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Abstract

In this paper, a novel method for driving the dynamics of a
nonlinear system to a sliding mode is discussed. The
approach is based on a sliding mode control methodology,
i.e., the system under control is driven towards a sliding
mode by tuning the parameters of the controller. In this
loop, the parameters of the controller are adjusted such
that a zero learning error level is reached in one
dimensional phase space defined on the output of the
controller. A Gaussian radial basis function neural network
is used as the controller.

1. Introduction

Earliest notion of Sliding Mode Control (SMC) strategy
was constructed on a second order system in the late 1960s
by Emelyanov [1]. The work stipulated that a special line
could be defined on the phase plane, such that any initial
state vector can be driven towards the plane and then be
maintained on it, resulting in the error dynamics being
forced towards the origin. Since then, the theory has greatly
been improved and the sliding line has taken the form of a
multidimensional surface, called the sliding surface around
which a switching control action takes place.

In Variable Structure Control, the existence of observation
noise constitutes a prime difficulty. This is due to the fact
that the ideal sliding control requires very fast switching on
the input, which cannot be provided by real actuators, and
the input depends on the sign of a measured variable, which
is very close to zero. This makes the control signal
extremely vulnerable to measurement noise and may lead to
unnecessarily large control signals. To alleviate these
difficulties, several modifications to the original sliding
mode control law have been proposed in the literature,
some recent ones of which are based on the use of fuzzy
logic [2-3] and artificial neural networks [4-5]. These
methodologies provide an extensive freedom for control

engineers to exploit their understanding of the problem, to
deal with problems of uncertainty and imprecision.

During the last two decades, numerous contributions to
VSS theory have been made. Some of them are as follows.
Hung et al [6] has reviewed the control strategy for linear
and nonlinear systems. In that study, the switching
schemes, putting the differential equations into canonical
forms and generating simple SMC strategies are considered
in detail. In [7] and [8], the applications of SMC scheme to
robotic manipulators are studied and the quality of the
scheme is discussed from the point of robustness. The
performance of SMC scheme is proven to be satisfactory in
the face of external disturbances and uncertainties in the
system model representation. Young et al [9] presents
another systematic examination of SMC approach. In this
reference, the practical aspects of SMC design are assessed
for both continuous time and discrete time cases and a
special consideration is given to the finite switching
frequency, limited bandwidth actuators and parasitic
dynamics, all leading to what is known as chattering. In
[10], the design of discrete time SMC with particular
emphasis on the unmatched uncertainties is elaborated.

Some studies on the use of SMC strategy are devoted to the
dynamic adaptation of the parameters of a flexible model
such that the error on the output of the model tends to zero
in finite time [11-12]. The first results obtained by Sira-
Ramirez et al have concentrated on the inverse dynamics
identification of a Kapitsa pendulum by assuming constant
bounds for uncertainties. Yu et al [13] extend the results of
[12] by introducing adaptive uncertainty bound dynamics
and focus on the same example as the application. The
major drawback in both of the approaches is the fact that
the dynamic adaptation mechanism needs the error on the
output of the model. If the model is to be used as a
controller, this fact constitutes a difficulty because the use
of the approaches proposed in [12] and [13] for control
applications requires the error on the control signal to be
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applied, which is unavailable. The second drawback of the
dynamic uncertainty bound adaptation strategy in [13] is the
existence of noise on the measured variables. The approach
developed presented in this reference requires the
integration of the absolute value of the error signal
observed on the outputs. When the error signal is close to
zero, it clearly leads to the integration of the absolute value
of the noise signal, which causes a regular increment on the
bound value and leads to instability in the long run.

This paper is organized as follows: The second section
presents analytic representation of the GRBFNN structure.
The third section gives the definitions and the formulation
of the problem. The following section introduces the
equivalency constraints on the sliding control performance
for the plant and sliding mode learning performance for the
controller. The fifth section describes the dynamic model of
the plant and the results of the simulations. Conclusions
constitute the last part of the paper.

2. Gaussian Radial Basis Function Neural
    Networks

The fundamental operation in most of the neural network
models existing in the literature is the evaluation of a dot
product of an input vector and a parameter vector, and to
pass the evaluated quantity through a nonlinear activation
function. The yield of the described process is the output of
the neuron. However, another class of neural networks
dwells on the evaluation of the neuron output by combining
the values of some appropriately defined basis functions.
The networks using basis functions constitute several
number of hidden neurons, the activation level of which
depend on the distance between the input vector and a
prototype vector [14-16].

GRBFNN constitute a special class of these structures. A
hidden neuron in a GRBFNN structure uses a Gaussian
nonlinearity as the activation function described in (1). In
this definition, i indexes the neuron order in the hidden
layer while j is for ordering the input vector entries, which
runs up to m. The prototype vector is comprised of the cij

variables, which characterize the centers of the Gaussian
functions. The variable σij determines how the function (µij)
spreads over the domain of its input space (uj). The output
of ith neuron in the structure is evaluated through the use of
(2) and is denoted by wi. The overall output of the structure
depicted is evaluated by a weighted sum of the responses of
the neurons contained in the hidden layer and is described
by (3).
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In above, yi denotes the weight determining the effect of ith

hidden neuron output on the overall network response τ.

What makes the use of GRBFNN is attractive for control
engineering applications is that the hidden neurons provide
a degree of similarity between the prototype vectors and the
input vector. Therefore, the designer can relatively easily
envisage the necessary action for local regions of the input
space.

The applications of GRBFNN for the identification and
control purposes are discussed in [17-19] and those
considering the image/pattern recognition are presented in
[15].

3. Definitions and the Formulation of the Problem

Consider the described GRBFNN structure, which is to be
used as the controller. The adjustable parameter vector and
the vector exciting the adjustable parameters are described
in (4) and (5) respectively. The input output relation of the
GRBFNN controller is as described in (3).

[ ]Thyyyy L21= (4)

[ ]Thwwww L21= (5)

where, h is the number of hidden neurons contained in the
hidden layer. The structure is assumed to operate in an
ordinary feedback loop as illustrated in Fig. 1. The
definitions of the sliding surface ( )ees p &,  and that of zero

learning error level ( )dcs ττ , , are given in (6) and (7)
respectively.

( ) eeees p λ+= &&, (6)

where, λ is the parameter determining the slope of the
sliding surface.

( ) ddcs ττττ −=, (7)

where τd is the desired output of the controller and is
unknown.

In order not to be in conflict with the physical reality, the
designer must impose the following inequalities, the truth
of which state that the parameters of the controller, the time
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derivative of the input signal and the time derivative of the
desired output of the controller remain bounded.

( ) y
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d
Bd ττ && ≤ (10)

Theorem 1. For a multi input single output flexible
structure, whose output is a linear function of the adjustable
parameters, the adaptation mechanism as described in (11)
enforces the parameters to values resulting in zero learning
error level in one dimensional phase space, whose argument
is defined by (7).
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where, k is a sufficiently large constant satisfying (12).
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The adaptation mechanism in (11) drives an arbitrary initial
value of sc to zero in finite time denoted by th satisfying the
inequality in (13).
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Proof 1: See Sira-Ramirez et al [12] �

The main problem in applying the design presented is the
unavailability of the desired value of the control signal (τd).
If this quantity is not available, one cannot construct sc and
the approach cannot be used for control purposes. In the
next section, the relation between the sp of (6) and sc of (7)
is analyzed.

4. SMC for Learning

Consider the sliding line sp and the zero learning error level
sc described by (6) and (7) respectively. The relation
between these two quantities is assumed to be as given in
(14).

( )pc ss Ψ= (14)

Qualitatively, if the value of sp tends to zero, this means
that sc goes to zero. Physically, the system achieves a
perfect tracking because the controller produces the desired
control inputs or vice versa. Conversely, as the value of sp

increases in magnitude, which means that the error vector is

getting away from the origin, the same sort of a divergent
behavior in sc is observed or vice versa. In this section,
three conditions that Ψ must satisfy are discussed.

4.1. Region Condition
It should be clear that as the control input approaches the
desired value for the current conditions, the state tracking
error vector of the plant is driven towards the sliding
manifold. In other words, the desired control signal drives
the state tracking error to the sliding manifold. In (15),
these two statements are clarified.
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The two equivalent limits and their consequences can be
rewritten as given in (16) and (17) by utilizing sp and sc.
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The statements above require the following condition on Ψ.

( ) 00 =Ψ (18)

Furthermore, the relation Ψ must use the first and the third
quadrants of the sp-Ψ(sp) coordinate system.
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4.2. Compatibility Condition
In order to measure the tracking performance of the control
system; define the Lyapunov function in (20). The
realization performance of the controller is defined as
Vc=0.5sc

2. If one selects a Ψ relation such that a
simultaneous minimization is achieved, then this selection
can be considered as a suitable candidate.

2

2

1
pp sV = (20)

4.3. Invertibility Condition
If the family of lines described by sp=η (η >0) are drawn
for varying values of η, the tracking error vector will fall
into one of these subsets of the phase space at each instant
of time. However, each one of the members of this family
corresponds to a different situation entailing different sc

values. Therefore the relation Ψ must be invertible. In other
words, ∃ sp ∈ ℜ for ∀ sc ∈ ℜ.
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These three conditions clearly stipulate that the Ψ relation
must be such that the horizontal axes of sc vs. Vc and sp vs.
Vp must be mapped onto each other for simultaneous
minimization of the described quadratic functions.

Theorem 2. All monotonically increasing continuous
functions can serve as the Ψ relation, which satisfy the
three conditions discussed in Sec. 4.1-Sec.4.3, for the
establishment of an equivalency between the sliding mode
control of the plant and the sliding mode learning inside the
controller.

Proof 2: Stability in the Lyapunov sense requires the
negative definiteness of the time derivative of the Lyapunov
function in (20). Utilizing (21) leads to the time derivative
in (22).
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Since the partial derivative ∂Ψ-1(sc)/∂sc is positive due to
the monotonically increasing behavior of Ψ, the bound
parameter given in (12) enforces value of sc to zero level, or
equivalently, sp to zero. It is straightforward to prove that a
hitting occurs in finite time (See Proof 1). ÿ

5. Simulation Studies

In this study, a coupled double pendulum system, which is
illustrated in Fig. 2, is used to elaborate the performance of
the method discussed. The differential equations
characterizing the behavior of the system are given in (23)-
(26), in which the angular positions and the angular
velocities define the state vector. The control inputs, which
are denoted by τ1 and τ2, are provided to the relevant
pendulum by the base servomotors. The model introduced
in this section has been studied by Spooner and Passino
[20], who discuss the decentralized adaptive control using

radial basis neural networks. The parameters of the plant
are given in [20], which states that as b<l, the two
pendulums repel each other in the upright position.
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42 xx =& (24)
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where, g=9.81 m/s2 is the gravitational acceleration
constant. In the simulation studies presented, the
architecture discussed in the second section is adopted with
9 hidden neurons, i.e. h=9. Based on the tracking error
vector, first the value of ( )ees p &,  is evaluated and this

quantity is passed through the Ψ function to get the value of
sc, which is used in the dynamic adjustment mechanism. In
evaluating the value of the quantity sp, the slope parameter
of the switching line (λ) has been set to unity for both
controllers.

To study the effects of observation noise, which is very
likely to be encountered in practice, the information used by
the controller is corrupted by a Gaussian distributed random
noise having zero mean and variance equal to 0.33e-6. The
peak magnitude of the noise signal is within ±1e-3 with
probability very close to unity. The second difficulty is the
nonzero positional initial conditions. In order to
demonstrate the reaching mode performance of the
algorithm, the first pendulum is moved to π/6 radians and
the second one is moved to –π/4 radians initially. The
reference trajectory used in the simulations is depicted in
Fig. 3.

It should be pointed out that once the error or the rate of
error comes very close to zero, the adjustment mechanism
is driven solely by the outputs of the hidden neurons whose
prototype vectors are close to the vector 02x1. The change in
the outputs of these neurons is due to the noise sequence.
Since the bound of perturbing signal is known, the dynamic
equation of the parameter yi can be modified so that a
reduction on the unnecessary adjustment activity is
obtained and the convergent behavior of the parameters can
still be achieved by utilizing a sufficiently hard threshold
function given by (27). The value of threshold is denoted by
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nb and has been set to 2e-3 in the simulations. The modified
form of the update equation is given in (28).
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As the Ψ relation, the following selection is made parallel
to the conditions discussed in the fourth section.

( ) pp ss =Ψ (29)

Furthermore, in order to reduce the chattering effect in the
sliding mode, the function in (30) has been used instead of
the sgn function in the dynamic strategy described in (28),
and initially, the adjustable parameters are all set to zero.
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Under these conditions, phase plane motions depicted in
Fig. 4 are obtained. The trend in position and velocity errors
clearly stipulate that the algorithm is able to achieve precise
tracking objective with a response characterized by λ. Due
to the space limit, the behavior of the torque signals and the
evolution in the parameter space is omitted.

During the simulations, the bounds for the uncertainties
denoted by k for both pendulums has been set to 1000. The
simulation stepsize has been selected as 2.5 msec and the
time required to perform the simulation has been measured
as 12.32 seconds on a Pentium III-600 PC running Matlab
5.2 software, indicating that the applicability of the
algorithm in real time.

6. Conclusions

In this paper, a novel method for establishing a sliding
motion in the dynamics of a nonlinear plant is discussed.
The method is based on the adoption of a nonlinear
dynamic adjustment strategy in a GRBFNN based
controller. The task is to drive the tracking error vector to
the sliding manifold and keep it on the manifold forever.
What makes the proposed algorithm so attractive in this
sense is the fact that the sliding mode control of the plant is
achieved while an equivalent regime is imposed on the
controller parameters. Contrary to what is known in the
field of variable structure controller design, the governing
equations of the plant under control are assumed to be
unknown and the lack of this knowledge is left as a
difficulty alleviated by a learning controller.

As discussed throughout the paper, the problems that arise
due to the uncertainties are alleviated by incorporating the
robustness provided by the VSS technique into the
proposed approach. A further attractiveness of the
algorithm is the fact that the controller for each pendulum
possesses only nine adjustable parameters. The
computational requirement is not therefore excessive.

Finally, the simulation results presented demonstrate that
the algorithm discussed is able to compensate deficiencies
caused by the imperfect observations of the state variables,
large initial errors and complex plant dynamics. From these
points of view, the method proposed is highly promising in
control engineering practice.
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Figure 1: Structure of the control system

Figure2: Physical structure of the double pendulum system

Figure 3: Reference state trajectories

Figure 4: Behavior in the phase space
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