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Abstract—This paper presents a novel training algorithm for
computationally intelligent architectures, whose outputs are dif-
ferentiable with respect to the adjustable design parameters. The
algorithm combines the gradient descent technique with the vari-
able-structure-systems approach. The combination is performed
by expressing the conventional weight update rule in continuous
time and application of sliding-mode control method to the gra-
dient-based training procedure. The proposed combination there-
fore exhibits a degree of robustness with respect to the unmodeled
multivariable internal dynamics of gradient descent and to the en-
vironmental disturbances. With conventional training procedures,
the excitation of this dynamics during a training cycle can lead to
instability, which may be difficult to alleviate due to the multidi-
mensionality of the solution space and the ambiguities on the free
design parameters, such as learning rate or momentum coefficient.
This paper develops a heuristic that a computationally intelligent
system, which may be a neural network architecture or a fuzzy
inference mechanism, can be trained such that the adjustable pa-
rameter values are forced to settle down (parameter stabilization)
while minimizing an appropriate cost function (cost optimization).
The proposed approach is applied to the control of a robotic arm
in two different ways. In one, a standard fuzzy system architecture
is used, whereas in the second, the arm is controlled by the use of
a multilayer perceptron. In order to demonstrate the robustness
of the approach presented, a considerable amount of observation
noise and varying payload conditions are also studied.

Index Terms—Computational intelligence, stabilization, vari-
able-structure systems.

NOMENCLATURE

NFS Neuro fuzzy system response.
Generic parameter of neuro fuzzy system.
Optimal value of the generic parameter.
Change in parameter.
Observed output error.
Desired output.
Realization cost.
Parametric cost.
Learning rate for parameter.
Sampling interval of update dynamics.
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Switching function for parameter.
Gain of the switching scheme.
Gain of the switching scheme.
Boundary layer parameter

. Backpropagated error value for parameter.
Scaling factor for parameter-stabilizing law.
Learning rate for cost-minimizing law.
Lyapunov function for parameter.
Weighting factor.
Membership function ofth rule’s th input.
Center of membership function .
th input of computationally intelligent architecture.

Shape parameters of membership function.
Vector of firing strengths.
Vector of normalized firing strengths.
Net summation of theth neuron in the th
layer.
Neuronal nonlinear activation function.
Delta value of the neuron in the th layer for
th pattern.
th entry of target output forth pattern.

Output of the neuron in theth layer in response to
th pattern.

Desired state trajectory.
Actual state trajectory.

I. INTRODUCTION

T HE 20th century has witnessed widespread innovations in
both hardware and software design. In the first half of the

century, the emphasis was mainly on the development of accu-
rate mechanical component design, whereas in the second half,
new technologies emerged together with new needs and new
directions in industry. The development of fast microproces-
sors enabled the design and implementation ofexpert–machine-
interaction-based computation environments. Ever-increasing
needs brought about by the multidimensionality of the problem
space and time-varying behavior of real-life physical systems
further required to reduce the role of the expert and to increase
the role of the machine. A natural consequence of this rapid
growth is the emergence of the field of intelligent systems.

The wordintelligencein this context should be understood
in the sense of a machine’s capability of self-adaptation (para-
metric), self-organization, and self-diagnostics (architectural) in
the face of varying environmental conditions without external
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intervention. This clearly implies a large spectrum in the domain
of intelligence. In this respect, the degree of autonomy gains a
crucial importance. This quantity is referred to asmachine in-
telligence quotient(MIQ) in the related literature. Conceptu-
ally, the degree of intelligence is closely related to the design
methodology followed. The limits of the intelligent behavior are
determined by the flexibility of the architecture, the ability to re-
alize the human expertise, laws of inference procedure, and the
speed of learning. All of these titles are the main constituents of
the research area calledsoft computing.

Soft computing is a practical framework for solving com-
plex problems through the use of human expertise anda priori
knowledge about the problem at hand. Two of the main subtitles
in this field are the following:

• artificial neural networks;
• fuzzy inference systems.

Artificial neural networksare well known with their property
of representing complex nonlinear mappings. Earlier works
on the mapping properties of these architectures have shown
that neural networks are universal approximators [1], [2]. The
mathematical power of intelligence is commonly attributed to
the neural systems because of their massively interconnected,
fault-tolerant architecture. Various architectures of neural
systems are studied in the literature. Feedforward and recur-
rent neural networks, Gaussian radial basis function neural
networks, dynamical neural networks [3], and Runge–Kutta
neural networks [4], [5] constitute typical structurally different
models. The models mentioned have successfully been applied
to problems extending from control applications to image/pat-
tern recognition problems.

Fuzzy inference systemsare the most popular constituent of
the soft computing area since they are able to represent human
expertise in the form ofIF antecedent THEN consequentstate-
ments. In this domain, the system behavior is modeled through
the use of linguistic descriptions. Although the earliest work by
Zadeh on fuzzy systems has not been paid as much attention as
it deserved in the early 1960’s, since then, the methodology has
become a well-developed framework. The typical architectures
of fuzzy inference systems are those introduced by Wang [6],
[7], Takagi, and Sugeno [8], and Jang [9]. In [6], a fuzzy system
having Gaussian membership functions, product inference rule,
and weighted average defuzzifier is constructed and has become
the standard method in most applications. Takagi and Sugeno
change the defuzzification procedure where dynamic systems
are used in the defuzzification stage. The potential advantage
of the method is that, under certain constraints, the stability of
the system can be studied. Janget al. [9] propose an adaptive
neuro-fuzzy inference system, in which a polynomial is used as
the defuzzifier. This structure is commonly referred to as ANFIS
in the related literature. The choice concerning the order of the
polynomial and the variables to be used in the defuzzifier are
left to the designer.

In control engineering practice, stability and robustness are
of crucial importance. Because of this, the implementation-ori-
ented control engineering expert is always in pursuit of a de-
sign, which provides accurate tracking as well as insensitivity to

environmental disturbances and structural uncertainties. At this
point, it must be emphasized that these ambiguities can never
be modeled accurately. When the designer tries to minimize the
ambiguities by the use of a detailed model, then the design be-
comes so tedious that its cost increases dramatically. A suitable
way of tackling with uncertainties without the use of compli-
cated models is to introduce variable structure systems (VSS)
theory based components into the system structure.

Variable structure control (VSC) has successfully been ap-
plied to a wide variety of systems having uncertainties in the
representative system models. The philosophy of the control
strategy is simple, being based on two goals. First, the system is
forced toward a desired dynamics, second, the system is main-
tained on that differential geometry. In the literature, the former
dynamics are named the reaching mode, while the latter is called
the sliding mode. The control strategy borrows its name from
the latter dynamic behavior, and is calledsliding-mode control
(SMC).

The earliest notion of SMC strategy was constructed on a
second-order system in the late 1960’s by Emelyanov [10]. The
work stipulated that a special line could be defined on the phase
plane, such that any initial state vector can be driven toward the
plane and then be maintained on it, while forcing the error dy-
namics toward the origin. Since then, the theory has greatly been
improved and the sliding line has taken the form of a multidi-
mensional surface, called thesliding surface, around which a
switching control action takes place.

Numerous contributions to VSS theory have been made
during the last decade, and some of them are as follows. Hung
et al. [11] have reviewed the control strategy for linear and
nonlinear systems. In [11], the switching schemes, putting the
differential equations into canonical forms, and generating
simple SMC-based controls are considered in detail. Gaoet
al. [12], apply the SMC scheme to robotic manipulators and
discuss the quality of the scheme. One of the crucial points in
SMC is the selection of the parameters of the sliding surface.
Some studies devoted to the adaptive design of sliding surfaces
have shown that the performance of the control system can
be refined by interfacing it with an adaptation mechanism,
which regularly redesigns the sliding surface [13], [14]. This
eventually results in a robust control system. The performance
of the SMC scheme is proven to be satisfactory in the face of
external disturbances and uncertainties in the system model
representation. The latest studies consider this robustness
property by equipping the system with computationally intel-
ligent methods. In [15] and [16], fuzzy inference systems are
proposed for the SMC scheme. A standard fuzzy system is
studied and the relevant robustness analyses are carried out.
Particularly, the work presented in [15] emphasizes that the
robustness and stability properties of soft-computing-based
control strategies can be analyzed through the use of SMC
theory. It is shown in [15] that the approach is robust, i.e., it can
compensate the deficiencies caused by poor modeling of plant
dynamics and external disturbances.

The objective of this paper is to develop a training procedure
for computationally intelligent architectures, which enforces the
adjustable parameters to settle down to a steady-state solution
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while minimizing an appropriate cost function. This is achieved
through an appropriate combination of error backpropagation
(EBP) algorithm [17] with VSS philosophy.

This paper is organized as follows. Section II briefly reviews
the conventional error backpropagation. Section III is devoted
to the derivation of the proposed method starting with the con-
tinuous time representation of gradient descent approach. The
parameter-stabilizing law is derived and its applicability is dis-
cussed. The section continues with an explanation of how the
proposed law and error backpropagation is combined. Section
IV presents the application of the proposed scheme to a fuzzy
inference system, while Section V deals with the application
to a multilayer perceptron. In Section VI, the plant, which is
a two-degrees-of-freedom direct-drive SCARA robotic manip-
ulator, is presented. Next, the simulation results are discussed in
Section VII. Conclusions constitute Section VIII.

II. GRADIENT-BASED CONVENTIONAL TRAINING PROCEDURE

In this section, a widely used technique of parameter adjust-
ment is briefly reviewed. The method was first formulated by
Rumelhartet al. [17] in the 1980’s. The approach has success-
fully been applied to a wide variety of optimization problems.
The algorithm can be stated as follows:

NFS (1)

(2)

(3)

The observation error in (1) is used to minimize the cost function
in (2) by utilizing the rule described by (3)

NFS
(4)

The minimization proceeds recursively as given in (4), for which
the sensitivity derivative with respect to the generic parameter

is needed. It is apparent that the method is applicable to the
architectures in which the outputs are differentiable with respect
to the subject of optimization.

III. D ERIVATION OF THE PARAMETER-STABILIZING LAW BY

USING VSS APPROACH

A continuous-time dynamic model of the parameter update
rule prescribed by the gradient descent technique can be written
as in

(5)

The above model is composed of the sampling time denoted by
, the gradient-based nonscaled parameter change denoted by

NFS , and a scaling factor denoted by,
for the selection of which a detailed analysis is presented in the
subsequent discussion. Using Euler’s first-order approximation
for the derivative term, one obtains the following relation, which

obviously validates the constructed model in (5) and which leads
to the representation in (7):

(6)

(7)

By comparing (4) and (7), the equivalency between the contin-
uous and discrete forms of the update dynamics is, thus, clar-
ified. The synthesis of the parameter-stabilizing component is
based on the integration of the system in (5) with variable struc-
ture systems methodology. In the design of variable structure
controllers, one method that can be followed is the reaching law
approach [11]. For the use of this theory in the stabilization of
the training dynamics, let us define the switching function as in
(8) and its dynamics as in (9)

(8)

(9)

where and are the gains, and is the width of the
boundary layer. In the derivations presented below, a key point
is the fact that the system described by (5) is also driven by,
which is known as learning rate in the related literature. Now,
we demonstrate that some special selection of this quantity
leads to a rule that minimizes the magnitude of parametric
displacement. Equating (9) and (5) and solving for yields
the following relation:

(10)

where

(11)

The values of the learning rate imposed by (10) might be seen
as the desired values at the first glance. However, this selection
cancels out the backpropagated error valuefrom (5), conse-
quently, the update dynamics exactly behaves as that defined by
the adopted switching function (9), which does not necessarily
minimize the cost in (2). Therefore, the further analysis explores
the restrictions on , as well as the construction of the mixed
training criterion.

Now, we have a model described by (5), and an equality to
be enforced and formulated by (10). If one chooses a positive
definite Lyapunov function as given by (12), the time derivative
of this function must be negative definite for stability of param-
eter change ( ) dynamics. Clearly, the stability in parameter
change space implies the convergence in system parameters

(12)

(13)

If (5) and (10) are substituted into (13), the constraint stated in
(14) is obtained for stability in the Lyapunov sense

(14)
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Equation (14) can be rewritten in a more tractable form as fol-
lows:

(15)

Since and have the same signs, the roots of the ex-
pression (15) clearly have opposite signs. The expression on
the left-hand side assumes negative values between the roots.
Therefore, in order to satisfy the inequality in (15), the learning
rate must satisfy the constraint given in (16)

(16)

In (16), the interval of learning rate is restricted to positive
values. This is due to preserve the compatibility between the tra-
ditional gradient based approaches and the proposed approach.
An appropriate selection of could be as follows:

(17)

By substituting the learning rate formulated in (17) into the
equality given in (10), the stabilizing component of the
parameter change formula is obtained as

sgn (18)

where on the right-hand side is the final update value yet to
be obtained. The law introduced in (18) minimizes the cost of
stability, which is the Lyapunov function defined by (12). The
question now reduces to the following: can this law minimize
the cost defined by (2)? The answer is obviously not, because
the stabilizing criteria in (18) is derived from the displacement
of the parameter vector denoted by , whereas the minimiza-
tion of (2) is achieved when tends to , regardless of what the
displacement is. In order to minimize (2), the parameter change
anticipated by gradient-based optimization technique, which is
reviewed in the second section, should somehow be integrated
into the final form of parameter update mechanism. As intro-
duced in the second section, the error backpropagation algo-
rithm (EBP) evaluates a parameter change as given in (19)

(19)

where is the constant learning rate in the conventional sense. It
is reasonable to expect that a combination of the laws formulated
in (18) and (19) in a weighted average will meet the objectives
of both the parametric stabilization and the cost minimization.
(The stability analysis of the mixed update rule has been com-
pleted. Due to its length, it will appear on another paper.) The
parameter update rule will then be as in (20)

(20)

The parameter update formula given by (20) carries a mixed dis-
placement value containing both the parametric convergence,
which is introduced by the VSS part, and the cost minimization,
which is due to the error backpropagation technique. The bal-
ancing in this mixture is left to the designer by an appropriate
selection of and .

Fig. 1. Architecture of the standard fuzzy system.

IV. A PPLICATION TOSTANDARD FUZZY SYSTEMS

This section considers the standard fuzzy system approach in-
troduced in [6] as the computationally intelligent architecture.
The system that is considered in this paper uses bell-shaped
membership functions as described by (21)

(21)

where
defines the center of membership function;
characterizes the slope of the function;
characterizes the flatness of the function.

The structure of the fuzzy system is illustrated in Fig. 1, for
which the following type of a rule base structure is adopted:

IF is AND is AND AND is

THEN

In the IF part of this representation, the lowercase variables de-
note the inputs and the uppercase variables stand for the fuzzy
sets corresponding to the domain of each linguistic label.

During the simulations, , and parameters are kept
constant and the adaptation is carried out on theparameters of
the defuzzifier. The initial values of the membership functions
are selected such that the region of interest is covered appropri-
ately.

The overall realization performed by the system considered
is given in (22), where the weighted average defuzzifier is used
with algebraic product aggregation method

(22)
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In (22), the vector of firing strengths denoted byis normalized
and the resulting vector is represented by

(23)

With the definition given by (23), and the realization described
by (22), the adjustable parameter set is selected as theparam-
eters of the defuzzifier. The backpropagated error measure can
now be formulated as given by

NFS
(24)

By construction of the algorithm presented, the internal param-
eter is defined as follows:

(25)

The parameter that defines the boundary layer is selected as
unity for all adjustable parameters and for all simulations pre-
sented in this paper. The parameter-stabilizing law defined in
(18) imposes the update rule formulated in (26), whereas the
cost-minimizing update rule, which is the ordinary error back-
propagation method, predicts the necessary parameter change
value as described by (27). The final form of the update rule
proposed can now be formulated as a weighted average of these
two values. This is described by (28)

sgn (26)

(27)

(28)

V. APPLICATION TO MULTILAYER PERCEPTRON

In this section, a multilayer perceptron is introduced as the
intelligent controller, the parameters of which are to be updated
by using the technique presented. In [18], Narendra and
Parthasarathy demonstrate that this structure can effectively be
used for identification and control purposes. In the conventional
error backpropagation technique, propagating the output error
back through the neural network, whose structure is illustrated
in Fig. 2, minimizes the cost function given in (2). Based on the
derivation presented in detail in [9] and [17], the delta values
for the neurons belonging to the output layer and the hidden
layers are evaluated as given by (29) and (30), respectively

(29)

(30)

Having evaluated the delta values during the backward pass, the
gradient-based weight update rule described by (31) is applied
for each training pair

(31)

Fig. 2. Architecture of multilayer perceptron.

The VSS part of the proposed approach estimates the following
update value for parametric stability:

sgn (32)

The two update laws are then combined as a weighted average
as before

(33)

VI. PLANT MODEL

In this paper, a two-degrees-of-freedom direct-drive robotic
manipulator, which is illustrated in Fig. 3, is used as the test bed.
Since the dynamics of such a mechatronic system is modeled
by nonlinear and coupled differential equations, precise output
tracking becomes a difficult objective due to the strong inter-
dependency between the variables involved. Besides, the ambi-
guities on the friction related dynamics in the plant model make
the design much more complicated. Therefore, the methodology
adopted must be intelligent in some sense.

The general form of robot dynamics is described by (34)
where , and stand for the state varying in-
ertia matrix, vector of coriolis terms, applied torque inputs, and
friction terms, respectively. The plant parameters are given in
Table I in standard units

(34)

If the angular positions and angular velocities are described as
the state variables of the system, four coupled and first-order
differential equations can define the model. In (35) and (36),
the terms seen in (34) are given explicitly

(35)

(36)

In the above,
, and . Here, denotes

the payload mass. The details of the plant model are presented
in [19].
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Fig. 3. Physical view of the direct-drive robotic manipulator.

Fig. 4. Control of a plant using the proposed training method.

TABLE I
MANIPULATOR PARAMETERS

VII. SIMULATION STUDIES

Two sets of simulation studies are presented. In the first set,
the plant introduced in the Section VI is controlled by the stan-
dard fuzzy system considered in Section IV. The second set
demonstrates how the same task can be accomplished by uti-
lizing artificial neural networks discussed in Section V.

During the simulations, the main objective is to achieve pre-
cise state tracking together with small parameter update effort.
This is achieved through a suitable combination of conventional
gradient-based learning strategy with that based on the VSS
methodology.

The reference angular position and velocity profiles used in
all simulations are depicted in Fig. 5. The simulations are started
with initial rest conditions.

Fig. 5. Reference position and velocity trajectories.

Fig. 6. Time behavior of the load mass.

In order to demonstrate the robustness property of the ap-
proach discussed, a payload of 2.5 kg is regularly grasped and
released by the robot. The time behavior of the payload condi-
tions is demonstrated in Fig. 6. Another difficulty to be allevi-
ated by the algorithm discussed is the observation noise. It is
assumed that the encoders provide noisy measurements to the
controller. The noise sequence is Gaussian distributed and has
the same statistical properties for all four state variables, namely,
each sequence has zero mean and variance equal to 0.33e-6. The
perturbing signal is illustrated in Fig. 7. It is expected that the
stabilizing forces created on the adjustable design parameters
will lead to the elimination of the adverse effects of the noisy
observations, which excites the high-frequency dynamics of the
learning algorithm. Therefore, the results obtained will enable
the designer to make a fair comparison between the pure gra-
dient descent and the proposed combination, especially in the
sense of rejecting the high-frequency components entering into
the training dynamics.
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Fig. 7. The noise sequence added to the state variables.

Fig. 8. Definitions of membership functions.

Fig. 9. State tracking errors in fuzzy control with VSS-based approach.

Fig. 10. Applied torque inputs in fuzzy control with VSS-based approach.

In the training of the controller structures discussed in the
paper, the squared sum of parametric changes is defined to be
the cost of stability

(37)

For the case of the fuzzy controller, since there are two con-
trollers, the summation in (37) is over the adjustable parameter
set of both of the controllers, whereas, in the neural control ap-
plication, there is only one structure and the summation in (37)
runs over all the adjustable weights and biases of the neural net-
work.

The first set of simulations is on the control of the manipulator
by using the standard fuzzy system architecture. In this part,
only the defuzzifier parameters are adjusted during the learning
process and the membership functions are kept constant. The
choice on the initial values of the membership function param-
eters is made by trial and error. Fuzzy quantization of the input
variables is illustrated in Fig. 8. The state tracking errors and ap-
plied torque inputs are depicted in Figs. 9 and 10, respectively.
It is evident from Fig. 9 that the proposed combination results
in precise state tracking under the existence of environmental
disturbances stated above. Furthermore, Fig. 10 emphasizes the
control signal evaluated by the controller lies within the limits
of applicable control range. Therefore, the signal is directly ap-
plied to the manipulator without requiring saturation. The be-
havior of the total parametric cost is figured out in Fig. 11, which
clearly indicates the parameter-stabilizing property of the ap-
proach presented. For the use of the proposed algorithm,is
set to 20 while is equal to 1. The response of the manipulator
under the same conditions but only with gradient descent tech-
nique is illustrated in Fig. 12. As is clearly seen, after
15 s, the method diverges and the controller produces nonappli-
cable controls. Due to the space limit, only the behavior of the
system under control is depicted. The simulation settings of this
application are tabulated in Table II.

In the second set of simulations, a feedforward neural net-
work structure is used as the controller. As in the case of fuzzy
control, state tracking errors are fed to the controller as inputs
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Fig. 11. Time behavior of the parametric cost in fuzzy control with VSS-based
approach.

Fig. 12. Response of the manipulator with pure gradient descent.

TABLE II
SETTINGS USED IN FUZZY CONTROL

and the desired trajectory is the one used in the fuzzy control ex-
ample. The same environmental disturbances and payload con-
ditions are used for the neural control application. For the simu-
lations, a neural network, which has four inputs, eight hidden

Fig. 13. State tracking errors in neural control with VSS-based approach.

Fig. 14. Applied torque inputs in neural control with VSS-based approach.

Fig. 15. Time behavior of the parametric cost in neural control with VSS-based
approach.



EFEet al.: STABLE TRAINING OF COMPUTATIONALLY INTELLIGENT SYSTEMS BY USING VSS TECHNIQUE 495

Fig. 16. Response of the manipulator with pure gradient descent.

TABLE III
SETTINGS USED IN NEURAL CONTROL

neurons with hyperbolic tangent neuronal nonlinearities, and
two linear output neurons is used. The resulting behavior of
the state tracking errors and applied torque inputs is depicted
in Figs. 13 and 14, respectively. Again, a precise state tracking
is observed under the adverse effects of the operating environ-
ment. The comments on the produced and applied control sig-
nals are the same as in the fuzzy control example. The time be-
havior of the total parametric cost is demonstrated in Fig. 15.
For this case, the same weight values, namely, and

are used in the proposed technique. The manipulator
response with only using the gradient descent method
is depicted in Fig. 16. After approximately 4 s, the gradient de-
scent diverges. The simulation settings of this application are
tabulated in Table III.

VIII. C ONCLUSIONS

In this paper, a useful heuristic for improving the learning per-
formance of computationally intelligent architectures has been
presented. An approximate model of ordinary gradient-based

training procedure is constructed and VSS approach is incor-
porated into the proposed form of the parameter update law. In
this procedure, the error backpropagation rule is responsible for
the minimization of squared error while the VSS-based law is
responsible for the stability in the parameter space.

The conventional approaches suffer from some handicaps,
such as imperfect modeling, noisy observations, or time-varying
parameters. If the effects of these factors are transformed to the
cost hypersurface, whose dimensionality is determined by the
adjustable design parameters, it is evident that the surface may
have directions along which the sensitivity derivatives assume
large values due to the difficulties mentioned. In these cases,
error backpropagation technique evaluates large parametric dis-
placements, which can eventually lead to a divergent behavior.
In control engineering practice, such a behavior constitutes a
potential danger from a safety point of view. The approach pre-
sented in this paper takes care of the instantaneous fluctuations
in parameter space. Since the VSS approach is well known with
its robustness property, an appropriate combination of gradient
rule and VSS can eliminate the handicaps stated. The undesired
fluctuations that are most likely to occur in the parameter space
during training are eliminated. The combination is, therefore, a
good candidate for efficient parameter tuning.

Two application examples are elaborated, in which a standard
fuzzy system and a feedforward neural network are utilized as
the computationally intelligent architectures. The results pre-
sented confirm the prominent features of the proposed combi-
nation. The algorithm is applicable to any neuro-fuzzy system
model, provided that the model output is differentiable with re-
spect to the parameter of interest.
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