Hamiltonian Neural Nets as a Universal Signal Processor
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Abstract — This paper presents how to find an architecture for
very large scale lossless neural nets, which can be used as Haar-
Walsh spectrum analyzers, This analysis relies on the
orthogonality of weight matrices W, where W could be Hurwitz-
Radon matrices. The unique feature of these nets is the
possibility to treat them either as algorithms or as Hamiltonian
physical objects (Haar-Walsh Signal Processors),

L. INTRODUCTION

Artificial neural nets can bring a revolution to real-time
signal processing if they are integrated in silicon as
autonomous intelligent microsystems. The design of such
systems in silicon is one of the most challenging engineering
problems, and requires, besides the technology, an
understanding of neurobiology, nonlinear dynamical systems
and physics. Many architectures of artificial neural nets in
terms of their adaptation and leaming, are inspired by
suitable prototypes from biological systems. Moreover,
biological systems demonstrate another remarkable property,
namely, consisting of some billion connected in recurrent
loops elements they are stable! Te our knowledge, it has not
been finally pointed out which architecture and learning
algorithms of artificial neural networks are most suitable to
be implemented in VLSI technology [1,2]. Inspired by
known results from classical and quantum mechanics we aim
at showing that the very large scale artificial neural nets
should be implemented as passive or particularly as lossless
structures. These technical notions mean that from a
mathematical point of view they should be Hamiltonian
systems. It is worth noting that:

1. passivity implies BIBO stability of the structure.

2. passivity of the structure can be attained by a

compatible connection of clementary passive
building blocks i.e. neurons.

II. HAMILTONIAN NEURAL NETS

A general description form of an autonomous
Hamiltonian system is given by the following state-space
equation:

x = JH'(x) = v(x)
where: v(x) ~ a nonlinear vector field
and

I

-J=J" =37 (J — skew-symmetric matrix) (2)
There is such a basis in R, where matrix J has a form:
1] ; 0,1,-1 are (n x n) diagonal matrices (3)
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Function H(x) is a Hamiltonian energy of the system. Since
in Hamiltonian systems there is no dissipation of energy,
their trajectories in the state space can be very complicated
for t = +co. Therefore, the basic method of the movement
description is to find periodic solutions, using for example
the Maupertuis principle. Equation (1) has constant solutions
i.e. every point X, € R™ such that H'(xp)=0 is the
equilibrium and x(t}=x; 1s the solution. The neural nets
considered in this paper are composed of McCulloch-Pitts’
type neurons. A model of such a neuron in the form of signal
(information) flow network is given in Fig.1.
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Fig. 1. A model of neuron as a signal-flow network.
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Basic features of this neuron are as follows:
1. x() =k(t)* x5 (1) (linear block) )
where: k(t) = L {K(s)}, K{s) — transmittance belonging to a
class of lossless real functions.
2. The activity function ©(x} belongs to class M of
nonlinearities i.e.:

W s@suz Wi, 2 €[0, 0]

%)

The sigmoidal activation function belongs to this class as
well.
3.Energy absorbed by the neuron:

N 1 1

E=Y [w@yade= {x;(0)0x())dr 20,v1 (6)
i=1 Lo -

For a first order neuron i.e. under the assumption that the

linear block k(t) is an ideal integrator, one obtains:

xz{t)=x(1) (N
and the energy (6) can be seen as a Hamiltonian function of
the neuron. Hence:

E = H{x) and H'(x)=0(x) (8)
The structure of the Hamiltonian neural net (HNN) can be
obtained as compatible connections of N lossless neurcns
fulfilling (4), (5), {6). An example of a two neuron net is
shown in Fig.2.
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Fig. 2. Two compatibly connected neurons - a two neuron lossless net.

It can be seen-that the state-space description of the net from
Fig.2 is as follows:

;(] _ 0 -1 @(XI) (9)
i [#1 0] ex,)

It is a Hamiltonian system with a Hamiltonian function given
by:

N
E= Z E, (10)
i=1
where: E; — energy (6) absorbed by the i-th neuron.

The two neuron lossless net from Fig.2 can be treated as an
elementary building block to create very large-scale neural
networks. Generally, a lossless neural net composed of N
neurons is described by the following state-space equation;
x= Wo(x) (i1)
where: W-matrix of information flow connections (weight
matrix) and W = -W' (skew-symmetry).
Thus, a neural net composed of N elementary neuron pairs
from Fig.2 with orthogonal weight matrix W i.e.
wowT =1 (12)
is a Hamiltonian system, with activation function
@(x) = H'(x), Since

wiz=1ie wlt=wl=_w (13)
so the Hamiltonian neural net can be seen as an involutional

operator. The weight matrix of Hamiltonian neural net can be
formulated as follows:

W.. W =
_[Wae c |lin=1,2,... (14
W [_w(':r —Wz.,,:| )
where:
o
W, =
-1 0
and
We - WE =1 {dimWe =dimW,.,) (15)
W We—W-W,, =0

The simplest solution of (15} is: W =1.

Another solution of (15) is: W =W

i +1

Thus, for example, a weight matrix of 8-neuron Hamiltonian
neural net is as follows:

Example 1.

-1 0 -1 1 -1 1 -1 1
¢ -1 -1 1 1 -1
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lll. HAMILTONIAN NEURAL NET AS A
SPECTRUM ANALYZER

Some basic properties of the HNN can be derived from
(t1). First, as mentioned above, the structure of such a net
creates a nonlinear vector field: WO(x)=v(x) with a single
equilibrium peint for x = 0. Hence HNN determines a type of
orthogonal transformation, namely:

W.0(x)+I, =0 (16)
where: I;; — input vector (input data or signal)

It is worth noting that (16) gives the steady state solution of
the net under constant excitation. Hence, output of the net i.e.

@(x)=WI,, (17)

where rows and columns of W constitute orthogonal Haar
basis (see example 1), can be seen as a Haar spectrum of
input vector. Since, however B(x) is output of nonlinear,
dynamical Hamiltonian system, (17) is true only for such a
bounded input that |®(x)| £ 1 (for sigmoidal (£1) activation
functions).
Since W¥ =1 it is clear that, this Haar analysis sets up the
following relationships:
a)y (®,I,)=0, where (., .) denotes scalar product in 1,
b) The components of vector ©O(x) are Haar
coefficients. Thus, the HNN performs a
decomposition of the input vector in the sum of
orthogonal patterns (columns or rows of weight
matrix W). If the input vector consists of discrete
samples of a time function, then these patterns can
be treated as Haar-like wavelets.
¢) If for a given input data set there are large Haar
coefficients, then spectrum analysis fixes a number
of principal components of the input data.

The Haar analysis using HNN can be schematically shown as
in Fig 3.
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Fig. 3. Haar analysis using HNN

Note: Haar analysis illustrated in Fig. 3 means that one
assumes a physical neural net (a signal processor) with
orthogonal, skew-symmetric weight matrix W solving the
following, ill-conditioned, differential equations:

=WOx)+I,
Such a signal processor cannot be practically realized (in
silicon) due to the pure imaginary eigenvalues of matrix W.
On the contrary, the Haar transformation given by algebraic
equation (16) is ready to use as an algorithm. In the
following section we show how to solve the problem of

physical realizability.

Example 2.
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Haar analysis of an input signal I;,, using the HNN with
weigth matrix W, from example 1, is given by the vectors: *

1,=1{-0.1,0.0,-0.1,0.1,-0.1,-0.1,-0.1, 0.0]"
O(x)=[-0.113,0.151,-0.037,0.037,0.113,0.037, 0.037,-0.075]"

It means, that:
L, = Ow, + Oyw; + ... + Ogwy
where: w;, i=1,...,8 denotes Haar-basis i.e. rows of W,

Note: Haar spectrum @(x) in this example is the output of the
dynamical system and does not depend on the concrete shape
of the activation functions (if |&(x)] < 1).

IV. HNN AS AN ORTHOGONAL FILTER

Orthogoenal filtering is one of the basic operations in
modern signal processing. For example, in digital
communication transmitted messages are encoded in the
form of orthogonal symbols. Thus the transmitted signal
consists of the symbeols corrupted by additive noise. Hence,
the main function of any receiver is to perform such an
orthogonal filtering. A basic structure of an orthogonal filter
using the structure of the HNN is shown in Fig.4.

o(x) =y

W
-1

Fig. 4. Structure of an orthogonal filter.

It can be seen that such a filter performs the following
decomposition;

La=uty; y=0(x) (18)
where: u and y are orthogonal i.e. y = Wu and (u, y) = 0.
At the same time (18) sets up two types of orthogonal
transformations:
y=0.5(1+tW) Ey; (Tin, ) 20 (19
and
u=0.51-W) I, 20)

According to (19) the input signal I, is decomposed into
Haar or Walsh basis (Walsh functions take only the values 1
and —1) and the cutput signal y constitutes the Haar or Walsh
spectrum, respectively. Assuming that the above symbols are
encoded by columns or rows of weight matrix {1 + W), the
largest Haar coefficient of the spectrum at the output of the
orthogonal filter can be used as a measure of presence of
information hidden in noise. Indeed, one obtains

L,=w,+n=u+y 2n
where: w; - a symbol (a column er row of matrix (1 + W)),
iell, ... N],
n - additive noise, N=dim W

Hence, there is such a minimal S/N ratio, that
O =(wit+tnw)>0 =(w+tnw ) Vk=i (22)

where: ©; — the largest Haar coefficient of the cutput
spectrum, then the orthogonal filtering is performed.

Example 3.
Let a useful signal encoded by the second row w, of matrix
1+W), (examplel) i.e.

wy={-0.377,1.000,-0.377,0.377,-0.377,0.377,-0.377,0.377]"
is noised by vector n

i.e. Ii, = w; + n. The Haar-analysis for different S/N ratio is
as follows:

for n=[0.268,0.217,0.460,-0.255,-0.291,-0.466,0.325,0.026]7
i.e S/N=1.98 [dB]

®(x)=[0.137,0.833, 0.292, 0.077,-0.095,-0.458,0.152-0.148]T
,=0.833 > 0, ; i #2 - vector w; is recognized.

for n=[-0.68,-0.528,-0.452,-0.383,0.432,0.637,0.381,-0.428]"
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i.e S/N=-0.02 [dB]
&{x)=[-0.40,0.763,0.067,-0.259,-0.024,0.795, 0.257, 0.131]"
@, ~ O - vectors w, Or Wgare recognized.

V. IMPLEMENTABILITY OF HNN

As mentioned above the HNN described by (11) cannot
be realized as physical object. On the contrary, the
orthogonal filter shown in Fig. 4 could be implemented in
silicon, even if the weight matrix W is not exactly skew-
symmetric. It is clear, that this implementation is guaranteed
by the stabilizing action of negative feedback Iloops.
Moreover, by cascading two such orthogonal filters one
obtains 2 Haar spectrum analyzer equivalent to that shown in
Fig. 3. In Fig. 5 such a cascade is schematically presented.

I HNN B(x) = WI,

HNN
v [ w T
-1 -1

Fig. 5. Haar spectrum analyzer by using two orthogonal filters.

Thus, without going into the details of technological issues,
one can state that very large scale artificial neural networks
can be realized as physical objects by the structure of
orthogonal filters.

VI. HNN AS A UNIVERSAL SIGNAL PROCESSOR

It is not the main goal of this paper to present signal
processing by using the HNN. Nevertheless, it seems to be
clear that having such nets implemented in the form of
orthogonal filters, one could realize in real-time most of the
signal processing known from advanced wavelet analysis [3],
for example:

- signal denoising

- coherent structure extraction

- pattern recognition and classification

- multiscale and multiresolution signal analysis

- image processing

- data compression

It is worth noting, that known in mathematics problem of
orthogonal Hurwitz-Radon matrices and solution given by
Hurwitz-Radon theorem [4] can be used to formulate two
essential issues in signal processing performed by HNN,
namely:
- finding the best-adapted bases for given class of
signals
- decomposition of given signal (pattern/image) into
orthogonal components.

Indeed, let Wy, ..., W, be e set of orthogonal skew-
symmetric Hurwitz-Radon matrices i.e,
W W +WW=0forj=k;jk=1,...,s

Let ay, ..., a4 be real numbers with Eajz =1, Then:

W)=Y a,W, ;W, =+ (23)
j=0

is orthogonal, where s, = p(n) ~1; p(n)-Radon number of n.

Hence the following adaptation rule:

Find such a vector of parameters a that the weight matrix

W(a) of HNN sets up the best-adapted basis.
VII. CONCLUDING REMARKS

In this paper we have presented how to find the most
suitable architecture for very large-scale artificial neural nets
to be implemented in VLSI technology. The structure of such
neural nets is composed of pairs of lossless neurons. Hence,
they have the form of Hamiltonian Systems with weight
matrices W particularly belonging to a set of Hurwitz-Radon
matrices. The unique feature of HNN seems to be the fact
that they can exist as algorithms or Hamiltonian physical
devices performing the Haar-Walsh analysis in real-time.
Parity functions, known from the literature [5,6] can be an
alternative tool for Walsh analysis. Finally, it is worth noting
that the use of different type neural networks in signal
processing is becoming increasingly widespread [7,8].
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