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Abstract

The problem of obtaining the error at the output of a neuro
sliding mode controller is analyzed in this paper. The
controller operates in discrete time and the method presented
describes an error measure that can be used if the task to be
achieved is to drive the system under control to a predefined
sliding regime. Once the task specific output error is
calculated, the neurocontroller parameters can be tuned so
that the task is achieved. The paper postulates the strategy
for discrete time representation of uncertain nonlinear
systems belonging to a particular class. The performance of
the proposed technique has been clarified on a third order
nonlinear system, and the parameters of the controller are
adjusted by using error backpropagation algorithm. It is
observed that the prescribed behavior can be achieved with a
simple network configuration.

1. Introduction

Neural Networks (NN) have successfully been used for
many purposes extending from image processing and pattern
recognition to identification and control of systems. The
motivation encouraging the use of NN in such a wide
spectrum of applications has mainly been the ability to
represent complex nonlinear mappings, learning and
generalization of data together with powerful training
strategies and anticipatory behavior. Furthermore,
architectural diversity of NN has constituted an advantage
exploited to find the best structure for the problem in hand.
The practice of systems and control engineering has therefore
extensively benefited from the design alternatives provided
through the use of NN.

Among many strategies existing for parameter tuning,
Error Backpropagation (EBP) method has been a standard
approach in most applications [1]. A common problem in the
control applications of NN is the unavailability of the error
on the applied control signal [2]. An existing approach to
obtain the error at the output of the controller is to identify
the plant and to propagate the output error back through the
identifier until the controller outputs are reached [3]. When
the output error is obtained, the controller parameters can be
tuned by EBP technique so that a specified task is fulfilled. A

practical drawback is the increase in the computational
burden due to the identification process. In this paper, we
derive the error measure for Discrete Time Sliding Mode
Control (DTSMC) task for a class of uncertain nonlinear
systems.

The design of sliding mode controllers is a well-
developed framework especially for systems represented in
continuous time. The approach has been utilized particularly
in the applications where there are strong interdependencies
between nonlinearities, time varying parameters, time delays
and noise [4]. In the literature, various techniques towards
the integration of sliding mode control with NN have been
presented. The design issues for conventional Discrete Time
Sliding Mode Control (DTSMC) have later been addressed in
[5], which scrutinize the design of DTSMC with particular
emphasis on reaching law approach, and exemplify the
results on a second order linear system having uncertain
parameters. One of the notable works discussing the stability
issues in Discrete Time Sliding Mode Control (DTSMC) is
presented in [6], in which the sufficient conditions for
convergence are discussed. Pieper et al [7] analyze the
optimality in DTSMC from the point of designing optimal
sliding surfaces with a linear quadratic criterion, and confirm
the results on a gantry crane apparatus. Sira-Ramirez [8]
discusses the convergence during quasi-sliding mode for
nonlinear Single Input Single Output (SISO) systems, and
Chen et al elaborate the sampling time selection problem in
computer controlled systems with a sliding mode [9]. In [10],
Misawa analyzes the construction of DTSMC under the
presence of unmatched uncertainties. Aside from the
approaches analyzing the state space representations, a
number of studies have demonstrated that NN can
successfully be used in DTSMC systems [11-13].

In what follows, we describe the task and the proposed
technique for control error extraction, which is the primary
difficulty in most intelligent control systems. The third
section describes the plant on which the performance of the
scheme is visualized, and presents the simulation results. The
concluding remarks are given at the end of the paper.

2. Task Definition and the Control Error
Extraction

Consider the control system structure depicted in Figure
1, in which the plant inside the dashed rectangle is a SISO
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one, whose states are assumed to be observable. The inputs
to the plant and the observed states are sampled by Zero
Order Holders (ZOH) as shown in the figure. Note that the
subscript k stands for discrete time index, and the dynamics
inside the dashed rectangle is governed by a set of difference
equations of the form given below.

( ) ( ) kkk ukgxfx  1 +=+ (1)

where, T
nkkkk xxxx  ][ 21 �=  is the state vector,

( )kxf  is a nonlinear vector function of the system state and

is unavailable, whereas ( )kg  is a vector function of time and

the sign of it is known. The system above can compactly be
written as kkkk ugfx  1 +=+ . According to Figure 1, the

error vector at time k is defined as kkk rxe −= , where kr

is the vector of reference state trajectories at time k. Define
the switching function as

k
T

k es α= (2)

in which the vector α is selected such that the dynamics
determined by 0=ks  is stable, and it is assumed that

0>
k

T gα . Now adopt a closed loop switching dynamics

described generically as ( )kk sQs =+1 , and evaluate 1+ks  as

given below.

( )11 ++ −+= kkkk
T

k rugfs α (3)

Using ( )kk sQs =+1  and solving for ku  gives the control
sequence formulated as below.

( ) ( ) ( )( )kkk
T

k
T

k sQrfgu −−−= +
−

1

1
αα (4)

If the values of the vector functions 
k

f  and 
k

g  were

known explicitly, the application of this sequence to the
system of (1) would result in ( )kk sQs =+1 , where Q must
satisfy the condition below to ensure reaching [5-6,8-9].

( ) ( )( ) 01 <−=−+ kkkkkk ssQssss (5)

If the condition above is satisfied for ∀k≥0, the system is
driven towards the dynamics characterized by 0=ks .

However in practice, 0=ks  is rarely observed as the
problem is described in discrete time. A realistic observation
is |sk|<ε, where ε is some positive number. In the literature,
this phenomenon is called quasi-sliding mode, or
equivalently pseudo-sliding mode [5,9,13]. This mode has
useful invariance properties in the face of uncertainties and

time variations in the plant and/or environment parameters.
Once the quasi-sliding regime starts, the error signal behaves
as what is prescribed by |sk|<ε.

2.1.Calculation of the Task Specific Controller
Output Error

Define the task as the DTSMC of a plant of the form
given in (1), whose ultimate behavior is to be enforced
towards what is prescribed by ( )kk sQs =+1 . Consider

Figure 1, which demonstrates that the quantity Cks  would be
the error on the applied control signal if we had a supervisor
providing the desired value of the control denoted by dku .
However, the nature of the problem does not allow the
existence of such a supervisory information, instead of it, the
designer is enforced to extract the value of Cks  from the

available quantities. In what follows, we present a method to
extract the error on the control signal.

Assumption 2.1: The vector functions 
k

f  and 
k

g  of

(1) are such that a desired quasi-sliding mode can be created
with a suitable selection of the design parameters, more
explicitly, we assume that the DTSMC task is achievable.

Remark 2.2: A control sequence leading to desired
DTSMC can be formulated if the dynamics of the system
described by (1) is totally known or if the nominal
representation is known with the bounds of the uncertainties.
It must be noted that the disturbances and uncertainties are
assumed to enter the system through the control channel [4].
When the control sequence in (4) is applied to the system of
(1), we call the resulting behavior as the target DTSMC and
the input signal leading to it as the target control sequence
( ku ). If at least the explicit forms of the nominal

representations of the vector functions 
k

f  and 
k

g  are not

known, it should be obvious that the target control sequence
cannot be constructed under such an uncertainty by following
the traditional DTSMC design approaches.

Definition 2.3: Given an uncertain plant, which has the

structure described as in (1), and a command trajectory kr
for k≥0, the input sequence denoted by dku  satisfying the
following difference equation is defined to be the idealized
control sequence, and the difference equation itself is defined
to be the reference DTSMC model. In this representation,

T
nkkkk rrrr  ][ 21 �=  stands for the vector of command

trajectories.

( ) ( ) dkkk ukgrfr  1 +=+ (6)

Mathematically, the existence of such a model and the
sequence means that the system of (1) perfectly follows the
command trajectory ( kr ) if both the idealized control

sequence ( dku ) is known and the initial conditions are set as

00 rx = , more explicitly ke ≡ 0 for ∀k≥0. Undoubtedly, the
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reference DTSMC model is an abstraction as the functions
appearing in it are not available, however, the concept of
idealized control sequence should be viewed as the synthesis
of the command signal kr  from the time solution of the

difference equation in (6).
Fact 2.4: If the target control sequence formulated in (4)

were applied to the system of (1), the idealized control
sequence would be the steady state solution of the control
signal, i.e. dkk

k
uu =

∞→
lim . However, under the assumption of

the achievability of the DTSMC task, the difficulty here is
again the unavailability of the functional forms of 

k
f  and

k
g . Therefore, the aim in this subsection is to discover an

equivalent form of the discrepancy between the control
applied to the system and its target value by utilizing the
idealized control viewpoint. This discrepancy measure is
denoted by dkkCk uus −= . If the target control sequence of
(4) is rewritten by using (6), one gets

( ) ( )( ) dkkk
T

k
T

k usQfgu +−∆−=
−

αα
1

(7)

where ( ) ( )kkk
rfxff −=∆ . The target control sequence

becomes identical to the idealized control sequence, i.e.

dkk uu ≡  as long as ( ) 0=−∆ kk
T sQfα  holds true for

∀k≥0. However, this condition is of no practical importance
as the analytic form of the function 

k
f  is not available.

Therefore, one should consider this equality as an equality to
be enforced instead of an equality that holds true all the time,
because its implication is 0=Cks , which is the ultimate goal
of the design. It is obvious that to enforce this equality to
hold true will let us synthesize the target control sequence,
which will eventually converge to the idealized control
sequence by the adaptation algorithm yet to be discussed.
Consider 1+ks  given below.

( )111 +++ −= kk
T

k rxs α

( ) ( )( )dkkkkkk
T ugrfugxf −−+=α

( )Ckkk
T sgf +∆=α

( ) Ckk
T

k sgsQ α+=

(8)

Solving the above equation for Cks  yields the following

( ) ( )( )kkk
T

Ck sQsgs −= +
−

1
1

α (9)

The interpretation of the above control error measure is as
follows: Since we are in pursuit of enforcing ( )kk sQs =+1
in the closed loop, during the time until which this equality
does not hold true, the applied control sequence carries some

error. However, if the tuning activity in the neurocontroller
enforces (9) to approach zero, this enforces

( ) 0=−∆ kk
T sQfα  to approach zero, i.e. ( )kk sQs →+1 ,

consequently dkk uu →  as k increases.

Remark 2.5: Notice that the application of dku  for ∀k≥0

to the system of (1) with zero initial errors will lead to ke  ≡

0 for ∀k≥0. On the other hand, the application of ku  for

∀k≥0 to the system of (1) will lead to 0=ks  for ∀k≥kh,

where kh is the hitting time index, at which the quasi-sliding
regime starts. Therefore, the adoption of (9) as the equivalent
measure of the control error loosens ke  ≡ 0 for ∀k≥0

requirement and enforces ( )kk sQs →+1 . Consequently, the

tendency of the control scheme will be to generate the target
DTSMC sequence ku  of (4).

Remark 2.6: Referring to (9), it should be obvious that if
( ) 01 <−+ CkkCCk sss  is satisfied ( ) 01 <−+ kkk sss  is

enforced. In other words, if the control signal approaches the
target control sequence, the DTSMC task is achieved and the
plant follows the command signal.

Proposition 2.7: Since dkkCk uus −= , the cost at each

instant of time can be defined as

2

2

1
CkCk sJ = (10)

which instantly qualifies the similarity between ku  and dku .
If the parameters of the neurocontroller are tuned such that
the cost in (10) is enforced toward zero, the task implied by

0=Cks  is achieved. More explicitly, a system of structure

(1) in the feedback loop illustrated in Figure 1 can be driven
towards a predefined quasi-sliding mode if the training
algorithm for the adopted neurocontroller enforces the
minimization of the cost measure given in (10).

In what follows, we describe the structure of the
controller and the chosen tuning scheme together with the
relevance with what have been derived so far.

2.2. Neurocontroller and the Tuning Scheme

In the analysis presented so far, we have described the
task and the analytic representation of the error to be used in
training. Although the presented approach is applicable to
any of the neural network model, in this study, we consider
the feedforward NN structure because of its widespread use.

The neurocontroller utilized in this paper has the
architecture and input output definitions as depicted in Figure
2. In (11), the mathematical representation for such a three-
layered NN is given.

( ) RLk
T
L

T
Rk BBeWWu −−Ψ= (11)

In above, WR and WL are weight matrices, BL and BR are
the bias vectors and Ψ is the nonlinear activation function of
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the neurons contained in the hidden layer. The activation
function of the output layer neuron is linear. Among many
alternatives existing in the literature, we choose hyperbolic
tangent function for the neurons in the hidden layer.

The parameter tuning can be done by using EBP
technique as well as higher order methods, e.g. Levenberg-
Marquardt optimization method, Gauss-Newton algorithm or
conjugate gradients [13]. In order to demonstrate the viability
of the extracted error measure, we use EBP technique for
parameter adjustment. According to the EBP based tuning
strategy, in order to minimize the cost of (10), if φ is defined
to be a generic adjustable parameter of the neurocontroller,
the adjustment of φ is carried out by the rule given as

k

Ck
kk

J

φ
ηφφ

∂
∂−=+1

( )
k

dkk
Ckk

uu
s

φ
ηφ

∂
−∂

−=

k

k
Ckk

u
s

φ
ηφ

∂
∂

−=
(12)

where, η is the learning rate chosen from the interval (0,1)
and, CkJ  and Cks  are defined as in (10) and (9)

respectively. It is apparent that 0→CkJ  means 0→Cks ,

hence dkk uu → . The update rule of (12) is applied to all

entries of WR, WL, BL and BR at each sampling instant. Note

that we assumed 0>
k

T gα . With Cks  of (9), the rule in

(12) becomes ( ) ( )( )
k

k
kkk

T
kk

u
sQsg

φ
αηφφ

∂
∂

−−= +
−

+ 1
1

1 , in

which we can set ( ) 1−
=

k
T gαηζ  and choose the value of ζ

as 
k

g  is unknown.

2.3. Practical Issues

The analysis presented so far has concentrated on the
class of systems having the structure described by (1). It
should be obvious that the system under control in real life
will be a sampled form of a continuous system, which can
generically be represented as

( )uxx ,σ=� (13)

The system above can be viewed as the plant block in
Figure 1. Consequently, the system of (1) will correspond to
the sampled system inside the dashed rectangle of the figure.
i. Sampling Time: Since the design presented is based on the
discrete time representation of a continuous time system, the
selection of sampling time gains a substantial importance.
We assume that the sampling period is small enough so that
the response of the discrete time system matches sufficiently
to that of the continuous time system. Furthermore,
discretized form of the system belongs to the class described
in (1).

ii. Causality: In (9), we have postulated the error on the
applied control at time k. However, the right hand side of (9)
requires the value of 1+ks . In the application example, we

set ( ) ( )( )1
1

1 −
−

−
−= kkk

T
Ck sQsgs α , the right hand side of

which is actually the control error at time k-1. Assuming this
form as practically equivalent measure of the control error,
we introduce some amount of uncertainty into the control
system, which can be represented in the system dynamics
that has already been assumed to be unknown.
iii. Actuation Speed: Another important issue is the actuation
speed of the system under control, i.e. the ability to respond
to what is imposed in a timely fashion. Since we assume that
the details concerning the dynamic model of the system are
unavailable, what causes a difficulty from a practical point of
view is the selection of ( )kk sQs =+1 , which characterizes

the behavior during the reaching mode. The parameters of
this quantity can only be set by trial-and-error due to the lack
of system-specific details.
In the application example, we utilize

( ) ( )ksksk sTsTs sgn1 211 λλ −−=+ , where 1λ >0, 2λ >0

and 01 1 >− sTλ  with Ts being the sampling period [5].
iv. Enhancement of the Behavior in the Quasi-Sliding Mode:
It is a well known fact that the use of sgn(.) function,
particularly during the sliding mode for continuous time
variable structure control systems affects the performance
during the sliding mode adversely as the measured quantity
is very close to zero and this leads to the chattering
phenomenon [14]. However, in discrete time, once the
trajectory in the phase space crosses the switching
hyperplane, it maintains the crossings repetitively and a
zigzag motion along the switching hyperplane occurs [5].
Although the stability requirements ensure that the
magnitude of the zigzagging motion is bounded, adopting a
smooth transition about the decision boundary can enhance
the tracking performance in terms of reducing magnitude of
the zigzagging during the sliding mode. For this purpose, we
adopt the following approximation for the sgn(.) function.

( )
δ+

≅
k

k
k

s

s
ssgn (14)

here, δ determines the sharpness around the origin. Since the
function in (14) is not discontinuous at the origin, and the
decision mechanism provides a soft switching in the vicinity
of the boundary characterized by 0=Cks .

3. Dynamics of the Plant Under Control and
Simulation Results

In this section, we demonstrate the performance of the
algorithm on a third order system studied previously in [16-
17]. The continuous time dynamic equation describing the
system is given in (15)-(17). Clearly, the system will be of
structure (1) when discretized by using Euler method.
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121 dxx +=� (15)

232 dxx +=� (16)

( )( )
( )( )
( )( ) 33

3
2

143

33
3
213

7sin25.005.0         

5cos3.003.0         

5sin25.005.0         

3
sin1.015.05.05.0

xxt

xt

xtdd

u
t

xxxxx

π
π

π

π

+−
++−

++−++

+












++−−−=�

(17)

where d4(t)=0.2sin(4πt) is the disturbance used in [16-17],
and di(t) with i=1,2,3 are the Gaussian noise sequences
corrupting the state information to be used by the
neurocontroller additively. The mean and variance of each
noise sequence are equal to zero and 0.33*10-7 respectively.
Furthermore, |di(t)|≤0.007 with probability very close to
unity. The work presented in [16] assumes that the nominal
system dynamics is known and the uncertain part is
comprised of what we give as the last three terms in (17).
The primary difference between what we discuss and what is
assumed in [16] is that the approach we propose assumes
only the achievability of the DTSMC task, hence the
uncertainties are represented in the system dynamics, whose
form is known but the details are not.

The sampling time has been set as Ts=2.5msec, the
switching function parameters have been selected as

[ ]T121=α  and the parameters of the reaching law are

chosen as λ1=380 and λ2=1. The neurocontroller possesses
three inputs, single hidden layer containing three neurons and
a single output neuron. Initially, the weights and the biases of
the network have been chosen randomly from the interval
[0,0.1]. Furthermore, the learning rate of EBP based
parameter adjustment strategy has been chosen as   ζ=0.01,
and we set δ=0.05 for sign function smoothing. As δ tends to
zero, the adverse effects of the discontinuity at the origin
becomes distinguishable. However, with large values of this
quantity, (14) becomes no longer an approximation to the
sgn(.) function. A similar tradeoff exists for the selection of
the learning rate ζ, whose small values increase the
convergence time, whereas the values closer to unity increase
the parametric mobility and undesired overshoots become
effective. Parallel to [16], the reference state trajectory
described in (18) is used in the simulations.

( ) ( )ttr π2.0cos5.01 =

( ) ( )ttr ππ 2.0sin1.02 −=

( ) ( )ttr ππ 2.0cos02.0 2
3 −=

(18)

Initially, the states of the system have the following
values, x1(0) = 1, x2(0) = 1 and x3(0) = 1. In Figure 3, the

reference state trajectories and the response of the system are
illustrated together. Although the tracking performance is
clear from Figure 3, the tracking errors are depicted in Figure
4, which apparently justifies the truth of extracted error
measure. In order to confirm that the extracted error measure
is specific to the described DTSMC task, we figure out the
phase space behavior in Figure 5. The error vector hits to the
hyperplane several times and moves towards the origin along
with the hyperplane. In Figure 6, the applied control signal is
depicted. After an admissibly fast transient lasting
approximately 0.9 seconds, the magnitude of the control
signal decreases significantly as the reaching phase ends and
the sliding regime starts. The lower subplot of Figure 6
shows that the applied control signal has a feasible
characteristic in terms of the duration between consecutive
hittings.

Another design issue that should be figured out is the
behavior in the adjustable parameter space. Apparently the
displacements given to the neurocontroller parameters should
be convergent to maintain the stability and safety during the
training. Assuming that the hidden layer contains H neurons,

and defining [ ]TH 111 �=Ω , which is of H×1
dimensional, we can define the following quantity

R
T
RR

T
RL

T
LHL

T
L

T
H BBWWBBWWP +++ΩΩ= (19)

which instantly qualifies the behavior of the parametric
evolution. In the top row of Figure 7, the quantity P is
illustrated, whereas the bottom row depicts the same quantity
on logarithmic horizontal axis. The figure suggests that the
neurocontroller parameters converge to some values, the use
of which fulfills the specified DTSMC task.

Lastly, we illustrate the phase space behavior for different
initial conditions in Figure 8. In all four cases, we used the
same parameter selections with the same neurocontroller
initial parameters. As the reference trajectory, we used the
one described in (18). The results shown justify the claims on
creating and maintaining the prescribed DTSMC task.

4. Conclusions

A remedy to the problem of unavailability of the desired
outputs of a neurocontroller is studied in this paper. It has
been demonstrated that an error measure can be obtained if
the plant under control is to be driven towards a predefined
quasi-sliding regime. A feedforward neural network has been
used as the controller and the parameters of it have been
adjusted by utilizing EBP technique. In order to justify the
truth of the extracted error measure, a third order system has
been considered. The analytic representation of the system is
assumed to be unknown, together with the knowledge of its
membership to a particular class. Under such an uncertain
environment, the results have proved that the prescribed task
can be fulfilled together with high tracking precision,
convergent evolution in parameter space, robustness against
disturbances and above all, with a simple controller structure.
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Figure 1. Structure of the Feedback Control System

Figure 2. Structure of a Feedforward Neural Network
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Figure 6. Applied Control Signal and its Transient
Behavior
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Figure 7. Behavior of the P Measure in Linear and
Logarithmic Time Axes

Figure 8. The Behavior in the Phase Space for Different
Initial Conditions
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