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Abstract — Neural networks have been proven to be very
successful in many cases where other traditional techniques
failed to give satisfactory results. Despite their popularity,
several problems exist. Even with the adequate network
architecture, frustrating problems of correct choice of initial
weights for given architecture remain. The proposed method
uses combination of approaches used in genetic algorithms
and gradient methods. Genetic algorithm is used in search for
an adequate weight set for a complex error surface. Once it is
done, the algorithm automatically shifts to gradient type of
method. The proposed algorithm does not explicitly calculate

gradients like in error back propagation. It rather estimates .

the gradient from the set of random feed forward calculations.
The proposed approach automatically searches for the
adequate initial weight set. This robustness with respect to
initial weight set is achieved through introduction of
randomness in neuron weight space. Results are confirmed
through experimental data and given in form of tables and
graphs.

I. INTRODUCTION

Neural networks have been proven to be successful in
many cases where other traditional techniques failed to give
satisfactory results. Unfortunately, every architecture is not
necessarily suitable for every given problem. Even with the
correct architecture parameters, frustrating problems of
correct choice of initial weights for certain architecture
remain. These problems very often led to an unearned
disbelief in neural networks as a technology.

This disbelief often comes from inexperienced users that
do not have a “feeling” of adequate choice of network
architecture and its parameters. This paper proposes an
approach that would enable everyday user to leam, apply
and gain experience with neural networks without a special
expertise in this field. The suitability of this approach for
everyday use comes from two reasons.

First reason for the suitability of the proposed approach
for the inexperienced user is the accessibility of the
application that is a web based. Application web interface is
implemented in programming language Perl. For faster
response, computationally intensive number crunching is
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written in C. Interface is therefore a web page that can be
run independently of hardware platform.

Web interface, independent of hardware platform,
software, operating system, compiler, etc. requires only
Internet browser of any kind. In this way a transparent
accessibility has been achieved from any kind of computer
platform. This has been the reason of wide acceptance of
engineering tools based on Internet.

Second reason is the methodology itself, which is not
sensitive to initial choice of network parameters. This paper
proposes an approach that automatically searches for an
adequate initial weight set. This robustness comes with a
price in computation time though. On the other hand, with
the constant improvement of today computer computational
power this issue becomes overcome.

Proposed method is computationally intensive. This is
due to a large multidimensionality of weight set for any
given network architecture. To illustrate this, consider the
typical simple XOR example with architecture of three
neurons on Fig. 1. Even in such elementary problem we
have to deal with 9-dimensional space of neuron weights.

Fig. 1. Simple example of 3 neurons architecture.

The important issue of speed has been addressed in
following manner. Only an interface has been done in
interpreter (Perl) while the number crunching is done in C.
An application gives an option of selective printing of
intermediary results. If no intermediary results are
transmitted execution time is equal time to send data + time
to receive result + computational time. Execution time
therefore is extended only for first transmission and final
display of results. After all, the execution time is not crucial
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in case of neural network training, which brings us to a
second reason.

Another benefit of the proposed application is that it runs
through an Internet. By running on server machine where
application resides, the burden has been taken off the client
machine.

The rest of this paper is structured as follows. The
overview of related work is given through the rest of this
section. The second section proposes new approach. The
third section provides the test example results. The fourth
section concludes this paper with directives for future work.

Error Back Propagation (EBP) neural networks and
gradient methods generally provide very good results.
However, certain restrictions apply. In cases of large or
small learning rate, process can either zigzag while going
along the error gradient or can get stuck in local minima.
Different heuristic approaches can be found in literature
with variable learning rates. These methods are cumulative
versus  incremental weight updating, Sejnowski’s
momentum method and others [1]-[3]. Random learning
constant values often lead to better results.

Different combined approaches of neural networks and
genetic algorithms (GANN) can be found in literature. First
pioneer attempts occurred in late 1980°s [4]-[9]. Reviews
can be found in [9]-[14].

Synergistic approach has been also applied to problems
in medicine, such as neuromuscular disorders [16] or virtual
design of pharmaceuticals [17]. Tewari et. al. addressed one
of very often used applications - the estimation of the
likelihood of cancer recurrence after surgery [18]. The same
paper gives a thorough survey of similar work done.

Also one of appealing topics that could be found in
literature are environmental resource management of
freshwater and fisheries [19], hydroinformatics and rainfall
runoff modeling [20]-[22]. Applications also include power
systems [23], construction forecast [24], robotics [13]-[15].

Finally, probably the most common work done in a field
of combined neural networks and genetic algorithms refers
to an application of variety of evolutionary algorithms to
automatic design- of neural networks [9]-[13], [25]-[31].
Those attempts were driven by an important consideration
of proper selection of network parameters, such as the
number of hidden neurons and training parameters like
learning rate and momentum factor. The determination of
these parameters usually is done by means of heuristics or
trial and error. There is no strict or reliable method
developed for the determination of these parameters which
is very necessary to get accurate network outputs [23].
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II. PROPOSED METHODOLOGY

The proposed method combines approaches used in
evolutionary computation and gradient based networks.

Genetic algorithms on one hand deal with reproduction
with crossover and mutation always involving certain
randomness. The advantage of evolutionary approach is the
randomness that always leads to certain solution.
Unfortunately, that solution does not necessarily have to be
a satisfactory solution [10]-{12].

On the other hand, gradient neural network approach
leads to a perfect matching. However, flat spot and
problems with local minima with the gradient approach are
always lurking around.

The proposed method encompasses selected features of
these two techniques. Those are randomness that overcomes
the problem of local minima and gradient approach that
eventually leads to a solution of wanted accuracy.

Error Back Propagation (EBP) combines both forward
and backward pass while training network to each pattern.
Method proposed in this paper has no back propagation
feature. Instead it performs single step forward propagation.

The selection of “winning” weight sets is performed
based on criterion of minimal total error. Total error is the
sum of errors for each pattern as in (1). Each error is
difference between desired and calculated output.

»

TE = Z;(doutp —out,) 1

P

The weighted average of those selected weight sets is
calculated, and that point becomes the center of gravity
around which a new “cloud” of random weight sets is
generated. In next cycle, process does the same procedure -
calculates total errors in single forward propagation cycle
for each of the randomly generated weight matrices in that

“cloud. .

Figures 2. and 3. show the application web interface and
the results as a response to given inputs. The URL" of an

application is: http:/husky.engboi.uidaho.edu/nn/.
The proposed algorithm goes as follows.

1. Generate a random set of weights that results’ in
nx m array where n is number of neurons, and m
is the number of weights of those neurons. A pool
of such weight sets is generated (each weight array
is therefore a point in multidimensional space).

2. Perform the forward propagation step i.e. calculate
net, out values, and finally a network total error.
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Fig. 2. Application’s initial web interface.

This is performed. for each randomly chosen
weight set and for all patterns.

Check if total error fulfills the upfront given
accuracy criterion. If so algorithm, has finished.
Exit. If not, go to a next step. .

In this step new center of gravity (COG) of the
population pool is to be determined. First the
selection of 10% of “winning” weight sets is done.
‘Winners are weight sets with: smallest, total error.
This percentage is experimentally adopted. This
also means_that the number of random generations
in on cycle can not be smaller than 10 (in which
case only one generation is selected to be carried
over into next cycle). Now weighted average of
those weight sets is to be calculated, and that point
(averaged weight set) will become the new center
-of gravity. ‘ ' ‘

Fig. 3. Results that application returns in response to given inputs from
previous Figure.
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Weighted average is calculated in the following
manner. 10% of total population is selected in
calculation. Based on distance from a minimum
achieved error in that set, weights to each of
selected weight sets are assigned. Now this
multidimensional point i.e. such calculated weight
set is the next center of gravity around which a
new “cloud” of random weight sets is going to be
generated.

In case of first time passing through this step (no
previous COG value), use from the interface
predefined radius and go to step number 8. If not,
calculate quasi-gradient based on previous and
next center of gravity. In this way we try to do two
things. First, check if the total error with respect to
previous center of gravity is changing in
satisfactory manner i.e. if we haven’t got stuck in
flat spot or local minima. Second, we try to predict
future gradient change based on previous behavior.

v" Decide whether new random generation cycle
will be in shape of -multisphere or
multidimensional ellipsoid. In case of local
minima or flat spot, increase the radius for
random pool weight set generation to try.to
get out of local minima or flat spot. Keep the
radius fixed (go with the sphere) to make an
equal chance to all possible directions.

v If quasi-gradient is satisfactory go with the
ellipsoid. Accelerate the process by predicting
the minima of total error parabola and update
next COG. Set the radius now so the
multidimensional ellipse towards gradient will
be generated (instead of fixed radius -
multisphere).

. Now a new pool of weight sets is generated. Create

new pool of randomly generated weight sets
around a point obtained from previous step. While
creating new pool, use decision regarding shape
(multisphere or multidimensional ellipsoid) from
previous step. Previously selected 10% of weight
sets from the step 5 (sets with the smallest total
errors) are kept. This is done for two reasons. First,
it saves computational time and second, even more
important is that in this manner we keep in
population pool possible winners. These possible
winners are kept because in following cycle they
do not necessarily have to occur again.

Go to step 2.



O

W w

Fig. 5. Total error (TE) for the pool of randomly generated weight
sets (TE for each weight set through cycles, 50 iterations per each
pool generation cycle).

III. EXPERIMENTAL RESULTS

The test example used to verify the proposed
methodology considered the problem with the network
architecture from Fig. 4. Neural network parameters used
are given in Table I. The overview of comparison of these
two methodologies is given in Table II.

The purpose of the experimental results was not to give a
comparison of proposed and EBP algorithm in terms of
speed, number of iterations or accuracy. This is due to
significant difference between steps in. However, certain
conclusions were derived and given at the end of this
section.

For the purpose of testing proposed
methodology, results were obtained
through 10 consecutive cycles of 50
random weight generation each. The
network has 2 input and 2 output neurons.
Parameters 'used in forward propagation

EBP
cycle are for learning parameter alpha=1.0 (gain=0.3,
and for gain k=0.5. Activation function was alpha= 0.5)

bipolar, rule used was Delta rule.

Proposed

With these parameters EBP algorithm methodology

iterations error
e —

10 cycles,
50 gen.each

Fig. 6. Learning curve (TE) through 10 cycles, 50 generation for each
cycle.

did not converge. It did however for smaller values of alpha
and gain. One of solutions for EBP were achieved for
values of learning parameter and gain 0.3 and 0.5, but in
5000 steps.

Total Error (TE) for the pool of randomly generated
weight sets through 10 consecutive cycles is graphically
represented by Fig. 5. Randomness is introduced upon
given initial weight set starting from initial radius 5.
Variation of randomly generated weights in interval
(-20+20) can be noticed.

TABLE 1
PATTERNS FOR THE FIRST TEST TRAINING EXAMPLE

e ————se
Input Output
patterns patterns
R ——
+1,-1; +1,-L
+1,+1; -1, +1;
1,41 +1,-1;
-1,-1; -1, +1;
—__ — ]

TABLE 11

COMPARISON OF EBP AND PROPOSED TECHNIQUE FOR THE FIRST TEST EXAMPLE
e _——— |

No. of Total

Convergence Each iteration includes:

Parameters have
to be manually
adjusted

3.67¢-03

5000 Forward + backward pass

Automatically
adjusts until
convergence

6.97e-06 Simple forw. pass (TE) +

rand. space generation
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Fig. 7. Total error through cycles for the proposed technique

Figure 6. represents the change of minimal TE through
cycles. For each cycle (1-10), from 1* to 50" generated
weight set, decrease in TE value is obvious. After only a
few first iterations, TE decreases from values in interval (8,
15). For the rest of around 45 iterations TE gets smaller
values.

" For each following cycle, the speed of TE decrease is
larger. In each cycle, after only a couple of iterations, error
drastically decreases. In last couple of cycles (9" to 10%),
TE becomes zero after only a few iterations. Algorithm
therefore in each cycle gets obviously closer to wanted
minimal TE.

On Fig. 7. TE through cycles is given. TE values are in
range of 7.73 to 6.97e-06 for cyclés 1 to 10. This graphs
shows exponential quasi-gradient behavior of TE that can
be exploited for guessing of the final weight set.

Speed would be unrealistic to compare only with respect
to number of iterations or cpu time. This is because each
iteration involves different steps in these two algorithms.
Also with respect to speed, EBP algorithm in each iteration
performs both forward and backward propagation (weights
adaptation). The methodology proposed in this paper
performs only simple total error calculation, without its
back propagation i.e. without weight update.

Proposed methodology in this example converged to a
larger total error. Also, the price for robustness (automatic
selection of weight values) has been paid in terms of
processor time regarding generating large random
population that are later on used for selecting winner points
with minimum total error values.

Even though certain conclusions can be driven out of

presented example, authors are inclined not to do that until
more experiments are performed.
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Finally, accuracy discussion between two methodologies
was not the prime goal of this paper. Naturally, with both
techniques, repeating the same procedure with different
parameters gives quite different results but following
conclusions can be derived.

On Fig. 8. the ratio of TE for random pool in sphere and
ellipsoid shape is given. Abscissa gives negative exponent
of TE, while ordinate shows the occurrence frequency of
TE for in 100 times program run.

Fig. 8. TE for randomly generated in shape of multidimensional ellipsoid
and multisphere, for the same example.

It can be seen that once the correct quasi-gradient
direction is chosen, ellipsoid converges to smaller TE

values (10 or less). Ellipsoid modification accelerates
convergence for about 35%. .

Both methodologies can be automated for different
parameters. Proposed one does -mot require any user
experience with tuning of network parameters until final
convergence. The less smooth the function to be learned is,
the more this difference becomes obvious. The main
advantage of the proposed methodology that has been
proven is the robustness with respect to initial choice of
network parameters, i.e. network weight set, learning, and
gain parameter. ’

Through different runs of the same algorithm, due to its a
random nature results varied. Still, in each case algorithm
converged. Proposed methodology can be therefore
efficiently exploited for experimenting and finding initial
network architecture and parameters for the given problem.
Upon that, other possibly more optimal solution can be
manually tuned and other algorithms can be then applied.

IV. CONCLUSION

Numerous attempts to prove superiority of neural
networks very often have often failed due to a problem of
inadequate choice of weight set. Experienced users can
“feel” the right choice for weight set, but problems still
occur in everyday usage.
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This paper proposes one solution for robustness of neural
networks with respect to initial choice of weight set.
Experimental results have proven the independence of
convergence with respect to initial choice of weights. This
comes with a price of computational time, though.
However, the issue of speed is only important in
applications for monitoring and control. These applications
are not prime targets for implementing neural networks
anyway. Obtained experimental results were represented by
tables and figures.

The purpose of the experimental results was not to give a
comparison of proposed and EBP algorithm in terms of
speed, number of iterations or accuracy. This is due to
significant difference between steps. However, the main
advantage of the proposed methodology has been proven.
That is the robustness of this methodology with respect to
initial choice of network parameters, i.e. network weight
set, learning, and gain parameter.

Further work includes different directions. In EBP
networks, randomness can be introduced in weight set as
well. Through a traditional EBP process, in cases when
network runs into problems of local minima, randomness in
weight set can be introduced. Also, change of total network
error through introduction of randomness can be
investigated in terms of speeding up the process, i.e.
predicting final solution after two or more steps.
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