
Internet Technology as a Tool for Solving Engineering Problems
Aleksander Malinowski

Department of Electrical and Computer Engineering
Bradley University, Peoria, Illinois 61625, USA

olekmali@ieee.org, http://cegt201.bradley.edu/~olekmali/

Bogdan Wilamowski
College of Engineering at Boise

University of Idaho, Boise, Idaho 83712, USA
wilam@ieee.org, http://nn.uidaho.edu/

Abstract - This tutorial covers all primary technologies
that can be used for Web programming with
applications to the Internet based data acquisition and
system control. The presentation is divided into two
parts. The first part discusses several programming
languages as programming tools. It provides in depth
discussion of the tasks that are best to implement with
and on the advantages versus challenges associated
with particular cases. The following tools are covered:
HTML, JavaScript, Java Applets, Cookies, CGI,
PERL, PHP, native languages (C/C++), and Web
server configuration for security. Special emphasis is
given to PERL and JAVA. Several programming
examples for client, server and client-server
applications are provided. The fragments of code are
selected so that they provide good jumpstart to
programming in particular languages for anybody with
good programming skills in any programming
language (preferably C++ or C). Advantages and
disadvantages of different computer languages are
discussed so a proper programming platform for
different applications and task can be chosen.

I. SYSTEM ARCHITECTURE CONSIDERATIONS

During software development, it is important to
justify which part of the software should run on the client
machine and which part should run on the server.
Sometimes even the very fundamental client-server
architecture must be reconsidered in favor of a peer to peer
decentralized structures. The decision about the
architecture can be made either based on the process
control strategy or based on the information storage.

In case of the process control approach, the first
approach is used when there each of the controlled objects
can considered to be separate from possible other similar
objects. The latter architecture is more beneficial in case
of many controlled objects that cooperate with each other.
When the information storage is considered then client
server is favored over peer to peer communication in cases
where information must be centralized, or is easier to
manage when it is centralized.

Even between these two models, there may be a
hybrid. Consider an instance when one controls a process
that is implemented by many objects that cooperate with
each other. The controller either deals with each object
separately using a client-server approach, or deals only
with one object and then relies on the peer to peer

architecture to carry out the request. The latter case adds
additional complexity of dealing with a distributed server.

II. COMPONENT PARTITIONING AND DATA FLOW

Once a particular architecture is chosen, the
component partitioning needs to be considered. Peer to
peer architecture usually yields symmetry of all objects.
The decisions are made for client-server based on several
factors:
• Amount of memory and CPU power available for

server and clients. These restrictions may be imposed
by technological or cost restrains.

• Available bandwidth of the network connection.
• Connection reliability and latency, especially in case

of closing the control loop via network.
• Ease of installation or no need to preinstall any

specific component on a client machine.
It is possible to develop two dedicated software

components, one for server, and another one for a client
and preinstall both. However, other strategies allow for
more flexibility such as an automatic installation or update
of the client side-software from the server. The latter
approach requires storage of the client software
components on the server object, possibly increasing the
memory requirements and the initial network traffic when
a new client must to be installed or updated.

Regardless from the choice of just in time
downloaded or preinstalled client the software designer
must make choices regarding partitioning the tasks
between the server and the client. In case of control, the
best results are achieved when the control loop is closed
locally on the server that is installed on the controlled.
The Internet bandwidth is already adequate for many
applications if their data flow is carefully designed.
Furthermore, the bandwidth limitation will significantly
improve with time. It is therefore important to develop
methods, which take advantage of networks and then
platform independent browsers. This would require
solving several issues, such as:
• Minimization of the amount of data which must be

sent by a network
• Task partitioning between the server and client
• Selection of programming tools used for various tasks
• Development of special user interfaces
• Use of multiple servers and job sharing among them
• Security, privacy and, in case of pay per use, account

handling
• Portability of software used on servers and clients

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1622

• Distributing and installing network packages on
several servers
Fig. 1 illustrates an example of software component

partitioning for a semiautonomous remote controlled
robot. This particular application utilizes several client-
server partitions for multiple components. In addition, the
network server is at the same time the client in the relation
to the thin embedded server that controls the robot
movements on the lowest software level.

Figure 1. Example of client –server component partition.
Choosing the right set of software tools to implement

the components of the system is the next dilemma to be
solved after the decisions about the data flow among the
software components that are distributed in the network
are made. This problem is addressed in the next section.

III. MOST COMMONLY USED NETWORK
PROGRAMMING TOOLS

Although it is possible to develop network
applications using solely C++, or other compiled
languages, it is much easier to develop networked
applications using dedicated software tool for each
component. There are several well-developed network-
programming tools available today [1]. These tools
include HTML, JavaScript, VBScript, Java, ActiveX,
Common Gateway Interface (CGI) and PERL or C++,
Active Server pages (ASP) and PHP. It is essential to
make a correct decision which programming language
should be used for which part of the software package.
Short characterizations of different network programming
tools are given below.

A. Hypertext Markup Language

Hypertext Markup Language (HTML) was originally
designed to describe a document layout regardless of the
displaying device, its size, and other properties [2]. It can
be incorporated into networked application front-end
development either to create form-based dialog boxes or as
a tool for defining the layout of an interface, or
wraparound for Java applets or ActiveX components. In a
way, HTML can be classified as a programming language
because the document is displayed as a result of the
execution of its code. In addition scripting language can
be used to define simple interactions between a user and
HTML components [3][4]. Several improvements to the
standard language are available: Cascading style sheets
(CSS) allow very precise description of the graphical view
of the user interface; Compressed HTML allows
bandwidth conservation but can only be used by Microsoft
Internet Explorer. HTML is also used directly as it was
originally intended – as a publishing tool for instruction
and help files that are boundled with the software.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>

<HEAD>

<TITLE>This is the title for this Web
Page</TITLE>

<META HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=iso-8859-1">

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META NAME="ROBOTS" CONTENT="INDEX,NOFOLLOW">

<META NAME="Author" CONTENT="BMW & AM">

<META NAME="Description" CONTENT="This is
displayed by the search engine">

<META NAME="KeyWords"
CONTENT="search engine kewoards, html">

</HEAD>

<BODY BGCOLOR="white" TEXT="black">

<H1>This is the title</H1>

<P ALIGN=”left”>This is the body of

this Web page.

go

<P ALIGN=”center”>Another paragraph and

<FONT COLOR="red" FACE="Ariel,helvetica"
SIZE=”+1”>a different font

<!-- this is a coment -->

</BODY>

</HTML>

Figure 2. Typical HTML source code.
The HTML code shown in Fig.2 illustrates the nature

of this language. The control structures are called tags. A
tag is identified by < and > and us used to control the
meaning and format that is used to display the information.
Most of the tags are used in pairs, for example <BODY> and
</BODY> marks the beginning and the end of the section
that should be displayed as a Web page. Each tag may
have several attributes. For example the two of many

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1623

attributes of <BODY …> are color setting BGCOLOR and TEXT.
Inside the body of the page tags are used to provide text
formatting. <P…> denotes a new paragraph, and is one of
only a few tags that do not need the complementing and
end tag </P>. <Hn> indicates the n-th header or section
title of the n-th level. In addition to those and many other
logical information tags, there are several tags that porvide
only instruction regarding the way the text is to be
displayed, for example <FONT…> tag. Although it is
possible to set a particular font size in points, it is strongly
recommended to alter the readers preference using relative
sizes like +1 in the example above. The reader should be
able to adjust the display to her preferences so that it is
easy to read.

The anchor tag <A …> is the most important feature of
the HTML. This implements the very idea of hypertext –
the links. The HREF attribute instructs the Web browser
about the location of another page that must be loaded in
case the reader clicks on the text enclosed until .

The header portion of the Web page that is marked
by <HEAD> and </HEAD> may seam not to be that important.
Information enclosed there may be very important for Web
browsers, proxy systems or search engines. The example
in Fig. 2 instructs the Web browser always to check for the
new version of the Web page (no-cache), and defines the
font set (8859-1) that is very important when the Web
page displays any non-English characters. The other tags
(robots, author, keywords and description) are sued by
search engines to enhance the automatic classification of
the Web page.

B. JavaScript

HTML itself lacks even basic programming
constructs such as conditional statements or loops. A few
scripting interpretive languages were developed to allow
for use of programming in HTML [2]. They can be
classified as extensions of HTML and are used to
manipulate or dynamically create portions of HTML code.
One of the most popular among them is JavaScript. The
only drawback is that although JavaScript is already well
developed still there is no one uniform standard. Different
Web browsers may vary a little in the available functions
[4]. JavaScript is an interpretative language and the scripts
are run as the Web page is downloaded and displayed.
There is no strong data typing or function prototyping.
Yet the language includes support for object oriented
programming with dynamically changing member
functions. JavaScript programs can also communicate
with Java applets that are embedded into an HTML page.

<SCRIPT language="JavaScript">

// this comment goes to the end of the line

alert("hello world!");

// end hiding comment

</SCRIPT>

<NOSCRIPT>No script support found</NOSCRIPT>

Figure 3. A simple example of JavaScript code.
JavaScript is part of the HTML code. It can be

placed in both header and body of a Web page. The script
starts with <script language="JavaScript"> line. This
example generates an alert dialog box shown above the
code.

One of the most useful applications of JavaScript is
verification of the filled form before it is submitted on-
line. That allows for immediate feedback and preserves
the Internet bandwidth as well as lowers the Web server
load. Fig. 4 shows a sample code of an HTML form and
its interaction with JavaScript that responds immediately.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<head>

<TITLE>Calculator</TITLE>

</head>

<body>

<form name="form1">

<input type="text" name="text1" size="36">

<input type="button" name="button1"

 value="calculate"

 onclick=document.form1.text2.value

 =eval(document.form1.text1.value)>

<input type="text" name="text2">

<input type="reset" value="clear">

</form>

</body>

</html>

Figure 4. A Web page with JavaScript based calculator.
The next example shows a more powerful calculator,

which is capable to compute even complicated functions.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1624

Note that all computations are done not on the server but
on the client computer. The web page generated is similar
to this shown in the previous example but it is much more
powerful. Its view and source code is shown in Fig. 5.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<head>

<TITLE>Calculator</TITLE>

</head>

<body>

<script language="JavaScript">

function math() {

var s=document.form1.text1.value;

s1=s.replace("abs", "Math.abs");

s2=s1.replace("sin", "Math.sin");

s3=s2.replace("cos", "Math.cos");

s4=s3.replace("sqrt", "Math.sqrt");

s5=s4.replace("tan", "Math.tan");

s6=s5.replace("atan", "Math.atan");

s7=s6.replace("asin", "Math.asin");

s8=s7.replace("acos", "Math.acos");

s9=s8.replace("exp", "Math.exp");

s10=s9.replace("floor", "Math.floor");

s11=s10.replace("log", "Math.log");

s12=s11.replace("max", "Math.max");

s13=s12.replace("min", "Math.min");

s14=s13.replace("pow", "Math.pow");

s15=s14.replace("random", "Math.random");

s16=s15.replace("round", "Math.round");

document.form1.text2.value=eval(s16);

}

</script>

<form name="form1">

<input type="text" name="text1" size=36>

<input type="button" name="button1"
value="calculate" onclick="math()">

<input type="text" name="text2">

<input type="reset" value="clear">

</form>

</body>

</html>

Figure 5. A Web page with advanced calculator.

C. Visual Basic Script

If the client-side software development is limited to
Microsoft Windows and Microsoft Internet Explorer then
VBScript may be used instead of JavaScript. The
disadvantage is the lack of portability that is offered by
this tool. However, that downside is compensated by ease
of communicating with ActiveX components and
possibility to use programs and libraries available to the
operating system [2].

D. Java

Java is an object oriented programming language
compiled in two stages. The first stage of compilation, to
so-called byte-code, is performed during the code
development. Byte-code can be compared to machine
code instructions for a microprocessor [5]. Because no
processor understands directly byte-code instructions,
interpreters, called Java Virtual Machines (JVM) were
developed for various microprocessors and operating
systems. At some point JVM were improved so that
instead of interpreting the code they do perform the second
stage of compilation, directly to the machine language.
However, to cut down the initial time to run the program
the compilation is done only as necessary (just in time
(JIT)) and there is no time for extensive code optimization
[6]. At current state of art of JIT technology, programs
written in Java run about two to five times slower than
their C++ counterparts. Adding a JVM to a Web browser
allowed embedding software components that could be run
on different platforms [5][7].

Several features ensured success and increasing
importance of this programming tool:
• similarity to C and C++ - a lot of existing

programmers can switch relatively easily [5][7][8][9]
• support of C++ objects – suitability for large projects

[5][8][9]
• simplified features – less complex than C++, easier to

learn and utilize correctly [7][8][9]
• large standard set of libraries, including graphical

libraries that can be used on multiple OS platforms
[7][9]

• built in network libraries and some IP protocols
[7][9][10]

• simple, platform independent multithreading – not as
powerful as in C or C++ but much simpler [7][9]

• availability of fast JVM that use JIT compiler
technology – only two times slower than C++ [6][7]

• ability to control the level of security buy enabling or
disabling certain libraries that come with JVM

• availability of non-portable features by linking
functions in machine language of a particular system
[9]

• Smaller requirements for flash memory in the
embedded systems due to compactness of byte-code
(but more volatile memory is required)

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1625

Despite all those great advantages, there are a few
problems of implementation that prevents Java from being
used everywhere.
• it is still at least two to five times slower than C++ [6]
• multithreading does not have all features available to

C or C++ programs [7][8]
• Most of implementations of JVM do not allow real

time running due to garbage collector type of the
memory management [6]

• Much higher memory requirements for JVM and
running program (but smaller footprint of applications
stored in flash memory versus C/C++)

D. ActiveX

Microsoft developed ActiveX as another technology
allowing for the automatic transfer of software over the
network [2][11]. ActiveX, however, can be executed
presently only on a PC with a Windows operating system,
thus making the application platform dependent. Although
this technology is very popular already, it does not allow
for the development of applications running on multiple
platforms. ActiveX components can be developed in
Microsoft Visual Basic or Microsoft Visual C++. There
are the only choice in cases when Java is too slow, or
when some access to the operating system functionality or
devices supported only by Windows OS is necessary. The
easy access to the operating system form an ActiveX
component makes it impossible to provide additional
security by limiting the features or resources available to
the components.

Fig. 6 shows one of the simplest possible programs
written in Java that also demonstrates use of functions.
Since the language is strongly object oriented, all
functionsmust be embedded in a class.

public class Test {

 public static void main(String args[]) {

 // a comment

 procedure(“Hello programmer!”);

 }

 private static void procedure(String s) {

 System.out.println(s);

 }

}

Figure 6. Code for a simple application written in Java.
Fig. 7 and Fig. 8 show a template for an applet

written in Java. Applets are run embedded in Web pages.
Fig. 7 shows how to embed the applet in HTML.

<APPLET CODEBASE="." CODE="Test.class"

 WIDTH="200" HEIGHT="100">

</APPLET>

Figure 7. Embedding an applet in a Web page.

Function paint() is called from the operating
system environment whenever the graphics needs to be
redrawn. Functions init() and start() are called when
the applet is initialized. All computations should be
initialized there and then carried on in a separate thread.
Function stop() is called when the applet need to be
stopped. All computations that were initialized in start()
and carried on in another threads must be stopped then.
This simple applet does not do anything besides painting a
text and drawing two horizontal lines.

// a sample applet template

import java.applet.Applet;

import java.awt.Graphics;

public class Test extends Applet {

 public void init() {

 }

 public void start() {

 }

 public void paint(Graphics g) {

 g.drawLine(10,30, 120, 30);

 g.drawLine(10,60, 120, 60);

 g.drawString("Hello Programmer!", 10, 50);

 }

 public void stop() {

 }

}

Figure 8. A template for an applet written in Java.

E. CORBA and DCOM

CORBA (Common Object Request Broker
Architecture) is a technology developed in the early 90's
for network distributed applications. It is a protocol for
handling distributed data, which has to be exchanged
among multiple platforms [12][13]. A CORBA server or
servers must be installed to access distributed data.
CORBA in a way can be considered as a very high-level
application programming interface (API). It allows
sending data over the network, sharing local data that are
registered with the CORBA server among multiple
programs. Microsoft developed its own proprietary API
that works only in Windows operating system. It is called
DCOM and can be used only in ActiveX technology
[11][14].

F. Common Gateway Interface

CGI, which stands for Common Gateway Interface,
can be used for the dynamic creation of web pages. Such
dynamically created pages are an excellent interface
between a user and an application run on the server [2][9]
[15]. CGI program is executed when a form embedded in
HTML is submitted or when a program is referred directly
via a Web page link. The Web server that receives a
request is capable of distinguishing whether it should
return a Web page that is already provided on the hard

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1626

drive or run a program that creates one. Any such
program can be called a CGI script. CGI describes a
variety of programming tools and strategies. All data
processing can be done by one program, or one or more
other programs can be called from a CGI script. The name
CGI script doe not denote that a scripting language must
be used. However, developers in fact prefer scripting
languages, and PERL is the most popular one.

Because of the nature of the protocol that allows for
transfer of Web pages and execution of CGI scripts there
is a unique challenge that must be faced by a software
developer. Although users working with CGI-based
programs have the same expectations as in case of local
user interface, the interface must be designed internally in
entirely different way. The Web transfer is a stateless
process. That means, that no information is sent by Web
browsers to the Web servers that identify each user. Each
time the new user interface is sent as a Web page, it must
contain all information about the current state of the
program. That state is recreated each time a new CGI
script is sent and increases the network traffic and time
latency caused by limited bandwidth and time necessary to
process data once again.

In addition, the server side software must be prepared
for inconsistent data streams. For example, a user can
back off through one or more Web pages give a different
response to a particular dialog box and execute the same
CGI script. At the time of the second execution of the
same script, the data sent back with the request may
already be out of synchronization from the data kept on
server. Therefore, additional validation mechanisms must
be implemented in the software that are not necessary in
case of a single program.

G. PERL

PERL is an interpretive language dedicated for text
processing. It is primarily used as a very advanced
scripting language for batch programming and for text data
processing [2][16][17]. PERL interpreters have been
developed for most of existing computer platforms and
operating systems. Modern PERL interpreters are in fact
not interpreters but compilers that precompile the whole
script before running it.

PERL was originally developed for Unix as a
scripting language that would allow for automation of
administrative tasks. It has many very efficient string,
data stream and file processing functions. Those functions
make it especially attractive for CGI processing that deals
with reading data from the networked streams, executing
external programs, organizing data, and in the end
producing the feedback to the user in the form of a text
based HTML document that is sent back as an update of
the user interface [2][15]. Support of almost any possible
computing platform and OS and existence of many
program libraries makes it a platform independent tool.

Fig. 9 and Fig. 10 show an example of a data form
that is filled in by a user on a remote computer (client).
After the form shown in Fig. 9 is completed, the user
clicks the “SEND” submit button. All data is transferred
to the server and forwarded to the CGI script that is
specified in the form tag in the action attribute. The
source code of the CGI program is shown in Fig. 10. The
program reads the data, processes them, and generates a
Web page that is a feedback to the user.

<FORM action="http://nn.uidaho.edu/csp/cgi1.pl"
method="get">

<INPUT TYPE="text" name="name">

Description

<TEXTAREA name="description" rows=5 cols=40>

</TEXTAREA>

<INPUT type="radio" name="sex" value="male">Male

<INPUT type="radio" name="sex"
value="female">Female

<INPUT type="submit" value="Send"><INPUT
type="reset">

</FORM>

Figure 9. Data form implemented in HTML.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1627

#!c:\progra~1\perl\bin\perl.exe

use strict;

use CGI qw(:standard);

print header;

print <<label1;

<H1> Hello </H1>

Welcome to the first CGI example <P>

label1

print "The name was", param('name'), "
";

print "The description was:
",

param('description'),"
";

print "The sex selected: ",

param('sex'), "<P>";

Figure 10. A CGI-script written in PERL that handles data
received from the form shown in Fig. 9.

The PERL code above uses CGI library with param
function and this way reading data from the form is very
simple. For example param('name') returns a string that
was typed in the text field named name (see the HTML
code above). param('sex') returns the name of the radio
button pressed. param('description') returns a string
that was typed in the text area named description. The
PERL code generates a new screen on the client computer
as shown above the code.

Please note that there are two ways of displaying
messages of the client computer. The first
print <<label1;

<H1> Hello </H1>

Welcome to the first CGI example <P>

label1

sends entire HTML code between lines print <<label1;
and label1. The other way is to use print statement and
send HTML code line by line using print statements.

H. Active Server Pages

The concept of CGI scripts is centered on the idea
that a program that is external to the Web server is run on
the request made by a client. Then an HTML based reply

is generated and sent back as the part of the outcome of the
execution. Active Server Pages (ASP) provide the same
functionality with the exception that the external program
or programs are embedded into the skeletons of Web
pages [18]. Those pages are preprocessed by the Web
server before they are forwarded to the client, and the
outcome of the embedded scripts is included.
In case of a CGI script, a reply to the user by sending an
HTML based Web page is its significant portion. It makes
sense then to provide also tools for embedding the scripts
inside HTML instead of embedding HTML inside print
statements in the CGI script. ASP technology is nothing
else but shifting the way the server side programs are
organized.

I. PHP
PHP is a scripting language like PERL. In fact, its

syntax resembles PERL. The main difference lays in the
set of standard built in libraries that support generation of
HTML code, processing data from and to the Web server,
and handling cookies. The same functionality can be
accessed in PERL by inclusion of one or more libraries.
PHP can be sued either as a classical CGI scripting
language or as an implementation of ASP technology [18].
Since certain frequently used functionality is built in
directly into the language, it is more efficient to use. In
general any specialized tool will be somewhat more
efficient for one particular task it was designed for, instead
of other powerful but general purpose tools. PHP has been
very popular for the last three years.

<HTML>

<HEAD><TITLE>PHP Script</TITLE></HEAD>

<BODY>

<?

echo "<H1>Hi!

I'm using PHP!</H1>";

$a = 2; $b = 3; $c=$a+$b;

echo "$a plus $b equal $c </p>";

?>

</BODY>

</HTML>

Figure 11. A simple server side script in PHP.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1628

PHP script (between <? and ?>) can be easily
incorporated into HTML code as illustrated in Fig. 11.
Instead of <? and ?> one can use <?php and ?>, or <script
language="php"> and </script>. The script is run by the
Web server on the server side, before the Web page is
transferred through the Internet to the browser.

Fig. 12 shows another example of PHP
programming. This time PHP is used to generate an
HTML form. It is more concise than HTML and thus
faster to develop and less likely to contain errors, but add
to the load of the server computer. The resulting form is
shown above the source code.

<HTML>

<HEAD><TITLE>Calculator</TITLE></HEAD>

<BODY>

<h1>Calculator</h1>

<FORM METHOD="post" ACTION="calculator.php">

Value 1: <INPUT TYPE="text" NAME="val1"></br>

Value 2: <INPUT TYPE="text" NAME="val2"></br>

<INPUT TYPE="radio" NAME="calc" VALUE="add">
add

<INPUT TYPE="radio" NAME="calc" VALUE="sub">
subtract

<INPUT TYPE="radio" NAME="calc" VALUE="mul">
multiply

<INPUT TYPE="radio" NAME="calc" VALUE="div">
divide</br>

<INPUT TYPE="submit" NAME="submit"
VALUE="Calculate">

</FORM>

</BODY>

</HTML>

Figure 12. PHP utilized to generate a form in HTML.
When the form is submitted, the Web server needs to

run a CGI script. Since a Web page merged with PHP can
function as a program the PHP-based page can be used for
the form processing as shown in Fig. 13. The Web page
that is generated in the reply is shown above the source
code.

<?

if (($val1 == "") || ($val2 == "") || ($calc
=="")) {

header("Location:
http://nn2/cal_fm.htm");

exit;

}

if ($calc == "add") {$r = $val1 + $val2;}

else if ($calc == "sub") {$r= $val1-$val2;}

else if ($calc == "mul") {$r = $val1*$val2;}

else if ($calc == "div") {$r = $val1/$val2;}

?>

<HTML><HEAD>

<TITLE>Calculation Result</TITLE> </HEAD>

<BODY>

The result of the calculation is: <? echo "$r";
?>

</BODY>

</HTML>

Figure 13. PHP utilized for Cgi scripting.
One of the principles of the correct coding is

enclosing all source code that implements a particular
functionality in one place. This can be applied to PHP.
The code shown in Fig. 14 works both as HTML form
generator and as the data processor in case it is called back
by the generated form.

<HTML> <HEAD> <TITLE>AIO Form</TITLE> </HEAD>
<BODY>

<?

$formstring = "

<FORM METHOD=\"post\" ACTION=\"$PHP_SELF\">

Value 1: <INPUT TYPE=\"text\" NAME=\"val1\"></br>

Value 2: <INPUT TYPE=\"text\" NAME=\"val2\"></br>

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"add\"> add

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"sub\"> subtract

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"mul\"> multiply

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"div\"> divide</br>

<INPUT TYPE=\"submit\" NAME=\"submit\"
VALUE=\"Calculate\">

</FORM>

";

if ($submit) {

if ($calc == "add") {$r = $val1 + $val2;}

else if ($calc == "sub") {$r= $val1-$val2;}

else if ($calc == "mul") {$r = $val1*$val2;}

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1629

else if ($calc == "div") {$r = $val1/$val2;}

echo "The result of the calculation is: $r";

} else {

echo "$formstring";

}

?>

Figure 14 Utilizing the sdame code both for HTML-form
generation and data processing in CGI-script mode.

J. Cookies

A cookie is a piece of data stored in the client
computer. When a request is sent to a server to get an
HTML file, some cookies may be transmitted with that
request. The server may send different data depending on
the information retrieved from the user. Furthermore,
JavaScript is also capable of browsing through all the
cookies stored by the user machine [19]. This information
may be used to enhance performance, for example by
remembering the user's preferences. This very useful
feature, however, is sometimes abused by some Internet
providers, who can spy on the user by analyzing what
kinds of web pages are being used.

IV. CONCLUSION

Given limited time and space that was allocated to
this tutorial most of the important programming tools that
can be applied to solving engineering problems were
discussed. Client-server architecture and the system
partitioning that were discussed in the introductory
sections must be applied to a particular problem. Then
based on need one or more tools has to be selected to
implement client and server. HTML and JavaScript is
generated on the server but utilized on the client side. CGI
and ASP with PERL and PHP are stored and utilized on
the server. Java can be used on the client side as well as
on the server side. It allows implementing a complex
functionality of a larger program by using object oriented
and well-structured language.

If you are interested in more detailed examples or
would like to participate in a 45 hour course offered by
Bradley University as a long distance course please visit
the Web site that is located at:
http://cegt201.bradley.edu/~olekmali/courses/

and follow the EE-WEB-2000 link to the course materials.

V. REFERENCES

For more information on particular topics discussed
in this tutorial please refer to the following source
materials that are recommended by the authors:

[1] Kaplan, G., “Ethernet's winning ways,” IEEE
Spectrum, January 2001, pp. 113-115.

[2] Jamsa K., Lalani S., Weakley S., Web Programming,
Jamsa Press, Las Vegas, NV, 1996.

[3] Goodman, D., Dynamic HTML, The Definitive
Reference, O'Reilly & Associates, Sebastopol, CA,
1997.

[4] Flanagan D., JavaScript, The Definitive Guide,
O'Reilly & Associates, Sebastopol, CA, 1997.

[5] Van der Linden P., Not Just Java, Prentice Hall and
Sun Microsystems, Palo Alto, CA, 1998.

[6] Web Page: Hank Shiffman, Boosting Java
Performance: Native Code and JIT Compilers,
http://www.disordered.org/Java-JIT.html,
posted in 1998, last time visited in 2001.

[7] Van der Linden P., Just Java 2, Prentice Hall and
Sun Microsystems, Palo Alto, CA, 1998.

[8] Web Page: Hank Shiffman, Making Sense of Java,
http://www.disordered.org/Java-QA.html,
posted in 1998, last time visited in 2001.

[9] Hall, M., Brown, L., Core Web Programming 2nd ed.,
Prentice Hall, Upper Saddle River, NJ, 2001.

[10] Harold, E. R., Java Network Programming, O'Reilly,
Sebastopol, CA, 1997.

[11] Roff, J.T., ADO: ActiveX Data Objects, O'Reilly &
Associates, Sebastopol, CA, 2001.

[12] Object management Group, The Common Object
Request Broker: Architecture and Specification, v.
2.2, published by Object Management Group,
February 1998.

[13] Object management Group Web Site
http://www.corba.org/,
posted in 1997, visited in 2001.

[14] Thai, T.L., Oram, A., Learning Dcom, O'Reilly &
Associates, Sebastopol, CA, 1999.

[15] Guelich, S., CGI Programming with PERL, 2nd ed.,
O'Reilly & Associates, Sebastopol, CA, 2000.

[16] Wall L., Christiansen, T., Orwant, J., Programming
PERL, 3rd ed., O'Reilly & Associates, 1996.

[17] Holzner, S., PERL Black Book, Coriolis Group,
1999.

[18] Atkinson, L., Core PHP Programming: Using PHP to
Build Dynamic Web Sites, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 2000.

[19] CookieCentral.Com, Cookie Central, URL:
http://www.cookiecentral.com/,
posted in 1996, visited in 2001.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1630

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	IECON CD-ROM Help
