8. ADAPTIVE NEURAL NETWORKS IN REGULATION
OF RIVER FLOWS

J. MOHAN REDDY
Department of Civil Engineering
Colorado State University
Fort Collins, Colorado 80523

BOGDAN M. WILAMOWSKI
Department of Electrical Engineering
University of Wyoming

Laramie, WY 82071

- 8.1 Problem Statement

The demand for water is growing as a result of population growth, competition from
agricultural and industrial sectors, global warming, and pollution of water resources.
Judicious utilization and conservation of the available water resources is of paramount
importance in order to meet the growing demand for water. One of the ways to conserve
water is to estimate the water demand accurately, and provide just the right quantity of
water to the users, i.e. match supply with demand as closely as possible.

Generally, water is released from a reservoir in response to an anticipated and/or
known demand in the command area of a water resources project. When the distances
‘between the source and the delivery points along the river reach are very long, the
demand must be known several hours to several days in advance so that water can be

- released in time for-the users to take full advantage of it. Furthermore, the amount-of
water released from a reservoir is not the amount that reaches the downstream delivery
" points some time later. Many things can happen between the upstream and downstream
_points of a river reach and affect the flow rate. Everything involved in the hydrologic
“cycle and the hydro-geologic properties of the land adjacent to the stream can play a
major role in the actual loss or gain of water along a river reach. Some of the factors that
influence the loss/gain of a river reach are: the length of the reach, natural flow of the
river, size of increase in flow, precipitation, elevation and slope of water table,
evaporation, evapotranspiration, stream channel characteristics, silt layer characteristics,
hydraulic characteristics of the aquifer, irrigation return flows, diversions, and valley
. Cross-sections.

For accurate computation of releases from a reservoir or flow rate at an
upstream point along a river reach, in order to. meet downstream water demands, several
different types of river modeling algorithms can be used. The Saint-Venant equations of
open-channel flow or its variants can be conveniently used to model flow through river
‘reaches, with excellent agreement between the numerical integration of the complete
hydrodynamic equations and field measurements. Recently, the USGS (United States
Geological Survey) has developed a computer program for numerical modeling of floods
through~a" river network. However, this approach has some practical limitations,
particularly when applied to long river reaches, because obtaining accurate data on river
cross-sections, roughness values, seepage losses, and bed slope at several points along a

153 IETRS P

R.S. Govindaraju and A. Ramachandra Rao (eds.), AmﬁcialNeural Networks in Hydrology, 153-1717.
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

154 J.M. REDDY AND B.M. WILAMOWSKI

river reach is a tedious task. Therefore, simplified methods that are reasonably accurate
but do not need extensive information on-reach: characteristics have been developed. One
of the most widely used methods of river flow modeling is called ‘storage routing. This
process involves computing the change in storage, 4S, in the river reach for a given time
increment. The term ‘routing’ generally refers to the accounting of ‘water as it travels
through a channel. Storage routing methods use the contmmty equation-in its integral
form that is given as follows:

IAt - AS = OAt : 8.1

where I and O = average rates of inflow and outflow, respectively, for the time interval
At; and AS = change in volume (storage) of water in the channel reach between the inflow
point and the outflow point during the time interval At (Franzini et. al 1992). Given the
inflow as a function of time, there are two unknowns in Eq. 8.1. Therefore, one more
equation, to replace the momentum equation of open-channel flow, is- needed to. solve for
the outflow from the reach. McCarthy (1938) suggested an approach in which the storage
S is assumed to be represented by a linear relation of inflow and outflow. In mathematical
terms, the storage and the continuity equations are given as follows: ,

S, = K[od, +(1-2)0,] @)

dS/_ - ‘
5 =1-0, (8.3)

in. which S, I; and O; represent the simultaneous storage, -inflow, and. outflow,
respectively, at time t; K = storage-time constant for the river reach, which: has a value
reasonably close to the flow travel time of the river reach; and Ol is a-weighting factor.
McCarthy .(1938) used the:above method for flood control studies in the Muskingum
River basin in Ohio. Equation 8.2 forms the basis for the Muskingum routing method,
which is an example of the simplest and most frequently used form of the routing models
(Kraijenhoff and Moll; 1986).'

To solve for the outflow from a river reach when the inflow is known, Egs. 8.2
and 8.3 are combined. By writing the combined equatlon for time t and t+1, and solving
for outflow at time t+1 results in the following: -

0,.,=C, I,+1+CI +C0 84)
in which the coefficients are given as - ;
0.5At—-Ka 3 , ’

C, = - , (8.5)
K(l—-a')+0.5kAt, ' ‘
- 0.5At+ Ko o L

C = . (8.6) -

”K(l—a) +0.5Ar -
K(l-a)-0. o , .
¢, = (1-a)—-0.5A¢ @87

K(-oa)+0.5At

L

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 155

where K and 'O are estimated using past records of inflow and outflow, and are assumed
to be the characteristic values for the reach. These parameters are estimated using a trial-
and-error procedure which is time consuming and prone to subjective interpretation.
Since natural streams are continually changing and the phenomenon is nonlinear, the
accuracy of the above method is not very good. Over the years, several approximate
methods have been applied to the above equation. Cunge (1969) proposed a modified
version of the Muskingum model, called the Muskingum-Cunge model, which is of the
following form:

0.,+)=C0,()+ Cle. #+H+C0,,,(1)+C, (8.8)

in which Q denotes the discharge, subscript i denotes the upstream end of the routing
reach, subscript i+1 denotes the downstream end of the routing reach, and time instants t
and t+1 are At time units apart. The coefficients C,, C,, and C; are calculated using the
observed inflow and outflow data, and other kinematic characteristics of the river reach,
.and C; is related to lateral inflow/outflow from the river reach. Using a finite-difference
approximation to the spatio-temporal variation of flow rate, Cunge (1969) derived
expressions for the above coefficients that are very similar to the coefficients presented in
Egs. 8.5 to 8.7. In fact, under some assumptions, the numerical values of the coefficients
in Eqgs. 8.4 and 8.8 would be identical (Montes, 1998), except for the coefficient C,.
Recently, Papageorgious and Messmer (1989) proposed an optimal feedback
control algorithm for regulating flow in river reaches. Though the method is straight
forward, since the coefficients of the control algorithm are not adaptive to the changing
conditions in the river reach, the performance of the control algorithm was not
satisfactory as the fluctuations in flow through the river reach became large.

8.2 ANN Approach

8.2.1 DRAWBACKS OF EARLIER METHODS

Ideally, the flow rate released from reservoirs, computed using the assumed travel time,
lateral inflows and. outflows, and conveyance losses in the reach, must result in a
discharge rate that is equal to the required discharge rates at all the delivery points along
the river reach. However, because of the inaccuracies in the travel time of the reach, the
estimated conveyance losses, and unexpected flows from rain or snowmelt, etc., the
delivered discharge would normally differ from the required discharge rates or demand.
Water users are put in difficult situations when the actual discharges are less than the
requested amount, ‘and, conversely, the delivered water may- not be beneficially used
when the amount delivered is more than the amount requested. In order to improve
.users’ confidence in the water delivery system and to encourage efficient use (water
conservation) of water delivered to the users, there should be a “close match” between
the amount of water requested and the amount of water delivered. Unfortunately, this
“close match” is difficult to achieve with the techniques mentioned above because some
of the parameters used in the movement of water from reservoirs to the point of use are

i

156 J.M. REDDY AND B.M. WILAMOWSKI

not accurate and are variable during any given period (Georgakakos, et. al 1990). Hence,
improved methodologies based on real-time (on-line) acquisition of stream flow data are
needed (Reddy, 1997). Georgakakos et. al (1990) have proposed. a state-space version of
the Muskingum-Cunge routing model for real-time flood forecasting. The form of the
equations is as follows:

Q@+1)=AQ(t)+ BU(t)+ Cq(t) + w(t)

- (8.9

z(t)y=H Q) +v(?)
in which A,B, and C = system constants based upon the geometry and the reference flow
condition; z = measured outflow rate; q = inflow/outflow rate from the reach; w =
random input noise acting on the system; and v = random measurement noise. Kalman
filtering technique (Brown and Hwang, 1997) along with real-time measurements was
used for flood forecasting purposes. Though this technique can account for some degree
of uncertainty in the estimation of the values for the system parameters, it will not be able
to adapt the system parameters to the changing conditions in the river reaches. Therefore,
an adaptive system identification scheme is needed for developing an appropriate river
flow regulation algorithm.

8.2.2 POTENTIAL OF ANNs

A neural network is a massively parallel distributed processor that is designed to model,
in a primitive fashion, the functioning of a brain; hence the name Artificial Neural
Network (ANN). Neural networks have a natural propensity for storing experiential
knowledge and making it available for use (Haykin, 1999; Anderson, 1995). ANNs can
be placed into one of three classes based on their feedback link connection structure:
recurrent structure (global feedback connections), local recurrent structure (local
feedback connections, e.g., cellular neural networks), and non-recurrent (no feedback
connections). A special type of non-recurrent ANN is the feedforward neural network,
which is used in this paper.

With the advent of fast data communication technology, remote data acquisition
and control is being used widely in several industries, including water resources systems.
Advanced mathematical techniques, combined with real-time data acquisition systems,
provide numerous possibilities for controlling complex, distributed, and uncertain .
dynamic systems, particularly in situations where a good model of the system is not
available, and an approximate model of the system must be identified using on-line data.
Artificial neural networks can provide the user with a tool to accomplish this and, though
not a new concept, they have become increasingly popular due to the speed of modern
computers as they require many calculations during the training process. Narendra and
Parthasarathy (1990), Kuschewski et. al (1993), Wilamowski (1996), and Levin and
Narendra (1996) used artificial neural networks for- simultaneous identification and
control of dynamic systems. The application of artificial neural networks to problems in
water resources systems is gaining momentum because of its success in dealing with
complex problems.

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 157

ANN consists of layers of neurons with synaptic (weighted) links connecting the
outputs of neurons in one layer to the inputs of neurons in the next layer. Neural networks
basically consist of several neurons which are the basic information processing units. The
three basic elements of a neuron are explained below.

‘Synapses or connecting links: These are characterized by their strength (or weight) of its
own, and are used to weigh the input received from a sensor in producing the specified
output from the system. The weight is positive if the associated input is excitary; it is
negative if the input is inhibitory. A signal X; at the input of synapse j connected to
neuron k is multiplied by the synaptic weight wy;. The first subscript refers to the neuron
in question, and the second subscript refers to the input end of the synapse to which the
weight refers.

Adder: The net effect of all the inputs on a given neuron (output) is obtained by summing
the products of the synaptic weights and the associated input strengths. This is basically a
linear operation, and is given by the following expression:

u;= z Wi X; (8.10)
i=]
in which u; = net effect of all the inputs on neuron k; wj; = synaptic weight connecting
input i with neuron j; x; = input variable i; and p = number of inputs in the problem.

Activation function: This function is used to limit the amplitude of the output of a
neuron. Multi-layer neural networks usually use continuous activation functions, either
unipolar

1
= Q(u)=—— 8.11)
y=ok) I+exp(- Au)
or bipolar
2
= =] =%] 8.12)
y = @(u)= tanh(0.5u) T+ oxpl- a0

where A= shape factor. These continuous activation functions allow for the gradient-based
training of multi-layer networks. Typical activation functions are shown in Figure 8.1.

The simplest and most commonly used neural networks use only one: directional
signal flow. Furthermore, most of the feedforward neural networks are organized in layers.
An example of a three-layered feedforward neural network is shown in Figure 8.2. This
network consists of input nodes, two hidden layers, and an output layer.

The feedforward neural networks are used for nonlinear transformation (mapping)
of a multidimensional input variable into another multidimensional output variable. In
theory, any input-output mapping should be possible if the neural network has enough
neurons in the hidden layers (size of output layer is set by the number of outputs required).

158 J.M. REDDY AND B.M. WILAMOWSKI

(a) (b)

. =

Figure 8.1. Typical activation functions: (¢) hard threshold unipolar, (b) hard threshold bipolar, (¢) continuous
unipolar, (d) continuous bipolar.

Practically, it is not an easy task and, presently, there is no satisfactory method to
define how many neurons should be used in hidden layers. Usually this is found by trial and
error. In general, it is known that if more neurons are used, more complicated shapes can be
mapped. Conversely, networks with large number of neurons lose their ability for
generalization, and it is more likely that such network will also try to map noise supplied to
the input (Haykin 1994). '

hidden

hidden layer #2 output
layer

N
'\XV
:

< 75 > ENNTR TG > <

T RGNS

RS S ERETH >S5
ZNA > £ REEA > =7 PN

s
9.
K

!
W
\

\
\

+1

Figure 8.2. An example of the three-layered feedforward neural network, which is also known as the back-
propagation network.

ADAPTIVE NEURAL NETWORKS:IN REGULATION OF RIVER FLOWS 159

Weights in artificial neurons are adjusted during a training procedure. Various learning
algorithms were developed but only a few are suitable for multi-layer neuron networks.
Some use only local information about signals in the neurons whereas others require
information from outputs. Supervised algorithms require a supervisor (known outputs)
who always knows what the outputs should be whereas unsupervised algorithms need no
such information. Though there are several well know learning rules for training neural
networks, the most commonly used learning method for multi-layered feedforward networks
is the Error Back Propagation (EBP) method or a higher-order variant of this method such as
the Levenberg-Marquardt algorithm. The Error Back Propagation algorithm is described
first.

Standard Error Back Propagation Algorithm

In a multi-layered feedforward algorithm, the error from output neuron j at time instant n
is given by

ej (i’l) = yj ""yj (8.13)
in which e; = error at output neuron j; y ; = predicted output at neuron j; and y; =actual

output at neuron j. The instantaneous sum of squared errors of the network is given as:
E(n)=1/2) eX(n) @1
jeC
where the set C includes all the neurons in the output layer of the network. If N is the
number of examples in the training set, then the average squared error is obtained by
summing the error over the entire training set and normalizing the error with réspect to
the set size N. In training the neural network, the error is utilized to compute the
incremental changes in the synaptic weights of the neural network. In the standard back-
propagation algorithm, the weight increments are computed using the following
expression:

Aw;, =16, (n)x,(n) | (8.15)

in which n = learning rate constant; and §;(n) = local error-gradient. For the output
neuron J, it is given as follows:

5,(n)=e,(n)@,(v;(n)) | (8.16)
_ 0E(n)de,(n)dy;(n)
0,(m= de,(n)dy ,(n)dv,(n) @17

For a hidden neuron j, the error gradient is given as follows: '

8;(n) = 9;(v,(n)) Y. 8, (n)w,;(n) (8.18)
k .

Once an activation function is selected, the above procedure is straightforward.
However, the main issue is with the selection of a value for the learning rate constant, 1.
A large value for the learning rate results in faster convergence but, in some cases, it
might result in unstable system behavior. Conversely, a smaller rate of learning constant
results in stable but very slow learning. The selection of an appropriate value for the

160 J.M. REDDY AND B.M. WILAMOWSKI

learning rate constant, therefore, is a trial and error procedure. Also, the original back-
propagation algorithm was found to have a tendency for oscillation. Recently, there have
been some modifications to the above method (Rumelhart et. al 1986) which are expected
to result in faster convergence. In order to smooth the process, the increment of weights
Aw;; can be modified as follows:

Aw,(n) = a&w, (n=1)+(1-nd,(n)x,(n) (8.19)

in which a = momentum coefficient.

The back-propagation algorithm consists of two distinct computational passes.
In the forward pass, given the set of inputs at time n, the network computes the outputs
from all the neurons in the hidden layer(s) in sequence. Then, using the output from the
last hidden layer, the network computes the output from all the neurons in the output
layer. In the computation of the output from a neuron, it uses the equation of the selected
activation function for the given neuron. Usually, the same activation function is used for
all the neurons in a given layer. By comparing the computed output with the target output
from each of the neurons in the output layer, the sum of squared errors from the network
is computed. This ends the forward pass of the algorithm.

During the backward pass, the error gradients at each neuron of each layer in the
network are computed, which in turn are used to compute the incremental changes in the
synaptic weights at time n. This concludes the backward pass in which the output error is
propagated backwards and used to modify the synaptic weights. New values for the
synaptic weights are computed, and the procedure is repeated with the next set of input-
output data.

The back-propagation algorithm can be significantly speeded up, when after finding
the components of the gradient, the weights are modified along the gradient direction until a
minimum is reached. This process can be carried on without the necessity of
computationally intensive gradient calculation at each step. The new gradient components
are calculated once a minimum on the direction of the previous gradient is obtained. This
process is only possible for cumulative weight adjustment. One method to find a minimum
along the gradient direction is the three-step process of finding error for three points along
the gradient direction and then, using a parabolic approximation, jump directly to the
minimum. The fast learning algorithm using the above approach was proposed by Fahlman
(1989) and is known as the quickprop.

The back-propagation algorithm has many disadvantages, which lead to very slow
convergence. One of the most debilitating is the fact that, in the back-propagation algorithm,
the learning process almost perishes for neurons responding with the maximally wrong
answer. For example if the value on the neuron output is close to +/ and desired output
should be close to -1, then the neuron gain ¢(u) and the error signal cannot back propagate,
so the learning procedure is not effective. To overcome this difficulty, a modified method for
derivative calculation was introduced by Wilamowski and Torvik (1993). The derivative is
calculated as the slope of a line connecting the point of the output value with the point of the
desired value as shown in Figure 8.3.)

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 161

A finet)

' acwal derivative 1

output

net

\

desired
output

Figure 8.3. lllustration of the modified derivative calculation for faster convergence of the error back-
propagation algorithm.

— y desired y actual
Dy = e~ atial (8:20)
udesired - uactual

Note that for small errors, Eq. 20 converges to the derivative of activation function
at the point of the output value. With an increase in the system dimensionality, a chance for
local minima decreases. It is believed that the phenomenon described above, rather than a
trapping in local minima, is responsible for convergence problems in the error back-
propagation algorithm.

Levenberg-Marquardt (LM) method

The Levenberg-Marquardt learning algorithm (Hagan and Menhaj, 1994) is a second-order
search method of a minimum. At each iteration step, the error surface is represented by
parabolic approximation and the minimum of the paraboloid is the solution for the step.

Simple approaches require function approximation by the first term of the Taylor
series

F(Wk+1): F(Wk +Aw)+g:Awk +%Aw:AkAwk (8.21)

where g = VE is error gradient; and A = V2E is the Hessian of the global error E. The
gradient and the Hessian are computed as follows:

Gradient = B_E, —a-E—, a—E,
ow, ow, Ow,

2

Y]
o]

QU
N

W
2

8]
O]

Hessian = | 9w,dw,
J’E

dw,ow,

J.M. REDDY AND B.M. WILAMOWSKI

o’E
ow,ow,
P’E
ow?
J’E
dw;0w,

o’E
ow,dw,
o’E
ow,0w,
’E
ow?

The steepest decent (error back-propagation) method calculates weigghts using:

Win =W, -~ g (8.22)
while the Newton method uses:
-1
W, =W, —A'g (8.23)

The Newton method is practical only for small networks where Hessian A, can be
calculated and inverted. In the Levenberg-Marquardt method the Hessian Ay is
approximated by product of Jacobians

Wi =W, — (2J£Jk)—] ZJIe

A=2]"] (8.24)
and gradient as -
g~2]"e (8.25)
where e = vector of output errors; and the Jacobian J is computed using
[0e,, Oey, de;, |
de,, de,, dey
-‘—W -872 dwy
dey, Oeg, dey,
J=| : : : (8.26)
de,p Oeyp _Qf’_g;
_87";- —a—w—: owy,
ow, dw, dwy,
| dw, Ow, owy |

It is much easier to calculate the Jacobian than the Hessian and also usually the Jacobian
is much smaller so less memory is required. Therefore weights can be calculated as

(8.27)

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS ; 163

or : , e
Wi =W, "(J‘;;Jk) ,J:e\ , ST (8.28)
To ensure convergence, the Levenberg-Marquardt algorithm introduces the p parameter
: -1 ,
W, =W, — (J T+ yI) Jie (8.29)

where I is identity unit matrix, 4 is a learning parameter and J is Jacobian of m output
errors with respect to n weights of the neural network. For g = 0 it becomes the Gauss-
Newton method. For very large H the LM algorlthm becomes the steepest decent or the
EBP algorithm. The p parameter is automatically adjusted during computation process so
that good convergence is secured. The LM algorithm requ1res computation of the
Jacobian J matrix at each iteration step and the inversion of J TJ square matrix. Note that
in the LM algorithm an N by N matrix must be inverted in each iteration. The Levenberg-
Marquardt recently became very ‘popular because it usually’ converges in 5 to 10
jterations. The ‘main drawback of this method is that it requires the storage of some
matrices which can be quite large for certam problems e

Cascade-Correlation architecture : : ‘
The cascade correlation architecture was proposed by Fahlman®and Lebiere (1990) The
process of network building starts with a one layer neural network, and hidden neurons are
added as needed. The network architecture is shown in Figure 4.8.4. B

o hidden newrons
+le ‘ ‘
\ output.
//’ +le neurons

=
SN
N\
outputs

weights ddjusted every step ,+]
——— —— once adjusted weights and then frozen

Figure 8.4. The cascade-correlau'ph architecture. ; 7

164 J.M. REDDY AND B.M. WILAMOWSKI

In each training step, a new hidden neuron is added and its weights are adjusted to
maximize the magnitude of the correlation between the new hidden neuron output and the
residual error signal on the network output. In the process, the correlation parameter, S,
defined below must be maximized

o | »
S = 2 z (Vp - V) (Epa - Eo) (830)
o=1 p=1
where O = number of network outputs; P = number of training patterns; V,, = output on the
new hidden neuron; and E,,, = error on the network output. By finding the gradient, 45/4w;,
the weight adjustment for the new neuron is found as

Aw; = Z Z o (Ewo - Edo) [xn (8.31)

o=l p=]

where g, = sign of the correlation between the new neuron output value and network output;
Jf;' = derivative of the activation function for pattern p; and x;, = input signal. The output
neurons are trained using the delta (back-propagation) algorithm. Each hidden neuron is
trained just once and then its weights are frozen. The network learning is deemed complete
and the architecture finalized when satisfactory agreement is obtained between network
predictions and target outputs.

Radial basis function networks

The structure of the radial basis network is shown in Figure 8.5. This network consists of
two layers, of which the first layer is a hidden layer with special neurons called the radial
basis functions, whose output depends upon the distance between the known pattern and the
new pattern (Luo and Unbehaen, 1998; Hagen, et. al, 1995; Anderson, 1995). Each of these
"neurons” responds only to the input signals close to the stored pattern. The output signal y;
of the i hidden "neuron" is computed using the formula

||x sif

=exp| - (3.32)

l

where x = input vector; s; = stored pattern representing the center of the i” cluster; and &; =
radius of this cluster. Note that the behavior of this "neuron” significantly differs form the
biological neuron. In this "neuron”, excitation is not a function of the weighted sum of the
input signals. Instead, the distance between the input and a stored pattern is computed. If
this distance is zero then the "neuron" responds with a maximum output magnitude equal to
one. Conversely, as the input moves away from a given stored pattern, the neuron output
drops off rapidly to zero. Features of this "neuron” are much more powerful than a neuron
used in the back-propagation networks. As a consequence, a network made of such
"neurons” is also more powerful.

If the input signal is the same as a pattern stored in a neuron, then this "neuron”
responds with / and remaining "neurons" have 0 on the output, as illustrated in Figure 8.5.
Thus, output signals are exactly equal to the weights coming out from the active "neuron"”.
This way, if the number of "neurons” in the hidden layer is large, then any input output

ADAPTIVE NEURAL NETWORKS IN.REGULATION OF RIVER FLOWS 165

mapping can be obtained. Unfortunately, it may also happen that for-some patterns several
"neurons"” in the first layer will respond with a non-zero signal. For a proper approximation
the sum of all signals from hidden layer should be equal to one. In order to meet this
requirement, the output signals are often normalized as shown in Figure 8.5.

hidden "neurons"”

inputs
x is close to s
outputs

oulput

circuit normalization

Figure 8.5. Typical structure of a radial basis function network.

The radial based networks could be designed or trained. Training is usually carried
out in two steps. In the first step the hidden layer is usually trained in the unsupervised mode
for choosing best patterns for cluster representation. Also in this step, radii o; are found using
the following relationship to account for proper overlapping of clusters:

0, = %ins j TS H (8.33)
=t ‘

where p = number of nearest vectors to s; and s;= one of the p nearest neighbors of the
center vector s;. The second step of training is the error back-propagation algorithm carried
out only for the second (or output) layer. The second layer is linear and produces a weighted
sum of the outputs of the first (hidden) layer. Since this is a supervised algorithm for one
layer only, the training is very rapid, 100 or 1000 times faster than the error back-
propagation based multi-layer networks. This makes the radial basis function network very
attractive. A more detailed analysis of radial basis functions can be found in Chapter 5.

823 REAL-TIME DATA ACQUISITION SYSTEMS

The main objective of an adaptive control systems is to adjust the coefficients of the
control equation as the system behavior changes (evolves) over-time. In order to adjust
the control equation coefficients, real-time information on the system behavior is needed.

166 . ‘ J.M.REDDY AND B.M. WILAMOWSKI

This information must be available to the neural network model on a continuous basis.
Either a dedicated remote data acquisition system or an Internet-based data acquisition
system can be used to acquire the data on a continuous basis. The acquired data can then
be imported into the desired computational software used for system identification and
control. In order to demonstrate the technique, the existing USGS stream flow database
was accessed from their Web site. A special software (C language based), that builds
upon the Windows Sockets program, was developed to access the required stream flow
data from the web site. Since the Neural Network Toolbox of The Mathworks, Inc.
(Beale and Demuth, 1992-1997), was proposed to be used for system identification and -
control, the special C program was compiled using the MATLAB’s External (mex)
applications interface facility to produce a *.dll file. This file was then used to acquire the
data into MATLAB using the following command at the MATLAB prompt:

>> data=readusbr(‘ARKCOSAL’,"Q’,’98 APR25,98APR26’)

in which the first term in the brackets indicates the station identification code, the second
term indicates the flow rates data, and the third term indicates the date(s) of interest. The
USGS has designed the real-time data acquisition system with a sampling interval of 15-
minutes, and a reporting interval of 4-hours. This program worked very well for our
research. Currently, commercial software packages are available for importing data
directly into MATLAB, either from a dedicated or a web based data acquisition system.

8.2.4 ON-LINE SYSTEM IDENTIFICATION AND ADAPTIVE REGULATION OF
RIVER FLOWS

Several hardware/software solutions are currently available to- interface real-time data
with mathematical models. Here, the existing USGS/USBR stream flow database was
accessed using a custom designed software. The data were imported directly into the
neural network software. In order to save storage space, stream flow-data that were more
than one year old were stored in the form of average flow rate per day rather than
instantaneous readings at every 15 minutes. Therefore, for testing the methodology, the
daily average flow rate data were used for system identification purposes. The available
data were always split into two sets, and one set was used to train the neural network
whereas the other set was used to test the performance of the trained network model. This
analysis was done in three river basins - the Green River basin, the North Platte River
basin, and the Arkansas River basin. Here, the analyses done on the North Platte river and
the Arkansas river are discussed. If historical data do not exist, or if the interest is to
perform on-line identification, a neural network can be trained on a continuous basis
using the time-series data of inflow into and outflow from the given reach. Therefore, on-
line system identification involves training of a neural network using the most current
data.

For the purpose of system identification, the input data consisted of the inflow
into the river reach at the upstream point, and all the other known lateral inflows/outflows
between the two end-points of the reach. Sometimes, these inflows may not be known
accurately. Under these conditions, at least an approximate estimation of the inflow, that
is equal to the statistical average, may be included for training the network. Conversely,

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 167

if the magnitudes of the inflows/outflows are not known but the magnitude remains more
or less constant, then the inflow/outflow value can be completely ignored in training the
network, because the effect of the constant inflow/outflow would be absorbed by the
weights of the neural network.

In the case of adaptive regulation of river flows, the objective is to estimate the
desired inflow into the reach, given the downstream demands and the inflow/outflow
rates along the river reach. Therefore, the outflow rate at the downstream-end of the river
reach along with the inflow and outflow rates from the reach are considered inputs to the
neural network, whereas the inflow time sequence into the river reach becomes the neural
network output. Of course, the information on approximate travel-time along the river
reach must be available. Once the neural network is trained to predict the required inflow
rate into the river reach in order to meet the downstream demand, then for any other
given downstream flow rate demand the required upstream flow rate can be computed
using the neural network model of the system. When the computed inflow rate is input to
the neural network, the actual outflow from the reach must be very close to the target
(downstream demand) flow rate. The above approach assumes that the system parameters
do not change significantly over the time period of interest. In reality, the river reach
dynamics might change quite rapidly depending upon rainfall in the basin or withdrawal
by water users. A large difference between the target demand and the actual outflow rate
indicates that the system parameters have changed. Then the neural network must be
trained using the most current data set to capture the latest system dynamics, i.e. adapt the
system model coefficients, in this case the synaptic weights and biases of the neural
network. Since we did not have the authorization to change the inflow rate into the river
reaches, i.e. the releases from the reservoirs, we did not use the last approach to do an
adaptive regulation of river flows.

8.3 . Application of ANN to River Flow Regulation

8.3.1 APPLICATION OF ANN TO WATER RESOURCES PROBLEMS

There has been a rapid growth in the application of ANN to identification and control of
systems during the last two decades. Recently, this technique has found several
applications in the field of water resources (French et. al, 1992; Mason, et. al, 1996;
Mohan, 1995; Raman and Chandramouli, 1996; Reddy, 1995,1997; Karunanithi, et. al,
1994; Dandy et. al, 1996; DeSilets, et. al, 1992; Kao, 1996; Ranjithan, et. al, 1993).

The prerequisite to the application of artificial neural networks technique is the
availability of sufficient amount of data for the system under consideration. Once the sets
of input and output data have been identified and acquired, several algorithms such as the
Widrow-Hoff algorithm (Etxebarria, 1994), the radial basis function networks (Mason-et.
al 1996), and the multi-layered feedforward networks (Karunanithi et. al 1994; French et.
al 1996) are available to train neural network models. The Widrow-Hoff algorithm
basically consists of a single-layer network with a linear activation function. There is no
significant advantage to using single layered neural networks because their structure is
similar to a multiple, linear regression algorithm (Warwick, 1995). Here, the multi-
layered, feedforward neural network and the radial basis function network were selected
for application.

168 .M. REDDY AND B.M. WILAMOWSKI

8.3.2 APPLICATION TO NORTH PLATTE RIVER IN WYOMING

The North Platte River, near the Wyoming-Nebraska border, was used as the first test
case. Figure 8.6 is a map of the area. The upstream station is just below the Whalen
Diversion Dam. The Whalen Diversion Dam is where two major irrigation canals begin.
The downstream station is at the Wyoming-Nebraska border. The length of the reach is
about 45 miles with several incoming tributaries along the reach. During peak runoff, the
Laramie River contributes significantly to the North Platte and since there is a stream
flow gauge located near the confluence, this data was included in the model as additional
information.

Guernsey Res

Nebraska

North Platte River

@ ..Stream flow gauge
- Figure 8.6. Schematic of the North Platte River System

" Data for several days from the Wyoming-Nebraska border station, again
encompassing the lag-time of the reach, and from the Laramie River station were used as
inputs to the network. A two-layered, feedforward network with error back-propagation
was used. In order to speed up the computation time, the Levenberg-Marquardt algorithm
was invoked. The neural network was trained or calibrated using data of one season
(May-September, 1994) and then tested on the data of the next season (May-September,
1995). Figure 8.7 is a plot of the network output shown in dotted line. The solid line is
the target data, which was the actual data at the Whalen Diversion station.

This type of scenario is a very real problem. There is a desired (pre-specified)
demand at the Wyoming-Nebraska border and, by law, Nebraska has a certain right to a
percentage of the North Platte water. If the Whalen Diversion Dam was a full scale
reservoir instead of simply a diversion dam, this ' model could either provide information
on how much water to release from the reservoir to adequately meet the downstream

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 169

demand at the border, or the model could be easily changed to give the required release at
the Guernsey Reservoir if stream flow information on the two canals that the Whalen
Diversion Dam diverts to were known and implemented into the model. In the latter
case, inputs would include demand at the border and the demand for each canal. The
output would be the release at the Guernsey Reservoir.

2000
1750 - === == b mmm oo g R e b oo
1500 - -------t--------L--- LIRS - - - R R

1250 --=--=--k=-------bp e N N e :

1000} ----- o hEEE , R td ShEEEEES

flow rate, cfs

750 -----day Ao~ RrEdiCeC - P A-----

500\ ----F MAN - f e SN

250 R el EEEEEE R EEE SRty

-
o_--_—
o
e
N FEo-— -
(4]

75
May-September, days

150

(=]
N
(4]
[4)]
o

- Figure 8.7. Results from MATLAB program for the North Platte River

A more conclusive test was performed using the North Platte River between
Guernsey Dam and the Wyoming- Nebraska state line. Figure 8.8 shows the data similar
to the way the m-file ‘data’ would retrieve it. A total of eleven inputs were used to create
the neural network model of the North Platte for this particular reach - five values from
the station immediately below the Guernsey dam, three values from the Whalen
Diversion station, and three values from the incoming Laramie River. Additional inputs
were used for this test because there were two significant irrigation canals that started at
the Whalen Diversion dam and information here would help in making the downstream
predictions. Also, the Laramie River could contribute significantly at times to
downstream water quantities and information there could improve downstream
predictions during those times. Notice in Figure 8.8 that the input blocks (boxed) were
taken at different times relative to the target outflow values (also boxed).

170

Guernsey

35209
3520.9
35209
3520.9
3520.9

3538.3
35209
35209
3555.7

Whalen

3607.7
3578.7

3607.7

J.M. REDDY AND B.M. WILAMOWSKI

Laramie R. Border
56.07 3718.1
56.07 3718.1
56.07 3718.1
56.07 3718.1

\ 56.07 3718.1
56.07 3736.3
56.07 3736.3

. 156.07 3718.1
56.07 3718.1
56.07 3718.1
56.07 3718.1
56.07 3718.1

56.07
56.07

3736.3
3736.3

56.07
56.07
56.07

57.39
57.39
57.39
57.39
57.39
57.39
57.39
57.39
57.39
57.39
57.39
57.39

Figure 8.8. Data table for the North Platte River

3718.1
3736.3

3736.3
37545
37363
3718.1
3718.1

37363

3736.3

3736.3

3718.1

3736.3

3736.3

3736.3

3736.3

37545 |

k+1
k+2
k+37

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS ' 17

on the far right column). The time from the center of each input block to the target
outflow value was the lag-time from that station to the stateline station. The lag-time for
this particular reach was well over four hours; so, if desired, the program could make
predictions for up to twelve hours into the future. However, more accurate results are
obtained by using the most recent data. This is-done by predicting only four hours into
the future, waiting during those four hours to receive new data from the Internet, and then
using this most recent data to make the next four hours’ predictions (Figure 8.9).

4000

3500

3000

2500

streamflow (cfs)

2000

1500

1000

time (hours from start time)

Figure 8.9. Results from North Platte River 25-hour test

The radial basis function network with a gamma type basis function was also
applied to the North Platt river data. However, this analysis was done on real-time data
that was acquired during the month of April 1998, when the flow'in the river reach was
low (less than 600 cfs). This neural network performed as well as the one with the back-
propagation algorithm (Figure 8.9), and was much faster always (Figure 8.10).

8.3.3 APPLICATION TO ARKANSAS RIVER IN COLORADO

The Arkansas River was chosen for this application because of the warmer climate in
Southern Colorado. The time of year for which this first test was performed was February
and March. ‘Due to the extreme cold weather in Wyoming, fiany Wyoming stations were

172 - - JL.M.REDDY AND B.M. WILAMOWSKI

iced up and not in working order until spring. In‘addition, the stream flows in Wyoming
are very low without much change over time, which makes it difficult to tell if the model
is really working or not. The reach selected is located between two existing stations that
are relatively close together, about 15 miles. One station is near Salida, Colorado, and
the other is downstream near Wellsville, Colorado (Figure 8.11).

600 T T T T
550 [---- S ot Tt BTt 1Tt
] [N : :
: : ‘.~.I¢"‘ .N'\N—-_F
500 f---------- Rt SERREEEEEE SRRSCEEEEEE 3o e
.,.(_’2) 1 1 :
o | | | |
%450_____, ————— e :———f———————:—————-——--—: ———————————
2 | - ad:tual ¢y |
2 400 ‘ : - predlcted : !
350 ---------- e m e - Aommmnee fommm oo
0 3 6 9 12 15
time, hours

Figure 8.10. Results from North Platte River using RBF

Figure 8.12 displays a sample of data retrieved from the Internet for the two
Arkansas River stations. This figure indicates how the data were used in the model. The
model was designed to take three values from the upstream station as inputs to a neural
network and train the weights and biases so. the network output would match the data
from the downstream station.. Referring to Figure 8.12, the black box around the three
values in the left column are the inputs and the network output was trained so the output
matches the outlined value in the right column. There were six data sets used for the
training of the network. The first set is contained within the black boxes, connected with
the arrow and ends, following the dashed line, with the lower data set outlined with the
black box. Once the network is trained, three of the most current input data sets remain.
Each vertical line represents an input data set. The model takes each data set, applies the
trained neural network and produces a predicted output at times k + 1, k + 2 and k + 3.

’

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 173

The bold lines are the inputs for the corresponding output denoted by the same colored
box.

Arkansas

Salida River

Highway 50

County line

Highway 50

@ Streamflow Gauge Wellsville

To Canon City ~40 miles
To Pueblo ~70 miles

Figure 8.11. Schematic of Arkansas River near Salida, Colorado.

Of the two- stations, the upstream data were used as inputs to predict the
downstream flow. The main stimulus for this project was the need to more accurately
meet downstream demands, meaning the model should make predictions at the release or
upstream end of a reach. However, for testing purposes, this model makes downstream
predictions given real-time data at the upstream end. The reason for this is that once the
prediction is made, the user can wait for the next time increment containing new data and
have a target to compare the results against. For example, referring again to Figure 8.12,
two columns of hourly data come into the computer every four hours. Three flow rates
from the upstream station near Salida at approximately the lag-time of the reach prior to
time t were used for inputs to the model. The output was a prediction of the flow rate at
the downstream station near Wellsville at time t + 1. After waiting for four hours, since
that is how often the USBR updated their web site, the actual flow rate at Wellsville at
that time was available for comparison to the model output.

Once again, the custom software developed fetched the data (through the
Internet) from the USBR web site and then sorted and organized the data. There are
some inconsistencies in the raw data when it comes from the USBR web site. For
example, the raw data sometimes repeats a time and stréeam flow. Also, the raw data
provides a stream flow for every fifteen minutes and the m-file data manipulates the raw
data and prepares inflow and outflow matrices that contain one stream flow for each hour
for the last ten hours from the time the data was retrieved from the Internet.

174 . J.M. REDDY AND B.M. WILAMOWSKI

Salida Wellsville
194.8 308
194.8 308
194.8 308
194 8 308
200.4 308
200.4 |_ 314.8 |
206 314.8
206 314.8
6 318.2
20 v318.2
206 | 321.6 |
k+1
k+2
k+3

Figure 8.12. Example Stream flows for Arkansas River

Ideally, the program would make predictions for four hours into the future since
new data is available only every four hours. But as can be seen in the program, there is
only a prediction for the next three hours. The reason for this is that the lag-time of the
reach is well under four hours. In order to achleve accurate results from a neural
network, the input needs to encompass the lag-time. Referrmg to Figure 8,12, the time
from within the three data values used as inputs to the network to the predicted output
value must be close to the lag-time of the reach. On this particular reach, notice that after
the last value on the right is used for the training process, there is only enough remaining
data values on the left to be used as inputs to the neural network to make three
predictions (Figure 8.13). To get good use out of this type of techmque on a short réach,
new data must be available at time intervals less than the lag-time of the reach. When
this model was applied to the North Platte River, this was not a problem since the lag-
time of the reach used there was approximately 20 hours ‘

8.4 Conclusions

The existing methods of river flow regulation do not account for system losses/gams very
accurately because of the spatio-temporal variability of the parameters that influence
loss/gain from river reaches. To correctly account for the losses, continuous monitoring
of the inflow and outflow rate from a selected river reach is required. However,
monitoring alone does not help in achieving a close match between the supply and

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS 175

demand at a given point along a river reach. Appropriate regulation schemes that take
into account the dynamic travel time and the losses/gains along the selected river reach
are desired.

325

310

stream flow , cfs
n
[(o]
[§)]

280

lpmmmmm ===

265
0 10 15 20 25 30

time (hours from start time)

Figure 8.13. Results from Arkansas River test

[

Artificial neural networks along with real-time data acquisition systems provide
a convenient mechanism for on-line system identification and regulation of river flows.
Here, two different kinds of neural networks architectures- error back propagation and
the radial basis function- were applied to selected reaches of the North Platt river in
Wyoming, and the Arkansas river in Colorado. In both the cases, the performance of the
neural network models was found to be good in terms of matching the supply with
demand.

176 J.M.REDDY AND B.M. WILAMOWSKI

References

Anderson, J.A. (1995). An Introduction to Neural Networks, MIT Press, Cambridge, MA.

Beale, M. and Demuth, H. (1992-1997) MATLAB Neural Network ToolBox User’s Guide, The Mathworks, Inc.,
Natick, MA.

Brown, R.G. and Hwang,P.Y.C. (1997) Introduction to Random Signals and Applied Kalman Filtering. John
Wiley & Sons, New York, NY.

Cunge, J.A. (1969) On the subject of a flood propagation computation method (Muskingum Method). Journal
of Hydraulic Research, 7(2) : 205-230.

Dandy, G.C., Simpson, A.R. and Murphy, L.J. (1996) An improved genetic algorithm for pipe network
optimization. Water Resources Research, 32(2), 449-458. B

DeSilets, L., Golden, B., Wang, Q. and Kumar, R. (1992). Predicting salinity in Chesapeake Bay using back-
propagation, Computers and Operations Research, 19(3/4), 277-285.

Etxebarria, V. (1994) Adaptive control of discrete-time systems using neural networks, IEEE Proceedings on
Control Theory Applications, 141(4), 209-215.

Fahlman, S.E. (1989) Fast learning variations on back-propagation: an empirical study. In: Proceedings of
Connectionist Models Summer School, San Mateo, California.

Fahiman, S.E. and Lebiere, C. (1990) The cascade-correlation learning architecture, In: Advances in Neural
Information Processing Systems 2, San Mateo, California.

Franzini, J. B., Freyberg, D. L., Linsley, R.K. and Tchobanoglous, G. (1992) Water Revource Engineering,
McGraw-Hill, New York, NY.

French, M.N., Krajewski, W.F. and Cuykendall, R.R. (1992) Rainfall forecasting in space and time using neural

networks, J. of Hydrology, 137, 1-31.

Georgakakos, A.P., Georgakakos, K.P. and Baltas, E.A. (1990) A state-space model for hydrologic river
routing, Water Resources Research, 26(5),827-838.

Hagan, M.T. and Menhaj, M. (1994) Training feedforward networks with the Marquardt algorithm, IEEE
Transactions on Neural Networks, 5(6):

Hagan, M. T., Demuth, H.B. and Beale, M. (1995) Neural Network Design, PWS Publishing Co., Boston, MA.

Haykin, S. (1994) Foundations of Neural Networks, Macmillan, New York, NY.

Hwang, J.N,, Jou, I.C., Lay, S.R. and You, S.S. (1996) The cascade-correlation learning: a projection pursuit
learning perspective, IEEE Transactions on Neural Networks, 7(2),278-288.

Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. (1994) Neural networks for river flow prediction, J.
Computing in Civil Engineering, ASCE, 8(2), 201-219.

Kao, J.J. (1996) Neural network for determining DEM-based model drainage pattern. J. of Irrigation and
Drainage Engineering, ASCE, 122(2),112-121.

Kraijenhoff, D.A. and Moll, J.R. (1986) River Flow Modeling and Forecasting, D. Reidel Publishing Co.,
Dordrecht, Holland.

Kuschewski, J.G., Hui, S., and Zak, S.H. (1993) Application of feedforward neural networks to dynamical
system identification and control, IEEE Tansactions on Control System Technology, 1(1), 37-49.

Levin, A.U. and Narendra, K. (1996) Control of nonlinear dynamical systems using neural networks-part II:
observability, identification, and control, IEEE Transactions on Neural Networks, 7(1), 30-42.

Luo, F.L.-and Unbehauen, R. (1998) Applied Neural Networks for Signal Processing, Cambridge University
Press, New York, NY.

Mason, J.C., Price, R.K. and Tem’me, A. (1996) A neural network model of rainfall-runoff using radial basis
functions, J. Hydraulic Research, 34(4), 537-548.

McCarthy, G.T. (1938) The unit hydrograph and flood routing. Conference of North Atlantic Division, USCE,
New London, Connecticut.

Mohan, S. (1995) Parameter estimation of nonlinear Muskingum models using genetic algorithm, Department
of Civil Engineering, Indian Institute of Technology, Chennai, India.

Montes, S. (1998) Hydraulics of open-channel flow, ASCE Press, Reston, VA.

Narendra, K.S. and Parthasarathy, K. (1990) Identification and control of dynamical systems using neural

networks, IEEE Transactions on Neural Networks, 1(1), 4-27.

Papageorgiou, M. and Messmer, A. (1989). Flow control in a long river reach, Automatica, 177-183.

Ranjithan, S., Eheart, JW. and Garrett, JH. (Jr) (1993) Neural networks-based screening for groundwater
reclamation and uncertainty, Water Resources Research, 29(3), 563-574.

Raman, H. and Chandramouli, V. (1996) Deriving a general operating policy for reservoirs using neural
networks, J. Water Resources Planning and Management, ASCE, 122(5),342-347.

ADAPTIVE NEURAL NETWORKS IN REGULATION OF RIVER FLOWS ' 177

Reddy, J.M. (1997) Optimal regulation of river flows using neural networks, presented at the Wyoming Water
Development Commission Budget Hearing, Cheyenne, WY

Reddy, J.M. (1995) Neuro-control of irrigation canals, Proceedings of the First International Water Resources
Engineering Conference, San Antonio, TX

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning representations by back-propagating errors,
Nature (London), 323, 533-536.

United States Bureau of Reclamation, Great Plains Region, web site: www.gp.usbr.gov

Water Resources Data System at the Wyoming Water Resources Center (1996-1998), Laramie, WY.

Warwick, K. (1995) A critique of neural networks for discrete-time linear control, International J. Control,
61(6), 1253-1264.

Werbos, P.J. (1990) Back-propagation through time: what it does and how to do it, revised from IEEE Proc.
78(10), 1550-1560.

Wilamowski, B.M. and Torvik, L. (1993) Modification of gradient computation in the back-propagation
algorithm, Presented at ANNIE'93 - Artificial Neural Networks in Engineering, St. Louis, Missouri,
November 14-17, 1993; also in Intelligent Engineering Systems Through Artificial Neural Networks vol.
3, pp. 175-180, ed. C. H. Dagli, L. I. Burke, B. R. Fernandez, J. Gosh, R.T., ASME PRESS, New York.

Wilamowski, B. M. (1996) Neural Networks and Fuzzy Systems, Chapters 124.1 to 124.8 in The Electronic
Handbook, CRC Press.

Zurada, J.M. (1992) Introduction to Artificial Neural Systems. West Publishing Company, New York, NY.

