressed. This idea
is analogue to modem communication (baud rates), which
implies possible further benefits,

A neural unit, which has a functionality that can be
understoed as AD (analog-to-digital) converter, will be
used often in this design; for convenience, just call it PU
(Processing Units) for short, PUn means this unit has one
resulting bit and n carry bits.
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II. NEURAL IMPLEMENTATION OF PROCESSING
UNITS

Processing units used in proposed solution for VLSI
multiplier are implemented through cascade neural network
architecture, This solution imposes minimum requirements
with regards to number of neurons at the same time
annulling problems of error propagation. For example, for
processing 15 positive signals at input, architecture requires
only 4 neurons. Other architectures, such as pipeline type of
networks might also provide a solution with minimum
number of neurons. However, such networks would include
possible signal loss, unacceptable in this fype of
application.

The functionality of these units can be understood as
specific AD (analog-to-digital) converter, where the result
is obtained through single pass.

Essential characteristics of such implementation are as
follows, This solution offers minimum signal less, ie.
propagation of errer with minimum number of neurons. It
could be described as an analogue to digital neural
architecture, fully connected with one hidden layer (in other
words, fuily cascade connected).

Neurons are unipolar with hard threshold activation
function, Similar architecture would apply for bipolar
neurons. The chosen neural network architecture is simpler
for hardware implementation and provides faster signal
propagation. Fully connected architecture  would
traditionally have all inputs fed to all neurons, where the
architecture proposed in this paper first sums all the inputs
and then feeds the resulting signal to other neurons in
cascade architecture. First neuron serves as a summator, t.e.
one neuron with linear activation function. Other neurons
have hard threshold activation function

To facilitate further VLSI implementation, it can be
further implemented in low voltage current mode operation.
Since each processing unit uses summator, therefore current
mode was chosen (currents are easier to sum than voltage).

The functional implementation of processing units PU0O
& PUI units is illustrated by Fig. 1, while PU2 & PUS3 units
are shown by Fig. 2.

Logic tables for units ANDI, PU2, and PU3 are given by
Table 1, Table 2, and Table 3. PUQ unit has a simply parity
2 functionality.
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Fig.1 PUO & PUI units.
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III. FUNCTIONAL DESIGN

A, 4x4 multiplier

This was the simplest case considered. For this type of
multiplier, the “worst” case with regards to number of ones
is the one given by table 4. Implementation proposed in this
paper is using neural units (described in section II). Possible
implementation using proposed processing umits is
illustrated in Fig. 3.

Summarized requirements on fields and bits required for
the implementation presented by Fig. 3 are given in Table
5. Table 6 illustrates the functionality of 4x4 multiplier
realized as summator.

Worst case:
1111
X 1111
1110 0001
Table4  Worst-case scenario for the 4x4 multiplier
7l 413]2]1 0 [Bit number
21314151514 ]2])1 [Ficldstoadd
121221212 (2h A->Dr (digital bit ovtput)
Table 5 Summarized requirements for realization of 4x4 multiplier
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Table 6  4x4 multiplier functionality as a summator, table
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Fig.3 4x4 multiplier, implementation using processing units

B. 8x8 multiplier

Functionality of 8x8 multiplier realized as summator is
given by Table 9. Bits are denoted by colors, i.e. green —
original bits (row, number of final bit), blue — final bits, and
yellow — carry bits.

Summarized requirements for 8x8 multiplier realized as
a summator are given by table 8, while the worst case
scenario is illustrated by table 7. Possible implementation
using processing units is illustrated by Fig.4.

General case NxN multiplier would require N-number of
bits in one register and 2N bits in resulting register.

Worst case:
11111111
X 11311111
1111 11100001 0001

255x255=65025

Table 7 Worst case scenario for 8x8 multiplier
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Table 8  Summarized requirements for realization of 8x8 multiplier
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Table 9 8x8 multiplier functionality as a summator, table representation
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resulting bits (i=0,1,...,15)
carry bits (G, j=1.2.3)

Neural unit with 2 camry bits

HNeural unit with 3 earry bits.
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Fig.4 8x8 multiplier, functionality and implementation using PU units

IV, VLSIIMPLEMENTATION

The VLSI implementation of Unipolar neuren with hard
threshold activation function is shown as Fig 5.

M1 F-{ M12

Fig.5 The schematic circuit of the neuronl
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In the circuit on Fig 5, node 1 is the positive input, and

‘node 2 is the negative input, which would be used for the
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threshold setting, node 31 is the output node. With the input
curtent changing, the voltage of the node 11 will change
between 0 to 4.8V roughly, so the transistor M1 wilt turn on
and off with the input current changing. When the input
current is smaller than the threshold current, no current is at
the output node, otherwise, there will a 1 uA current
detected from the output node.

The design was verified by SPICE simulation [12] with
AMI 1,5um SPICE transistor model, the W/L ratios of the
transistor M7, M8 and M21 are set as 15/5; the others are
set as 8/1.6, The simulation results are shown in Fig. 6. In
this simulation, the threshold current is set as 0.5uA. The
input DC current is sweeping from 0 to 1uA as the X axis
showing. From figure 6(a), it can be seen that the voltage of
node 11 varies between 0 and 5 voltages with the input
current sweeping. Fig. 6(b) shows the output current
changing with the input current sweeping. From the Fig
6(b) it can be seen that when the input current is smaller
than the 0.5uA, the output current is zero, and when the
input current larger than the threshold current, there will be
a 1uA output current detected from the output node. So
with this circuit, the unipolar neuron can be implemented.
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Fig.6 The simulation of the neuron (a: the voltage of node 11, b: the output
current of the neuron)

Replacing the two output transistors in the neuronl as the
dash line box showing with the circuit shown in the Fig 7A,
the neuron2 circuit which has one 1x output and one 2x
output can be implemented. Similarly, the neuron3 circuit
with one 1x output and two 4x outputs can be implemented
with replacing the circuit block shown in Fig. 7B.
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Fig.7 Block diagram of Neuron2 and Neuron3.

Then PU2 unit can be built with these three neurons.
Fig.3 shows the block diagram of the PU2 unit. The
threshold current of the neuronl, neuron2 and neuron3 were
set as 0.5uA, 1.5uA, and 3.5uA respectively. One of the 4x
outputs of neuron3 is connected to the negative input of
neuronl, the other is connected to the negative input of
neuron2, also, and the 2x output of neuron2 is connected to
the negative input of neuronl. With this configuration, the
PU2 behaves like a 3 bit AD converter.
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Fig.8 The block diagram of the PU2 unit

The SPICE simulation results of the PU2 are shown in
the Fig. 9. From the simulation result, it can be seen that the
PU2 unit works very well. For ¢xample, when the input
from the current summator is 5uA, the output of c4, ¢2 and
clwillbe 1,0, 1, and so on.
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Fig.9 The PSPICE simulation of the PU2 (Tsum sweep from 0 to TuA)

LASI is being used as the CAD tool to layout the chip
{11]. The layout of this PU2 is showed in Fig.10. The
layout is based on with AMI 1.5um MOSIS technology.

SPICE netlists of the PU2 unit were extracted with LASI
automatically. The simulation results from the extracted
netlists and the pre-layout simulation show reasonable
agreement.



Fig.10  The layout of PU2 with LASI

The microphotograph of a 6x6 multiplier is shown in
Fig.11. The chip size is 1.5mmx1.5mm, the chip was
fabricated in the AMI 1.5um ABN process.

Fig.11 Microphotograph of the 6x6 multiplier layout, the chip size is
L.5mmx1.5mm

V. CONCLUSION

Ideas on VLSI multiplier realized by multilevel logic
neural network were presented in this paper. Low voltage
current mode neuron operation facilitates VLSI
implementation. Multiplier design was presented as a
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summator where the result is provided in one clock cycle,
i.e. by single pass through the network. Future benefits of
this multilevel-logic implementation include information
compression which is similar to the idea with data
compression in modem communication.
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