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ABSTRACT

In this paper, a novel method for extracting the values of the coef®cients of time-varying ARMA processes

is proposed. The approach discussed assumes solely that the orders of the numerator and the denominator

polynomials are known. The algorithm is demonstrated to be stable in the sense of Lyapunov, furthermore, it

is shown in the paper that the evolution in the parameter space takes place in a ®nite volume. The proposed

method is cost effective and is based on the variable structure systems theory, which is well known with its

robustness to uncertainties. In the simulation example, the coef®cients of a second order ARMA process is

extracted by the use of the algorithm presented. The results con®rm the prominent features of the proposed

technique.

Keywords: ARMA processes, identi®cation, parameter tuning, stable learning, variable struc-
ture systems.

1. INTRODUCTION

Identi®cation of systems having uncertainties and impreciseness constitutes a central

part in the practice of systems engineering. This fact is intimately related to the desire

for constructing systems having a degree of autonomy enabling the system to operate

in changing environmental conditions. One way of handling the dif®culties stemming

from the uncertainties is to utilize a suitable identi®cation method to collect as much

information as possible in an organized fashion. In the literature, most widely used

approaches for system identi®cation are based on Least Mean Squares (LMS),
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Recursive Least Squares (RLS), Gradient Descent (GD), Levenberg-Marquardt

method (LM) or their variants [1±5]. The prime dif®culties in implementing these

algorithms are the necessity of costly hardware for data storage, high sensitivity to

changes in the input signal, getting stuck to local minima or the need for matrix

inversions at some intermediate stages. Depending on the nature of the problem in

hand, the designer is expected to choose the most appropriate adjustment technique

leading to high performance with low cost. Apparently, the design of such a parameter

tuning scheme is a challenge even for the simple tasks. Among many alternatives

existing in the literature for parameter tuning, once the structure of the ARMA

process is chosen, the designer is faced to two performance measures, namely, the

speed of adaptation and the accuracy of the realization after adaptation, which are

intimately related to the adopted tuning strategy [3].

Another important feature of an adaptation mechanism is the robustness, which

can be de®ned as the capability of compensating the uncertainties and the capability

of keeping the cost measure at the lowest level under the presence of parameter

variations in the process to be identi®ed. If one de®nes the discrepancy between the

output of a time-varying ARMA structure and that of an identi®er ARMA structure as

the error measure, the task of maintaining the zero output error with changing

parameters clearly implies the need for a robustness in the tuning mechanism.

One way of designing a robust identi®cation scheme is to utilize the Variable

Structure Systems (VSS) theory in constructing the adaptation mechanism [6, 7]. The

VSS theory is well-known with its robustness to uncertainties and the use of this

theory introduces certain invariance properties in a prede®ned subspace of the state

space, de®ned by the error and its several time derivatives. Various applications

utilizing the VSS theory have appeared in the literature, which particularly focused on

the robust control of nonlinear systems [6±9]. In order to understand the use of a

technique of control engineering expertise for identi®cation purposes, it is bene®cial

to dwell on what the framework prescribes in the ®eld of control brie¯y.

For a system of order l, the decision dynamics in the state space is characterized

by an (l-1)-dimensional hypersurface passing through the origin. Using the sign of a

quantity describing the location of the hypersurface, two modes of motion can be

created; namely the mode lasting until a hitting to the hypersurface occurs, and the

mode on the hypersurface, which is called sliding surface. In the literature, the

former is called reaching mode while the latter is named sliding mode and the

control theory uses the term Sliding Mode Control (SMC) due to the latter dynamic

behavior. An important property of the SMC design is that the trajectories in the phase

space are all directed towards the sliding surface, furthermore, once the error vector

starts lying on this hypersurface, it directly slides towards the origin because of the

description of the hypersurface. The reason for this is not only the fact that the

hypersurface itself is a location in the phase space, but it describes also a particular

dynamics.
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In using the VSS theory for identifying ARMA processes, one should consider the

diagram in Figure 1. The two structures are excited by the same signal (x) and the

discrepancy between the produced outputs (sc) is used as the error measure. This

quantity is then processed in the tuning strategy and the corresponding parameter

values (p) are sent to the identi®er and the next output is produced with the new

parameter vector. Since the use of such identi®cation techniques cover a wide

spectrum, including nonlinear control, signal processing and biomedical applications,

the method discussed in this paper is of substantial importance due to its compu-

tational advantages and robustness [5, 10±12].

In the second section, the structure of the ARMA process to be identi®ed and the

structure of the identi®er are described and the proposed tuning strategy is analyzed in

detail. The third section presents the simulations performed and the conclusions are

presented at the end of the paper.

2. PROCESS DYNAMICS AND THE ADAPTATION STRATEGY

Consider the delay system described by (1).

yd�t� � ÿ
XN

k�1

akyd�t ÿ kT� �
XM
k�0

bkx�t ÿ kT� �1�

where M and N de®ne the delay depth in input (x) and output (yd) respectively, and T is

the constant delay time parameter. The system above can be represented in s-domain

as given in (2), and by direct substitution of z � esT , the z-domain equivalent is

obtained as given in (3).

Hd�s� � Yd�s�
X�s� �

PM
k�0 bkeÿkTs

1�PN
k�1 akeÿkTs

�2�

Fig. 1. Identi®cation of a time-varying ARMA process.
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Hd�z� � Yd�z�
X�z� �

PM
k�0 bkzÿk

1�PN
k�1 akzÿk

�3�

In above, the sampling period is assumed to be equal to T. The system given in (1)

with yd�t� � 0 for t � 0 and the transfer function representation in (2) produce the

same outputs in response to the same excitation signals. When the response is

compared with that obtained from (3) at integer multiples of delay time T, it should be

obvious that the ARMA process in (3) is going to respond what is observed from the

continuous time equivalent of (1).

The representations given in (1) through (3) describe the desired dynamics having

some parameters denoted by ak and bk and these parameters are assumed to be

unknown. The transfer function representation given in (3) can be expressed as a

difference equation as given in (4), with n being the discrete time index.

yd�n� � ÿ
XN

k�1

akyd�nÿ k� �
XM

k�0

bkx�nÿ k� �4�

More compactly, the parameter vector and the regression vector can be described as in

(5) and (6) respectively.

p
d
� �a1a2 . . . aN b0 b1 . . . bM �T �5�

Rd�t� � �ÿyd�t ÿ T� ÿ yd�t ÿ 2T� . . .

ÿ yd�t ÿ NT� x�t� x�t ÿ T� . . . x�t ÿMT��T �6�
The input/output relationship in (1) can be rewritten as follows:

yd�t� � pT

d
�t�Rd�t� �7�

We assume that the identi®er has the same structure, which is described as

y�t� � pT�t�R�t).

Remark 2.1. In order not to be in con¯ict with the physical reality, the designer must

impose the following inequalities, the truth of which state that the parameters of the

processes ( p and p
d
), the time derivative of the regression vector (R and Rd) and the

time derivative of the desired output of the continuous processes (y and yd) remain

bounded.

jjpjj �
��������
pT p

q
� Bp and jjp

d
jj �

����������
pT

d
p

d

q
� Bpd �8�

_R � B _R and _Rd � B _Rd
�9�

_y � B _y and _yd � B _yd
�10�
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Remark 2.2. In order to infer the true values of the unknown parameters (p
d
), the

parameter vectors p and p
d

must persistently be excited. Furthermore, if there exists a

ÿ > 0 such that jjR�t�jj > ÿ for 8t � 0, it becomes apparent that that the regression

vector follows a trajectory in <M�N�1 such that its minimal distance to origin is

greater than ÿ.

Corollary 2.3. Since the system to be identi®ed and the identi®er has the

same structure, from (6), jjR�t�jj �
�����������������������������������������������������������������������PN

k�1 y�t ÿ kT�2 �PM
k�0 x�t ÿ kT�2

q
����������������������������������PM

k�0 x�t ÿ kT�2
q

. This obviously tells us that there exists a ÿ > 0 and jjR�t�jj > ÿ

for 8t � 0 is satis®ed unless the regression vector entries x�t ÿ kT� � 0 for 0 � k

� M � 1 and 8t � 0.

In the following discussion, the value of sgn�sc) is 1 if sc > 0;ÿ1 if sc < 0 and zero

if sc � 0.

Theorem 2.4. The adaptation of process parameters as described in (11) enforces the

process coef®cients to values resulting in zero learning error level in one dimensional

phase space, whose argument is de®ned as sc � yÿ yd.

_p � ÿ R

RT R
K sgn�sc� �11�

where, K is a large positive constant satisfying (12).

K > Bp B _R � B _yd
�12�

The adaptation mechanism in (11) drives an arbitrary initial value of sc to zero in ®nite

time denoted by th satisfying the inequality in (13).

th � jsc�0�j
K ÿ �Bp B _R � B _yd

� �13�

Proof 2.4. Consider the Lyapunov function candidate in (14). In order to reach to the

zero learning error level (sc � 0), the time derivative of (14) must be negative de®nite,

which is given in (15).

Vc � 1
2

s2
c �14�

_Vc � _scsc

� � _yÿ _yd�sc

� � _pT R� pT _Rÿ _yd�sc

� ÿK sgn�sc�sc � �pT _Rÿ _yd�sc

� ÿKjscj � �pT _Rÿ _yd�sc

� �ÿK � BpB _R � B _yd
�jscj �15�
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It is apparent that the condition in (12) ensures the negative de®niteness of the time

derivative of the selected Lyapunov function.

If one evaluates _sc with the aid of (11), the expression in (16) is obtained. The

solution to the differential equation in (16) can be given by (17).

_sc � ÿK sgn�sc� � pT _Rÿ _yd �16�

sc�t� ÿ sc�0� � ÿKt sgn�sc�0�� �
Z t

0

�pT��� _R��� ÿ _yd����d� �17�

At t � th, sc�th� � 0;

ÿsc�0� � ÿKth sgn�sc�0�� �
Z th

0

�pT��� _R��� ÿ _yd����d� �18�

By multiplying both sides of (18) by ÿsgn�sc�0��, one obtains (19).

j ÿ sc�0�j � Kth �
Z th

0

�pT��� _R��� ÿ _yd����d�
� �

sgn�sc�0��

� Kth ÿ �Bp B _R � B _yd�th �19�
which implies hitting in ®nite time as described by the inequality in (13).

Theorem 2.5. If the identi®cation scheme enters the sliding mode sc � 0 and remains

in it thereafter, then the parameters of the identi®er, p, evolve bounded.

Proof 2.5. In the sliding mode, (sc � 0) and _sc � 0. Based on this, the following

derivation can be made.

_sc � _yÿ _yd �20�
_sc � _pT R� pT _Rÿ _yd � 0 �21�

RT _p � ÿ _R
T
p� _yd �22�

which requires the following,

RT _p� R

RT R
_R

T
pÿ R

RT R
_yd

� �
� 0 �23�

Since the entries of the vector R cannot be linearly dependent for all time [13], the

equality in (23) imposes the following differential equation form in the sliding mode.

_p � ÿR _R
T

RT R
p� R

RT R
_yd �24�
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The solution to Equation (24) is as follows;

p�t� � ��t; 0�p�0� �
Z t

0

��t; �� R���
R���T R��� _yd���d� �25�

where,

��t; �� � exp ÿ
Z t

�

R��� _R���T
R���T R��� d�

 !
�26�

Since ÿ � jjRjj � BR, for the ®rst term in (25), following relations can be induced.

jj��t; 0�jj � exp ÿ
Z t

0

R��� _R���T
R���T R��� d�

 !


� exp ÿ
Z t

0

R���
R���T R��� dR���T

 !


� exp ÿ
Z t

0

R���
R���T R��� dR���T

 !�����
�����

 !


� exp

Z t

0

jR���j
R���T R��� dR���T

 !


< exp ÿÿ2

Z t

0

jR���jdR���T
� � 

< exp ÿÿ2BR

Z t

0

dR���T
� � 

� jjexp�ÿÿ2BR�R�t�T ÿ R�0�T��jj
� B1 �27�

where B1 is some positive constant. For the bound of the second term in (25), the

analysis proceeds as given below.Z t

0

��t; �� R���
R���T R��� _yd���d�


 < B1

Z t

0

R���
R���T R��� _yd���d�




< B1 ÿÿ2

Z t

0

R��� _yd���d�
 

< B1ÿÿ2BR

Z t

0

_yd���d�
 

< B1ÿÿ2BRkyd�t� ÿ yd�0�k
� B2 �28�
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where B2 is some positive constant. Since the two components of the solution in (25)

evolve bounded, the sum of them will trivially be bounded as given in (29).

jjp�t�jj < B1 � B2 �29�
Note that in (8), we assumed that the parameters of the identi®er, p, are bounded.

However, Theorem 2.5 states that once the identi®cation scheme enters the sliding

mode sc � 0, the boundedness of p is guaranteed. That is to say that (8) is

automatically satis®ed.

3. SIMULATION STUDIES

In the simulations, we assume that the identi®cation scheme observes the system

output, the desired output and the regression vector at discrete time instants, i.e., the

adaptation rule of (11) takes the following form.

_p�t� � ÿ R�k�
R�k�T R�k�K sgn�sc�k�� when kT � t � �k � 1�T �30�

In the examples, an ARMA process structure described below is considered for

identi®cation. Apparently, the output of this system is what the identi®er must realize

by appropriately tuning its parameters.

yd�n� � ÿ
X2

k�1

akyd�nÿ k� �
X2

k�0

bkx�nÿ k� �31�

It is assumed that the coef®cients of the above structure are changing in time. In

Table 1, the target values of the coef®cients to be extracted are given. It should be

clear from the table that there are four different ARMA structures, each one of which

becomes active during a certain interval of 40 s. More explicitly, for the ®rst 40 s, i.e.,

r � 1, the ARMA structure is characterized by the difference equation in (32), then a

5 s of transition phase takes place and during the following 40 s, i.e., r � 2, the

Table 1. Parameters of the ARMA process to be identi®ed.

Interval Time (sec) b0 b1 b2 a1 a2

r � 1 0 � t � 40 ÿ1 0 1.2 ÿ0.1 ÿ0.72

r � 2 45 � t � 85 1 ÿ1.75 ÿ0.5 0.9 0.2

r � 3 90 � t � 130 ÿ1 0.65 ÿ0.8 0 0

r � 4 135 � t � 160 1 1.5 0.8 0.3 0.6
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process is changed smoothly to that in (33). In (34) and (35), the structures activated

in the next two intervals are described.

yd1�n� � 0:1yd1�nÿ 1� � 0:72yd1�nÿ 2� ÿ x�n� � 1:2x�nÿ 2� �32�
yd2�n� � 0:9yd2�nÿ 1� ÿ 0:2yd2�nÿ 2� � x�n� ÿ 1:75x�nÿ 1� ÿ 0:5x�nÿ 2� �33�
yd3�n� � ÿx�n� � 0:65x�nÿ 1� ÿ 0:8x�nÿ 2� �34�
yd4�n� � ÿ0:3yd4�nÿ 1� ÿ 0:6yd4�nÿ 2� � x�n� � 1:5x�nÿ 1� � 0:8x�nÿ 2� �35�

The change of structures between the successive intervals is performed by suitably

combining the all four ARMA structures. For instance, the transition between the time

instants 40 and 45 s is illustrated in Figure 2. A weight is gradually activating the

structure in (33) by multiplying its output with w and the effect of the structure in (32)

is decreasing since its multiplier is 1ÿ w. This enables us to observe a soft switching

between different ARMA processes. In the transition regions, the mixed process

possesses fourth order numerator and denominator. The corresponding coef®cients

can be evaluated as given in (36) through (44). The second subscripts are used to

specify the interval number.

~b0 � �1ÿ w�b0;r � wb0;r�1 �36�
~b1 � �1ÿ w��b0;ra1;r�1 � b1;r� � w�b0;r�1a1;r � b1;r�1� �37�
~b2 � �1ÿ w��b1;ra1;r�1 � b0;ra2;r�1 � a2;r� �38�

� w�b1;r�1a1;r � b0;r�1a2;r � a2;r�1�
~b3 � a1;ra2;r�1 � a1;r�1a2;r �39�
~b4 � 1 �40�
~a1 � a1;r � a1;r�1 �41�
~a2 � a2;r � a2;r�1 � a1;ra1;r�1 �42�
~a3 � a1;ra2;r�1 � a2;ra1;r�1 �43�
~a4 � a2;ra2;r�1 �44�

In the example considered a Gaussian distributed random signal having zero mean

and variance equal to unity is used to excite the process to be identi®ed and the

identi®er. Furthermore, the quantity

���������������������������������P2
k�0 x�t ÿ kT�2

q
� 0:0292 for 8t � 0, which

implies that there exists a ÿ > 0 satisfying ÿ < 0:0292. The aim is to match the two

output signals in time domain. For this purpose, the error (sc) is evaluated and used in

the adjustment mechanism of (30). The sampling rate (T) has been set to 1 ms, and the

uncertainty bound parameter K has been set to 100. Initially, the parameters of the

identi®er are all set to zero.
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It should here be noted that the uncertainty bound parameter denoted by K is a

multiplier of the dynamic adaptation law of (30). Apparently, the small values of K

will decrease the speed of learning and large values will increase. However, since K is

a parameter describing the mobility of the parameters, its extreme values can cause

instabilities. Unlike its lower bound described in (12), the upper bound is determined

by the physical constraints and the environmental conditions.

The extracted values of the parameters are depicted in Figure 3. If one compares

the values estimated by the identi®er with those given in Table 1, it is seen that the

correct values are found very quickly and very accurately. Especially the during

transition intervals [40 s, 45 s], [85 s, 90 s] and [130 s, 135 s], the process to be

identi®ed becomes a fourth order one, which is characterized by (36)±(44), and the

strategy proposed quickly converges when the order of the structure becomes equal to

that of the identi®er. In Figure 4, the pole-zero plots of the four different structures are

illustrated. It can directly be inferred from this ®gure that the system under

investigation is changing its characteristics radically, and this constitutes a challenge

for most identi®cation schemes.

An interesting observation on the results seen on Figure 3 is the emergence of

ringing at different magnitudes. Since the rule determining the nature of parametric

evolution (refer to (11)) is tightly dependent upon the sign of a quantity, which is very

close to zero, such instant ¯uctuations are inherently introduced. However, the

magnitudes of them are relevant to the unknown dynamics of the process under

investigation. The extreme case is to include an integrator in the dynamics, i.e., a pole

at z � 1. In the ®rst trial, i.e., r � 1, the system has a real pole close to unity and a

visible amount of ringing observed during its identi®cation as the output of the system

is in¯uenced by the excitation comparably quicker than the remaining three

dynamics. Comparing the pole locations of the processes, one can visualize that the

ringing would be smaller for r � 2 and much smaller for r � 3 and 4. However, from

a practical point of view, the operator may not have the prior knowledge to manipulate

Fig. 2. The transition between intervals r � 1 and r � 2:
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the ringing phenomenon, since it comes with the cross interaction between the

unknown dynamics and the utilized identi®cation method.

Lastly in this section, the computational burden of the algorithm is analyzed.

Unlike LMS algorithm, the method presented does not need to store some history of

Fig. 3. Time evolution of the structural coef®cients.
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the system under investigation and operates on-line. Furthermore, no matrix inversion

is needed throughout the operation. For the structure studied in this paper, i.e., N � 2

and M � 2, a single forward pass from (1) with tuning of parameters with (30)

requires 46 ¯oating point operations (¯ops), which is a quite promising value for real-

time realizations when considered with the accurate identi®cation performance. In

Figure 5, the required number of ¯ops has been illustrated for varying values of M and

N. Clearly, the computational cost is not excessive but the most important aspect of

the proposed approach is the behavior of the increase in complexity as the

dimensionality of the parameter vector increases. When the cost graph is sketched as a

surface, it can be seen that the complexity linearly depends on the parameters N and

M. More precisely, we have found that the required number of ¯ops is given by

8N � 8M � 14, which is O�M � N�, i.e., the required number of ¯ops will increase

Fig. 4. Locations of the poles and the zeros of the structures activated during the successive intervals.
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linearly as the dimension of the parameter vector increases, and this aspect constitutes

a great advantage in dealing with higher order processes.

4. CONCLUSIONS

The lack of suf®cient knowledge about a system of interest requires an in depth

investigation procedure for developing mechanisms, that need the parameters charac-

terizing the behavior of the system. For this purpose, various approaches are used to

identify the system parameters. However, some of these schemes suffer from the

computational complexity, while the applicability of some are subject to the

availability of a priori knowledge. If the goal of handling the uncertainties with high

performance and low cost is considered, the use of VSS theory becomes more

comprehensible.

The results obtained through some simulations have clearly stipulated that the

extraction of the unknown parameters can be achieved neither by storing excessive

amount of data nor by occupying the CPU oppressively.

The radical changes in the ARMA structure have appropriately been detected by

the discussed algorithm and the corresponding parameter set have precisely been

determined. The ®nite volume parameter evolution and the stability claims of the

Fig. 5. Computational requirement of the algorithm for varying values of M and N.
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proposed technique are proved and the theoretical results have been con®rmed by the

example presented. Future work aims to implement the proposed technique for

processes operating in real-time.
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