
Microprocessor Implementation of Fuzzy Systems and Neural
Networks

Jeremy Binfet
Micron Technology

jbinfet@micron.com

Bogdan M. Wilamowski
University of Idaho

wilam@ieee.org

Abstract
Systems were implemented on8-bit Motorola 68HC711E9
microcontroller. The on-board features of the HC711 are
512 bytes of RAM and EEPROM and 12K bytes of UV
erasable EPROM. The processor was used with an 8 MHz
crystal, allowing an internal clock frequency of 2 MHz.
ICC11 for Windows V5 was the compiler used to program
the HC711E9. In the case of fuzzy systems three different
membership functions were used: trapezoidal, triangular, and
Gaussian and two different defuzzification processes: Zadeh
and Tagagi-Sugeno. In the case of neural networks all
architectures were developed and optimized with a help of
SNNS. Both, layered and fully connected structures were
investigated. In the case of neural controllers implemented
on a microprocessor the code is simpler, much shorter; the
processing time is comparable with fuzzy controllers.
Control surfaces obtained from neural controllers also do
not exhibit the roughness of fuzzy controllers

1 Introduction

Significant amount of research has been devoted in the
development of fuzzy controllers [1][2][3][4]. In
hardware, fuzzy systems dominate current trends in both
microprocessor applications [5] and in custom designed
VLSI chips [6]. Fuzzy controllers are especially useful for
nonlinear systems. Since membership functions and fuzzy
rules are chosen arbitrarily and therefore, fuzzy controllers
are often good, but not optimal. Control surfaces obtained
from fuzzy controllers are rough, which can cause unstable
control. On other hand neural networks usually require a
computation of tangent hyperbolic activation functions.
This tasks it often too complex for simple microprocessors.
Even though neural networks are primarily implemented in
software, their good approximation properties make them
an attractive alternative in hardware [7][8].
Microprocessor realization can be easily achieved by using
special activation functions such as the Elliot that are easy
to compute, which allows fast execution time. Devices
such as analog to digital and digital to analog converters
must be also be used, but since they are asynchronous
devices, there is only a slight additional penalty.
In presented approach tangent hyperbolic functions were
replaced by Elliot function and neural controllers were
implemented on simple HC11 Motorola microprocessors.
With proposed approach neural network implementations
resulted with shorter code, faster operation, and much

more accurate results. The purpose of this document is to
compare several controllers for the same desired control
surface implemented in the popular HC11 micro-controller
using various fuzzy and neural network architectures.

2 Fuzzy controllers

Fuzzy controllers are used to provide solutions to control
problems that cannot be described by complex
mathematical models. They are relatively easy to design
and produce reasonable results. It is the simplicity that
makes them more attractive than neural controllers. With
unlimited resources such as memory or chip space, fuzzy
controllers can handle problems having multiple inputs and
outputs. However, in most cases, resources are limited,
which causes two problems. The first is that for numerous
inputs, each one has to have a small number of
membership functions. This is because the fuzzy table
grows exponentially with each input added. The second
problem is that small membership functions yield very
poor results. Although fuzzy controllers can theoretically
have multiple inputs and outputs, when they are
implemented in hardware, a decision has to be made on
which parameter is more important. That is, low error
with few inputs or high error with many inputs.

The basic fuzzy principle is similar to that of
Boolean logic except that there are more than two states
because fuzzy variables can have any value from 0 to 1.
So for fuzzy logic, the min, max and not operations are
used. Instead of the AND function, min or ∧ is used while
the max or ∨ is used for the OR operations. For NOT
operations, the value is subtracted from one to produce the
inverse. This means that the NOT of 0.4 becomes 0.6.
Examples of each function are below:

A minus one A -1 A
Cor BA, of luelargest va C}B,max{A,CBA
Cor BA, of aluesmallest v C}B,min{A,CBA

−⇒

−⇒∨∨
−⇒∧∧

These rules are also know as Zadeh AND, OR and NOT
operators [22].

Fuzzy controllers use several conversion
processes before the final output is produced. First, the
analog inputs are converted into fuzzy variables. Usually
3 to 9 variables are generated for each input. Next, the
fuzzy rules are applied, which produces the output fuzzy
variables. Finally in the last step, the fuzzy variables are
converted back into analog values. There are two types of
fuzzy controllers commonly used today, Zadeh [9] and

0-7803-7044-9/01/$10.00 ©2001 IEEE 234

Tagagi-Sugeno [10]. Block diagrams of each are below in
Figures 1 and 2:

fu
zz

ifi
er

s

m
in

 o
pe

ra
to

rs

fuzzy2 inputs
(analog)

1 output
(analog)

de
fu

zz
yf

ie
r

fuzzy fuzzy

m
ax

 o
pe

ra
to

rs

Fig 1. Block diagram for Zadeh fuzzy controller.

fu
zz

ifi
er

s

m
in

 o
pe

ra
to

rs

fuzzy2 inputs
(analog)

1 output
(analog)

no
rm

al
iz

at
io

n

fuzzy

w
ei

gh
te

d
su

m

fuzzy

Fig 2. Block diagram for Tagagi-Sugeno.

The first step in both methods is fuzzifying the inputs. There are
three rules that need to be applied when designing the
membership function.

1. Each point of an input should belong to at least
one of the fuzzy membership functions.

2. The sum of two overlapping functions should
never exceed one.

3. For higher accuracy more membership functions
should be used. However, this can cause
problems in the operation of the controller and
also makes the fuzzy table larger.

The next step is creating the fuzzy table. A fuzzy table is,
in a sense, a grid mapping of the control surface. For
Zadeh controllers, the table depends on the output
membership function. For the Tagagi-Sugeno method, actual
output values are used. Finally, the result can be defuzzified
using equation 1.

∑

∑

=

== n

1k
k

n

1k
kck

z

zz
 Output (1)

where:
n = Number of membership functions
zk = Fuzzy output variables
zck = Analog values from table

3. Neural Networks

 The basic element of a network is the neuron,
which is simple structure consisting of inputs and outputs.
Its operation consists of summing the inputs into a net
value and then processing the net value through its
activation function, producing a final output. A neuron
can supply more than one output, but each output will be
the same. The activation function is what allows the
network to function and is also responsible for the smooth
control characteristics. There are many different types of
activation functions that can be used, but some of the more

common are Sigmoidal, Tangent Hyperbolic, Linear or
Identity and the Elliot.

Networks are comprised of neurons connected in
a specific fashion. There is a weight or gain associated
with each connection and there is a constant bias or gain
coupled with each neuron. The two different types of
networks are cascade and MLP (multi layer perceptron).
Cascade networks have one neuron in each layer arranged
in an array structure. MLP networks are similar with the
exception that there can be any number of neurons in each
layer. There are also two types of network connections,
fully connected and feed forward. In a fully connected
network, input connections exist from all neurons in
previous layers and also the inputs of the network. Feed
forward designs only have connections between layers.
Examples of each type of network can be seen in Figures 3
and 4.

out

Fig. 3. MLP network with feed forward connection.

out

Fig. 4. Cascade network fully connected.

There are advantages to using each type of
connection. Feed forward connected networks are simple
in nature, which make them quite easy to understand and
debug. This stems from the fact that the network can be
divided into layers, allowing one layer can be analyzed at a
time. On the down side, feed forward coupled networks
lack the computational power that fully connected
networks have. This requires larger networks to produce
the same result. Thus, making fully connected networks a
better choice.

It is advantageous to use a cascade network for
several reasons. The first is that a cascade network can
produce better results than a MLP network using fewer
neurons. This leads to the next advantage, which is that
the overall size of the networks will be smaller with less
weights and connections to deal with. Therefore, cascade
networks are easier to implement in hardware, because

235

they require fewer transistors and connections, which
makes the circuit easier to create and debug.

Training is the most essential part of constructing
a neural network. It is what determines all the weights
and biases of the network so that it can properly function.
To train a network, a list file has to be generated that has
the inputs matched with their corresponding output(s),
(which is then used with a training algorithm. The most
common type of training is error back propagation. A
block diagram of this process is shown in Figure 5.

Weights

V

Neurons Weights Neurons

W

Layer j Layer k

net j net k

y = f(net j) o = f(net k)
1

2

K

1

J

2

f' (net j)

-+

d
d - o

initial
weight
vector

w j

∆∆∆∆W = ηδδδδoy

δδδδo = [(dk-ok)f'(netk)]w jδδδδo

η

Output
vector

Desired
output
vector

Input
vector

learning
constant

η
δδδδy = w jδδδδof'(netj)

∆∆∆∆V = ηδδδδyz
f' (net j)

z

Feed
forward

Back-
propagation

Fig. 5. Block diagram of Error Back Propagation training
algorithm.

This type of algorithm uses single pattern vector, which
is one set of inputs and output(s), in each cycle. First, the inputs
are propagated through the network using initial weights and
biases. At the same time, the output values of all the neurons in
each hidden layer are stored in a vector, y, to be used later in the
training algorithm. Next, the training error and the local error are
computed. Equation (2) describes the training error where d is
the desired output, o is the actual output and E is the error.
Initially the error is zero.

odEE −+←
2
1 (2)

Equation 3 gives the local error e.

ode −= (3)

Now, the error signal vectors, δδδδo and δδδδy, for the output
layer and the hidden layers respectively, must be
calculated using the activation function derivative as
shown in Equations (4) and (5).

() ()[]ko netfodδ '−= (4)

()jojy netfδwδ '= (5)

Note that the weight vector (wj) used in Equation (5) is the
vector that was used in the feed forward phase. The next

step is updating the weights for the output layer. First, the
change in weights is calculated using Equation (6) where η
is the learning constant and then the weights are updated
using Equation (7).

 = ko)('η∆ netfδ W (6)

WWW ∆+← (7)

The hidden layer weights are updated in the same fashion
except the error signal vector of the hidden layer (δδδδy) is
used as in Equations (8) and (9).

 = jy)('η∆ netfδ V (8)

VVV ∆+← (9)

After all the weights have been updated, the process
repeats for each pattern in the list file. When all of the
training patterns have been used, the training error E is
compared to a goal error GE. If E > GE then the whole
cycle will be repeated until the desired error is reached.
For some networks it is impossible for the goal error to be
reached, so the network must be discarded and a different
network must then be trained. It runs on both UNIX and
Windows platforms. This software is ideal for training
networks that use common activation functions. Once a
pattern file has been loaded, networks can be easily altered
until the desired result is reached.

4 Microprocessor Implementation of Fuzzy Systems

Designing a microprocessor fuzzy controller is relatively
simple and straightforward. First, the input and output
membership functions and the fuzzy table have to be
created as for any fuzzy controller. Next, code has to be
generated which will describe the processes of the
controller. The code then has to be compiled and
downloaded into the microprocessor. Finally, the analog
to digital and digital to analog converters have to be wired
to the processor.

 For microprocessor implementation trapezoidal
membership functions are primarily used. In order to store
this function, only four bytes are required x1, x2, x3, and x4
(see Fig. 6). The triangular membership function is a special
case of trapezoidal where x2=x3.

1

x1 x2 x3 x4
Fig. 6. Representation of the membership function in

microprocessor.

236

For all controllers, the same rule table for each
method was used for the different types of membership
functions. That is, all the Zadeh controllers used the same
table and all the Tagagi-Sugeno controllers used the same
table. The first two examples used the Zadeh [9] approach
and for the following two examples, the Tagagi-Sugeno [10]
approach was implemented. All controllers were designed to
emulate the control surface shown in Fig. 7. Two different
membership functions were used: trapezoidal (Fig. 8 and 10),
triangular (Fig. 9 and 11). Error comparisons are shown in
Table 1.

Fig. 7. Required control surface.

Fig. 8. Control surface obtained with trapezoidal membership
functions and Zadeh approach.

Fig. 9. Control surface obtained with triangular membership
functions and Zadeh approach.

Fig. 10. Control surface obtained with trapezoidal
membership functions and Tagagi-Sugeno approach.

Fig. 11. Control surface obtained with triangular membership
functions and Tagagi-Sugeno approach.

Table 1. Error comparison for various types of fuzzy controllers
 Type of controller

7 membership functions for each input and 7 for output
length of

code in bytes
processing
time (ms)

Error
(SSE)

1 Zadeh fuzzy controller with trapezoidal membership function 5009 1.95 908.4
2 Zadeh fuzzy controller with triangular membership function 4140 1.95 644.4
3 Tagagi-Sugeno fuzzy controller with trapezoidal membership function 2511 28.5 296.5
4 Tagagi-Sugeno fuzzy controller with triangular membership function 1642 28.5 210.8

237

 From the table it can be seen that the Tagagi-
Sugeno approach is far superior over the Zadeh one. The
Tagagi-Sugeno method produces lower errors and uses less
memory. The sum of the squared errors, SSE, is calculated
by squaring and then summing the differences between the
desired and actual outputs. However, the Tagagi-Sugeno
algorithm has a noticeably larger execution time. It is also
surprising that the surface obtained from the Tagagi-Sugeno
method using the triangular membership function produced
the best result.
 All fuzzy controllers were designed to be
implemented on Motorola's 68HC711E9 micro-controller.
This is a low cost, 8-bit microprocessor. The on-board
features of the HC711 are 512 bytes of RAM and
EEPROM and 12K bytes of UV erasable EPROM. The
processor was used with an 8 MHz crystal, allowing an
internal clock frequency of 2 MHz.
 Instead of programming the EPROM for each
controller, an emulator was used. The emulator was used
because it has 12K bytes of RAM instead of EPROM that
can be easily downloaded to. Also, the emulator runs a
version of Buffalo Bug with out loosing any of the
memory space. Buffalo Bug is an onbaord assembler that
also allows a serial interface with a PC using a RS232
chip. Thus, by using the emulator, code can be changed,
downloaded and tested very quickly and easily. The
program ICC11 for Windows was used because it is
capable of converting C or assembly code into the *.S19
and this software also has a terminal window for
interfacing with the emulator.

5 Microprocessor Implementation of Neural Networks

Neural network implementations usually require
computation of the sigmoidal function [1][7][8][12]

()net
netf

−+
=

exp1
1)((11)

for unipolar neurons, or

() 1
2exp1

2)tanh()(−
−−

==
net

netnetf (12)

for bipolar neurons. These functions are relatively difficult
to compute, making implementation on a microprocessor
difficult. If the Elliott function is used:

net
netnetf

+
=

1
)((13)

instead of the sigmoidal, then the computations are
relatively simple and the results are almost as good as in the
case of sigmoidal function.

Neural controllers were implemented on
Motorola’s 68HC711E9 micro controller with the code
written in C language. A block diagram of a neural
controller is shown in Fig. 12.

A-
D

 c
on

ve
rte

rs

C
al

cu
la

tio
n

of
 ne
t1

va
lu

es
 fo

r t
he

 fi
rs

t l
ay

er

 inputs
(digital)

 inputs
(analog) output

w
ei

gh
te

d
av

er
ag

e

net1
values

out1
values

El
lio

tt
fu

nc
tio

n
ca

lc
ul

at
io

n

C
al

cu
la

tio
n

of
 ne
t2

va
lu

es
 fo

r t
he

 s
ec

on
d

la
ye

r

net2
values

out2
values

El
lio

tt
fu

nc
tio

n
ca

lc
ul

at
io

n

Fig. 12. Block diagram of a neural controller implemented on a
microprocessor.

 During the design process of a fuzzy controller,
the designer must know what output should be expected
for given input values. More precisely, what the output
value is for a given combination of input membership
functions. The exact same information can be used to
train the neural network. This of course, must be done
using a specially written program or by using ready
software. For microprocessor implementation, the
Stuttgart Neural Network Simulator (SNNS) [11] was
used, since the Elliott activation function is implemented
in the program. Many network configurations were tested.
The goal was to keep the network as simple as possible
while achieving the lowest possible error. Different types
of networks that were tested include a) multiple neurons
in one hidden layer (MLP), b) multiple neurons in cascade
and c) multiple neurons in multiple hidden layers. RProp
was the training algorithm used to train the networks. It
proved to have the fastest convergence time and provided
the lowest errors. Figs. 13, 14, and 15 show obtained
control surfaces for several architectures and Table 2
shows error comparison.

Fig. 13 Control surfaces of neural controller with two
layer fully connected 2-1-1-1-1 architecture (4 neurons).

238

Fig. 14 Control surfaces of neural controller with two
layer fully connected 2-1-1-1-1-1-1 architecture (6
neurons).

Fig. 15 Control surfaces of neural controller with two
layer feed froward 2-6-1 architecture (7 neurons).

Table 2. Error comparison for various type of neural controllers

 Type of controller length of code
in bytes

processing
time (ms)

Error
(SSE)

1 Neural network with 4 neurons in cascade 705 1.72 0.5559
2 Neural network with 6 neurons in cascade 1119 3.3 0.0895
3 Neural network with 7 neurons in layers 840 3.8 0.2902

6 Conclusion

Neural controllers implemented on a microprocessor the
code is simpler, much shorter; the processing time is
comparable with fuzzy controllers. Control surfaces
obtained from neural controllers also do not exhibit the
roughness of fuzzy controllers that can lead to unstable or
raw control. The only drawback of neural controllers is
that the design process is more complicated than that of
fuzzy controllers. However, this difficulty can be easily
overcome with proper design tools. One severe
disadvantage of a fuzzy system is its limited ability of
handling problems with multiple inputs. This is not a serious
limitation of neural networks. Control surfaces obtained
from neural controllers also do not exhibit the roughness
of fuzzy controllers that can lead to unstable or raw
control.

7 References

[1] Wilamowski B. M. "Neuro-Fuzzy Systems and its
applications" tutorial at 24th IEEE International
Industrial Electronics Conference (IECON'98) August 31
- September 4, 1998, Aachen, Germany, vol. 1, pp. t35-
t49.

[2] Kosko B., (1993) Fuzzy Thinking, The New Science of
Fuzzy Logic. Hyperion, New York.

[3] Passino, K. M., S. Yurkovich, Fuzzy Control,
Addison-Wesley, 1998.

[4] Wang, L., Adaptive Fuzzy Systems and Control,
Design and Stability Analysis, PTR Prentice Hall, 1994.

[5] Wilamowski B.M. and J. Binfet, "Do Fuzzy
Controllers Have Advantages over Neural Controllers in
Microprocessor Implementation" Proc. of. 2-nd
International Conference on Recent Advances in
Mechatronics - ICRAM'99, Istanbul, Turkey, pp. 342-
347, May 24-26, 1999.

[6] Wilamowski B. M. and R. C. Jaeger, "Neuro-Fuzzy
Architecture for CMOS Implementation" accepted for IEEE
Transaction on Industrial Electronics.

[7] Hornik, K., “Multilayer Feedforward Networks are
Universal Approximators,” Neural Networks, v.2, pp
359-366, 1989.

[8] Funahashi, K., “On the Approximate Realization of
Continuous Mappings by Neural Networks,” Neural
Networks, v.2, pp 183-192, 1989.

[9] L. A. Zadeh, Fuzzy sets. Information and Control, New
York, Academic Press vol 8, pp. 338-353, 1965.

[10] T. Takagi and M. Sugeno, Derivation of Fuzzy Control
Rules from Human Operator's Control Action. Proc. of the
IFAC Symp. on Fuzzy Inf. Knowledge Representation and
Decision Analysis, pp. 55-60, July 1989.

[11] Stuttgart Neural Network Simulator SNNS
http://www. informatik.uni-
stuttgart.de/ipvr/bv/projekte/snns/announce.html

[12] Wilamowski, B. M., "Neural Networks and Fuzzy
Systems" chapters 124.1 to 124.8 in The Electronic
Handbook. CRC Press 1996, pp. 1893-1914.

239

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

