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Abstract 
Systems were implemented on8-bit  Motorola 68HC711E9 
microcontroller.  The on-board features of the HC711 are 
512 bytes of RAM and EEPROM and 12K bytes of UV 
erasable EPROM.  The processor was used with an 8 MHz 
crystal, allowing an internal clock frequency of 2 MHz.  
ICC11 for Windows V5 was the compiler used to program 
the HC711E9.  In the case of fuzzy systems three different 
membership functions were used: trapezoidal, triangular, and 
Gaussian and two different defuzzification processes: Zadeh 
and Tagagi-Sugeno. In the case of neural networks all 
architectures were developed and optimized with a help of 
SNNS. Both, layered and fully connected structures were 
investigated. In the case of neural controllers implemented 
on a microprocessor the code is simpler, much shorter; the 
processing time is comparable with fuzzy controllers. 
Control surfaces obtained from neural controllers also do 
not exhibit the roughness of fuzzy controllers 
 

1    Introduction 
 
Significant amount of research has been devoted in the 
development of fuzzy controllers [1][2][3][4].  In 
hardware, fuzzy systems dominate current trends in both 
microprocessor applications [5] and in custom designed 
VLSI chips [6].  Fuzzy controllers are especially useful for 
nonlinear systems. Since membership functions and fuzzy 
rules are chosen arbitrarily and therefore, fuzzy controllers 
are often good, but not optimal.  Control surfaces obtained 
from fuzzy controllers are rough, which can cause unstable 
control.  On other hand neural networks usually require a 
computation of tangent hyperbolic activation functions. 
This tasks it often too complex for simple microprocessors.  
Even though neural networks are primarily implemented in 
software, their good approximation properties make them 
an attractive alternative in hardware [7][8].  
Microprocessor realization can be easily achieved by using 
special activation functions such as the Elliot that are easy 
to compute, which allows fast execution time.  Devices 
such as analog to digital and digital to analog converters 
must be also be used, but since they are asynchronous 
devices, there is only a slight additional penalty.   
In presented approach tangent hyperbolic functions were 
replaced by Elliot function and neural controllers were 
implemented on simple HC11 Motorola microprocessors. 
With proposed approach neural network implementations 
resulted with shorter code, faster operation, and much 

more accurate results. The purpose of this document is to 
compare several controllers for the same desired control 
surface implemented in the popular HC11 micro-controller 
using various fuzzy and neural network architectures. 
 

2   Fuzzy controllers 
 
Fuzzy controllers are used to provide solutions to control 
problems that cannot be described by complex 
mathematical models.  They are relatively easy to design 
and produce reasonable results.  It is the simplicity that 
makes them more attractive than neural controllers.  With 
unlimited resources such as memory or chip space, fuzzy 
controllers can handle problems having multiple inputs and 
outputs.  However, in most cases, resources are limited, 
which causes two problems.  The first is that for numerous 
inputs, each one has to have a small number of 
membership functions.  This is because the fuzzy table 
grows exponentially with each input added.  The second 
problem is that small membership functions yield very 
poor results.  Although fuzzy controllers can theoretically 
have multiple inputs and outputs, when they are 
implemented in hardware, a decision has to be made on 
which parameter is more important.  That is, low error 
with few inputs or high error with many inputs. 

The basic fuzzy principle is similar to that of 
Boolean logic except that there are more than two states 
because fuzzy variables can have any value from 0 to 1.  
So for fuzzy logic, the min, max and not operations are 
used.  Instead of the AND function, min or ∧ is used while 
the max or ∨ is used for the OR operations.  For NOT 
operations, the value is subtracted from one to produce the 
inverse.  This means that the NOT of 0.4 becomes 0.6.  
Examples of each function are below: 

A minus one        A         -1            A
Cor  BA, of luelargest va  C}B,max{A,CBA
Cor  BA, of aluesmallest v  C}B,min{A,CBA

−⇒

−⇒∨∨
−⇒∧∧

 

These rules are also know as Zadeh AND, OR and NOT 
operators [22]. 

Fuzzy controllers use several conversion 
processes before the final output is produced.  First, the 
analog inputs are converted into fuzzy variables.  Usually 
3 to 9 variables are generated for each input.  Next, the 
fuzzy rules are applied, which produces the output fuzzy 
variables.  Finally in the last step, the fuzzy variables are 
converted back into analog values.  There are two types of 
fuzzy controllers commonly used today, Zadeh [9] and 

0-7803-7044-9/01/$10.00 ©2001 IEEE 234



 

Tagagi-Sugeno [10].  Block diagrams of each are below in 
Figures 1 and 2: 
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Fig 1. Block diagram for Zadeh fuzzy controller. 
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Fig 2. Block diagram for Tagagi-Sugeno. 
 
 
The first step in both methods is fuzzifying the inputs.  There are 
three rules that need to be applied when designing the 
membership function. 

1. Each point of an input should belong to at least 
one of the fuzzy membership functions. 

2. The sum of two overlapping functions should 
never exceed one. 

3. For higher accuracy more membership functions 
should be used.  However, this can cause 
problems in the operation of the controller and 
also makes the fuzzy table larger. 

The next step is creating the fuzzy table.  A fuzzy table is, 
in a sense, a grid mapping of the control surface.  For 
Zadeh controllers, the table depends on the output 
membership function.  For the Tagagi-Sugeno method, actual 
output values are used.  Finally, the result can be defuzzified 
using equation 1.  

∑

∑

=

== n

1k
k

n

1k
kck

z

zz
 Output    (1) 

where: 
n = Number of membership functions 
zk = Fuzzy output variables 
zck = Analog values from table  
 

3.  Neural Networks 
 

 The basic element of a network is the neuron, 
which is simple structure consisting of inputs and outputs.  
Its operation consists of summing the inputs into a net 
value and then processing the net value through its 
activation function, producing a final output.  A neuron 
can supply more than one output, but each output will be 
the same.  The activation function is what allows the 
network to function and is also responsible for the smooth 
control characteristics.  There are many different types of 
activation functions that can be used, but some of the more 

common are Sigmoidal, Tangent Hyperbolic, Linear or 
Identity and the Elliot.   

Networks are comprised of neurons connected in 
a specific fashion.  There is a weight or gain associated 
with each connection and there is a constant bias or gain 
coupled with each neuron.  The two different types of 
networks are cascade and MLP (multi layer perceptron).  
Cascade networks have one neuron in each layer arranged 
in an array structure.  MLP networks are similar with the 
exception that there can be any number of neurons in each 
layer.  There are also two types of network connections, 
fully connected and feed forward.  In a fully connected 
network, input connections exist from all neurons in 
previous layers and also the inputs of the network.  Feed 
forward designs only have connections between layers.  
Examples of each type of network can be seen in Figures 3 
and 4. 

out

 
Fig. 3. MLP network with feed forward connection. 

out

 
Fig. 4. Cascade network fully connected. 
 

There are advantages to using each type of 
connection.  Feed forward connected networks are simple 
in nature, which make them quite easy to understand and 
debug.  This stems from the fact that the network can be 
divided into layers, allowing one layer can be analyzed at a 
time.  On the down side, feed forward coupled networks 
lack the computational power that fully connected 
networks have.  This requires larger networks to produce 
the same result.  Thus, making fully connected networks a 
better choice.   

It is advantageous to use a cascade network for 
several reasons.  The first is that a cascade network can 
produce better results than a MLP network using fewer 
neurons.  This leads to the next advantage, which is that 
the overall size of the networks will be smaller with less 
weights and connections to deal with.  Therefore, cascade 
networks are easier to implement in hardware, because 
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they require fewer transistors and connections, which 
makes the circuit easier to create and debug. 

Training is the most essential part of constructing 
a neural network.   It is what determines all the weights 
and biases of the network so that it can properly function.  
To train a network, a list file has to be generated that has 
the inputs matched with their corresponding output(s), 
(which is then used with a training algorithm.  The most 
common type of training is error back propagation.  A 
block diagram of this process is shown in Figure 5. 
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Fig. 5.  Block diagram of Error Back Propagation training 
algorithm. 
 

This type of algorithm uses single pattern vector, which 
is one set of inputs and output(s), in each cycle. First, the inputs 
are propagated through the network using initial weights and 
biases.  At the same time, the output values of all the neurons in 
each hidden layer are stored in a vector, y, to be used later in the 
training algorithm.  Next, the training error and the local error are 
computed.  Equation (2) describes the training error where d is 
the desired output, o is the actual output and E is the error.  
Initially the error is zero. 
 

odEE −+←
2
1   (2) 

 
Equation 3 gives the local error e. 
 

ode −=    (3) 
 

Now, the error signal vectors, δδδδo and δδδδy, for the output 
layer and the hidden layers respectively, must be 
calculated using the activation function derivative as 
shown in Equations (4) and (5). 
 

( ) ( )[ ]ko netfodδ '−=    (4) 
 

( )jojy netfδwδ '=    (5) 
 

Note that the weight vector (wj) used in Equation (5) is the 
vector that was used in the feed forward phase.  The next 

step is updating the weights for the output layer.  First, the 
change in weights is calculated using Equation (6) where η 
is the learning constant and then the weights are updated 
using Equation (7). 
 

 = ko )('η∆ netfδ W    (6) 
 

WWW ∆+←       (7) 
 
The hidden layer weights are updated in the same fashion 
except the error signal vector of the hidden layer (δδδδy) is 
used as in Equations (8) and (9). 
 

 = jy )('η∆ netfδ V    (8) 
 

VVV ∆+←       (9) 
 

After all the weights have been updated, the process 
repeats for each pattern in the list file.  When all of the 
training patterns have been used, the training error E is 
compared to a goal error GE.  If E > GE then the whole 
cycle will be repeated until the desired error is reached.  
For some networks it is impossible for the goal error to be 
reached, so the network must be discarded and a different 
network must then be trained. It runs on both UNIX and 
Windows platforms.  This software is ideal for training 
networks that use common activation functions.  Once a 
pattern file has been loaded, networks can be easily altered 
until the desired result is reached.    
 

4   Microprocessor Implementation of Fuzzy Systems 
 
Designing a microprocessor fuzzy controller is relatively 
simple and straightforward.  First, the input and output 
membership functions and the fuzzy table have to be 
created as for any fuzzy controller.  Next, code has to be 
generated which will describe the processes of the 
controller.  The code then has to be compiled and 
downloaded into the microprocessor.  Finally, the analog 
to digital and digital to analog converters have to be wired 
to the processor.   

 For microprocessor implementation trapezoidal 
membership functions are primarily used.  In order to store 
this function, only four bytes are required x1, x2, x3, and x4 
(see Fig. 6). The triangular membership function is a special 
case of trapezoidal where x2=x3.  

 

1

x1 x2 x3 x4  
Fig. 6. Representation of the membership function in 

microprocessor. 
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For all controllers, the same rule table for each 
method was used for the different types of membership 
functions.  That is, all the Zadeh controllers used the same 
table and all the Tagagi-Sugeno controllers used the same 
table.  The first two examples used the Zadeh [9] approach 
and for the following two examples, the Tagagi-Sugeno [10] 
approach was implemented.  All controllers were designed to 
emulate the control surface shown in Fig. 7. Two different 
membership functions were used: trapezoidal (Fig. 8 and 10), 
triangular (Fig. 9 and 11). Error comparisons are shown in 
Table 1.   

 
Fig. 7. Required control surface. 
 

 
Fig. 8. Control surface obtained with trapezoidal membership 
functions and Zadeh approach.  
 

 
Fig. 9. Control surface obtained with triangular membership 
functions and Zadeh approach. 
  

 
Fig. 10. Control surface obtained with trapezoidal 
membership functions and Tagagi-Sugeno approach. 

 
Fig. 11. Control surface obtained with triangular membership 
functions and Tagagi-Sugeno approach. 

 
Table 1.  Error comparison for various types of fuzzy controllers 
 Type of controller  

7 membership functions for each input and 7 for output 
length of 

code in bytes 
processing 
time (ms) 

Error  
(SSE) 

1 Zadeh fuzzy controller with trapezoidal membership function  5009 1.95 908.4
2 Zadeh fuzzy controller with triangular membership function 4140 1.95 644.4
3 Tagagi-Sugeno fuzzy controller with trapezoidal membership function  2511 28.5 296.5
4 Tagagi-Sugeno fuzzy controller with triangular membership function   1642 28.5 210.8
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 From the table it can be seen that the Tagagi-
Sugeno approach is far superior over the Zadeh one.  The 
Tagagi-Sugeno method produces lower errors and uses less 
memory.  The sum of the squared errors, SSE, is calculated 
by squaring and then summing the differences between the 
desired and actual outputs.  However, the Tagagi-Sugeno 
algorithm has a noticeably larger execution time.  It is also 
surprising that the surface obtained from the Tagagi-Sugeno 
method using the triangular membership function produced 
the best result.   
 All fuzzy controllers were designed to be 
implemented on Motorola's 68HC711E9 micro-controller.  
This is a low cost, 8-bit microprocessor.  The on-board 
features of the HC711 are 512 bytes of RAM and 
EEPROM and 12K bytes of UV erasable EPROM.  The 
processor was used with an 8 MHz crystal, allowing an 
internal clock frequency of 2 MHz.   
 Instead of programming the EPROM for each 
controller, an emulator was used.  The emulator was used 
because it has 12K bytes of RAM instead of EPROM that 
can be easily downloaded to.  Also, the emulator runs a 
version of Buffalo Bug with out loosing any of the 
memory space.  Buffalo Bug is an onbaord assembler that 
also allows a serial interface with a PC using a RS232 
chip.  Thus, by using the emulator, code can be changed, 
downloaded and tested very quickly and easily.  The 
program ICC11 for Windows was used because it is 
capable of converting C or assembly code into the *.S19 
and this software also has a terminal window for 
interfacing with the emulator. 
 
5  Microprocessor Implementation of Neural Networks 
  
Neural network implementations usually require 
computation of the sigmoidal function [1][7][8][12] 

( )net
netf

−+
=

exp1
1)(    (11) 

for unipolar neurons, or 

( ) 1
2exp1

2)tanh()( −
−−

==
net

netnetf   (12) 

for bipolar neurons. These functions are relatively difficult 
to compute, making implementation on a microprocessor 
difficult.  If the Elliott function is used: 
  

net
netnetf

+
=

1
)(    (13) 

instead of the sigmoidal, then the computations are 
relatively simple and the results are almost as good as in the 
case of sigmoidal function.  

Neural controllers were implemented on 
Motorola’s 68HC711E9 micro controller with the code 
written in C language.  A block diagram of a neural 
controller is shown in Fig. 12. 
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Fig. 12. Block diagram of a neural controller implemented on a 
microprocessor. 
 
 During the design process of a fuzzy controller, 
the designer must know what output should be expected 
for given input values.  More precisely, what the output 
value is for a given combination of input membership 
functions.  The exact same information can be used to 
train the neural network.  This of course, must be done 
using a specially written program or by using ready 
software.  For microprocessor implementation, the 
Stuttgart Neural Network Simulator (SNNS) [11] was 
used, since the Elliott activation function is implemented 
in the program. Many network configurations were tested.  
The goal was to keep the network as simple as possible 
while achieving the lowest possible error.  Different types 
of networks that were tested include a) multiple neurons 
in one hidden layer (MLP), b) multiple neurons in cascade 
and c) multiple neurons in multiple hidden layers.  RProp 
was the training algorithm used to train the networks.  It 
proved to have the fastest convergence time and provided 
the lowest errors.  Figs. 13, 14, and 15 show obtained 
control surfaces for several architectures and Table 2 
shows error comparison. 

 
Fig. 13 Control surfaces of neural controller with two 
layer fully connected 2-1-1-1-1 architecture (4 neurons). 
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Fig. 14 Control surfaces of neural controller with two 
layer fully connected 2-1-1-1-1-1-1 architecture (6 
neurons). 

 
Fig. 15 Control surfaces of neural controller with two 
layer feed froward 2-6-1 architecture (7 neurons). 
 

 
Table 2.  Error comparison for various type of neural controllers 

 Type of controller length of code 
in bytes 

processing 
time (ms) 

Error 
(SSE) 

1 Neural network with 4 neurons in cascade  705 1.72 0.5559 
2 Neural network with 6 neurons in cascade  1119 3.3 0.0895 
3 Neural network with 7 neurons in layers 840 3.8 0.2902 

 
6   Conclusion 

 
Neural controllers implemented on a microprocessor the 
code is simpler, much shorter; the processing time is 
comparable with fuzzy controllers. Control surfaces 
obtained from neural controllers also do not exhibit the 
roughness of fuzzy controllers that can lead to unstable or 
raw control. The only drawback of neural controllers is 
that the design process is more complicated than that of 
fuzzy controllers.  However, this difficulty can be easily 
overcome with proper design tools. One severe 
disadvantage of a fuzzy system is its limited ability of 
handling problems with multiple inputs. This is not a serious 
limitation of neural networks. Control surfaces obtained 
from neural controllers also do not exhibit the roughness 
of fuzzy controllers that can lead to unstable or raw 
control. 
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