Training of Fuzzy Inference Systems by Combining Variable
Structure Systems Technique and Levenberg-Marquardt Algorithm

M. Onder Efe!, Okyay Kaynak” and Bogdan M. Wilamowski’
12Bogazici University, Electrical and Electronic Engineering Department
Bebek, 80815, Istanbul, Turkey
{efemond , kaynak}@boun.edu.ir
*University of Wyoming, Department of Electrical Engineering
Laramie, WY 82701, U.S.A.
wilam@jieee.org

Abstract: This paper presents a novel training
algorithm for fuzzy inference systems. The algorithm
combines the Levenberg-Marquardt algorithm with
variable structure systems approach. The combination
is performed by expressing the parameter update rule in
continuous time and application of sliding control
method to the gradient based training procedure. In this
paper, it is discussed that a fuzzy inference mechanism
can be trained such that the adjustable parameter
values are forced to settle down (parameter
stabilization) while minimizing an appropriate cost
Junction (cost optimization). In the application example,
control of a two degrees of freedom direct drive SCARA
robotic manipulator is considered. As the controller, a
standard fuzzy system archifecture is used and the
parameter tuning is performed by the proposed
algarithm.

1. INTRODUCTION

Twentieth century has witnessed widespread
innovations in both hardware and software design, In
the first half of the century, the emphasis was mainly on
the development of accurate mechanical component
design, whereas in the second haif, new technologies
emerged together with new needs and new directions in
industry. The development of fast microprocessors
enabled the design and implementation of Expert-
Machine Inferaction based computation environments.
Ever increasing needs brought about by the
multidimensionality of the problem space and time-
varying behavior of real-life physical systems further
required to reduce the role of expert and to increase the
role of machine. A natural consequence of this rapid
growth is the emergence of the field of intelligent
systems, which use the techniques of soft computing,

Soft computing is a practical framework for solving
complex problems through the use of human expertise
and a priori knowledge about the problem in hand.
Fuzzy Inference Systems are the most popular
constituent of the soft computing area because of their
ability to represent human expertise in the form of IF
antecedent THEN consequent statements. In this
domain, the system behavior is modeled through the use
of linguistic descriptions. Although the earliest work by
Prof. Zadeh on fuzzy systems has not been paid as
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much attention as it deserved in early 1960s, since then
the methodology has become a well-developed
framework. The typical architectures of fuzzy inference
systems are those introduced by Wang [1,2], Takagi and
Sugeno [3], and Jang {4]. In [2], a fuzzy system having
Gaussian membership functions, product inference rule
and weighted average defuzzifier is constructed and has
become the standard method in most applications.
Takagi and Sugeno change the defuzzification
procedure where dynamic systems are infroduced as
defuzzification subsystems, The potential advantage of
the method is that, under certain constraints, the
stability of the system can be studied. Jang et o/ [4]
propose an adaptive neuro fuzzy inference system, in
which a polynomial is used as the defuszifier. This
structure is commonly referred to as ANFIS in the
related literature. The choice concerning the order of the
polynomial and the variables to be used in the
defuzzifier are left to the designer.

In control engineering practice, stability and
robustness are of crucial importance. Because of this,
the implementation-oriented contro! engineering expert
is always in pursuit of a design, which provide accuracy
as well as insensitivity to environmental disturbances
and structural uncertainties. At this point, it must be
emphasized that these ambiguities can never be
modeled accurately. When the designer tries to
minimize the ambiguities by the use of a detailed
model, then the design becomes so tedious that its cost
increases dramatically. A suitable way of tackling with
uncertainties without the use of complicated models is
to introduce Variable Structure Systems (VSS) theory
based components into the system structure.

Variable Structure Contrel (VSC) has successfully
been applied to a wide variety of systems having
uncertainties in the representative system models. The
philosophy of the contro] strategy is simple, being based
on two goals. First, the system is forced towards a
desired dynamics, second, the system is maintained on
that differential geometry. In the literature, the former
dynamics is named the reaching mode, while the latter
is called the sliding mode. The control strategy borrows
its name from the latter dynamic behavior, and is called
Sliding Mode Control (SMC}).

Numerous contributions to VS8S theory have been
made during the last decade, some of them are as
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follows: Hung ef al [5] has reviewed the control
strategy for linear and nonlinear systems. In {5], the
switching schemes, putting the differential equations
into canonical forms and generating simple SMC based
controls are considered in detail. Gao et al [6], apply the
SMC scheme to robotic manipulators and discuss the
quality of the scheme. One of the crucial points in SMC
is the selection of the parameters of the sliding surface.
Some studies devoted fo the adaptive design of sliding
surfaces have shown that the performance of control
system can be refined by interfacing it with an
adaptation mechanism, which regularly redesigns the
sliding surface [7,8]. This eventually results in a robust
control system. The performance of SMC scheme is
proven to be satisfactory in the face of external
disturbances and uncertainties in the system model
representation, The latest studies consider this
robustness property by equipping the system with
computationally intelligent methods. In [9] and [10],
fuzzy inference systems are proposed for SMC scheme.
A standard fuzzy system is studied and the relevant
robustness analyses are carried out. Particularly, the
work presented in [9] emphasizes that the robustness
and stability properties of soft computing based control
strategies can be studied through the use SMC theory. It
is shown in the paper in this way that the approach is
robust i. e. it can compensate the deficiencies caused by
poor modeling of plant dynamics and external
disturbances.

The objective of this paper is to develop a stable
training procedure for fuzzy inference systems, which
enforces the adjustable parameters to settle down to a
steady state solution while minimizing an appropriate
cost function. This is achieved through an appropriate
combination of Levenberg-Marquardt algorithm [11]
with a parameter stabilizing law.

This paper is organized as follows: The second
section summarizes the conventional method followed
in Levenberg-Marquardt optimization technique. The
third section presents the derivation of parameter
stabilizing law. In the fourth section, a standard fuzzy
system model is considered and the relevant
formulation for the architecture is given. Next section is
devoted to the plant to be controlled in this study. This
is followed by the simulation studies. Conclusions
constitute the last part of the paper.

IL. LEVENBERG-MARQUARDT TRAINING
METHOD

Levenberg-Marquardt method is an approximation
to Newton's method [i1]. The algorithm uses the
second order derivatives of the cost function so that a
better convergence behavior is observed. In the ordinary
gradient method, only the first order derivatives are
evaluated and the parameter change information
contains solely the direction along which the cost is
minimized, whereas the  Levenberg-Marquardt
technique extracts a better parameter change vector. It is
motivated by this problem that, on the cost surface,
there may be many solutions leading to the

convergence, raising the possibility of an excessively
long time to reach to the solution. The algorithm can be
stated as follows,

e=d~- F(p,u) O]
j=1p2 @
2

1

ap=-[210)) vI9) @)
Where V°J($) is the Hessian matrix and VJ{$ is the
gradient relevant to the cost of (2). The observation
error in (1) is used to minimize the cost function in (2)
by utilizing the rule described by (3). The objective is to
minimize instantaneous cost defined by (2). If the
Taylor series expansion is applied to ef@ around the
operating point, the first derivatives result in the
Jacobian given by (4).
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In (4), B is the number of adjustable parameters and L is
the number of outputs. The final form of the parameter
update-algorithm is described by (5) and the details are
presented in [11].

Ap=Ny = —(Jf Jg + yITI e (5)

For large s the update formula given by (5)
becomes the standard gradient descent with stepsize
1/ u, conversely for small u, the behavior is as that of
Newton’s method. Therefore, by the introduction of
such a term, a smooth transition between Newton’s
method and steepest descent is achieved. Furthermore,
this term introduces the elimination of invertibility
problem in (3).

IIL, DERIVATION OF THE PARAMETER
STABILIZING LAW BY USING VARIABLE
STRUCTURE SYSTEMS APPROCACH

If the formula given in (5} is assumed to be activated
at integer multiples of the sampling period 7., the
dynamic behavior of the parameter change can be
formulated as given in (6) by utilizing Euler’s first order
approximation. -

VERLIWIN. ]
Ag T, Ag + T, Ny 6)
In above, the evaluated parameter change is multiplied
by a scaling factor denoted by 7, for the selection of
which a detailed analysis is presented in the subsequent
discussion. It is to be noted that since (6) is based on the
update formula of (3), the term 7, can drop out from the
equations.

Ag(k) =y Ny (k) Q)
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In (7), the equivalency between the continuous and
discrete forms of update dynamics is thus clarified. In
the derivation of parameter stabilizing part of the
eventual update formula, equations (6) and (7) are used,
whereas the cost minimizing part will use solely the
original form of the update mechanism given by (5). In
this study, each adjustable parameter is assigned a
switching function described by (8), which is for a
generic parameter @, and the switching scheme, which
is adopted for all design parameters in the architecture,
is described by (9).

Sp = A (8)
s; = -—é¢ tanh(ff—J - E¢S¢ = A¢ (9)

Equating (9) and (6) and sclving for A¢ yields the
following;

~ 5 ~
Ag =ngNy + T, 0 tanh [—g“’—]+TSK¢s¢ (10)

Define the following quantities,

Q¢ =Ty ~¢ and K¢ = TSE¢ (1)

(12)

With the solution given in (12), the update dynamics is
forced to behave as that defined by (9), which is
actnally a stable dynamics defined by the adopted
switching function. In the derivations presented below,
a key point is the fact that the system described by (6) is
also driven by 7, which is known as learning rate in the
* related literature, Now we prove that some special
selection of this quantity leads to the parameter
stabilizing rule. Let us define the following quantity for
keeping analytic comprehensibility;
Ag

A¢ = Q¢ tal‘lh[-g—)-i- K¢A¢

Ag = 7]¢N¢ +Q¢ tanh [é‘g‘i) + K¢A¢

13

Now we have a model described by (6), and a
solution formulated by (12). ¥ one chooses a positive
definite Lyapunov function as given by (14), the time
derivative of this function must be negative definite for
stability of parameter change (A¢) dynamics. Clearly
the stability in parameter change space implies the
convergence in system parameters.

1, 1
V=g =5gF (14)

V = (M) (A9) (15)

If (6) and (12) are substituted into (15), the constraint
stated in (16) is obtained for stability in the Lyapunov
sense.

2 1 ( 1
n2+——(ds - Ap)ny - —A4A8 <0 16

Equation (16) can be rewritten in 2 more tractable form
as follows,

1 1
+— A -——Ag <0

¢ ¢
Since A4 and Ag have the same signs, the roots of the
expression (17) clearly have opposite signs. The
expression on the lefi-hand side assumes hegative
values between the roots. Therefore, in order to satisfy
the inequality (17), the learning rate must satisfy the

constraint given by (18).

} (18)

In (18), the interval of learning rate is restricted to
positive values. This is due to preserve the compatibility
between the gradient-based approaches and the
proposed approach. An appropriate selection of 7,
could be as follows:

17
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By substituting the learning rate formulated in (18) into
the stabilizing solution given in (11), the stabilizing
component of the parameter change formula reduces to
(20).

Agyss = fmin (|A¢|,]A¢ [)Sg“ (N¢ )+ Ay

The law introduced in (20) minimizes the cost of
stability, which is the Lyapunov function defined by
(14). The question now reduces to the following; can
the cost defined by (2) be minimized by this rule? The
answer is obviously not, because the stabilizing
information is derived from the displacement of
parameter vector denoted by Ag, - whereas the
minimization of (2) is achieved when ¢ tends to ¢
regardless of what the displacement is. Therefore the
rule formulated in (20) needs a final modification. In
order to minimize (2), the parameter change anticipated
by Levenberg-Marquardt optimization technique, which
is reviewed in the second section, should somehow be
integrated into the final form of parameter update
mechanism. As introduced in the second section,
Levenberg-Marquardt algorithm (LM) evaluates a
parameter change as given by (21).

Combining the laws formulated in (20) and (21) in a
weighted average, the parameter ypdate law of (22) is
cbtained.

A= o Adyss + APy
ay +ady

(20}

(22)

The parameter update formula given by (22) carries
mixed information containing both the parametric
convergence, which is introduced by VSS part, and the
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cost minimization, which is due to the Levenberg-
Marquardt technique. The balancing in this mixture is
left to the designer by an appropriate selection of a; and
o,

IV. APPLICATION TO STANDARD FUZZY
SYSTEMS

This section considers the standard fuzzy system
approach introduced in [2] as the computationally
intelligent architecture. The system that is considered.in
this study uses bell shaped membership functions as
described by (23).

1
i‘:'j(”,r')=_‘“““‘z‘r
Yy
1+ uj —C!:," (23)
a
In above, ¢; defines the center of i rule’s j®

membership function, a, and by characterize the slope
and flatness of that function respectively. The structure
of fuzzy system is illustrated in Fig. 1, for which the
following type of a rule base structure is adopted.

IF uis U AND u; is Uy AND ... AND uy,is U,
THEN F=y,

In this representation, lowercase variables denete the
inputs; uppercase variables stand for the fuzzy sets
corresponding to the domain of each linguistic label.
During the simulations, c;, a; and b, parameters are
kept constant and the adaptation is carried out on the y
parameters of defuzzifier. The initial values of the
membership functions are selected such that the region
of interest is covered appropriately.

The overall realization performed by the system
considered is given in (24), where weighted average
defuzzifier is used with algebraic product aggregation
method.

#Ruies #[nputs ( )
Yi 'uy #Rules

= tl 24
F= # Rules #Inpurs 2 VWi (24)

Hﬂ:;f(“j) =l

=1 =t

In (24), the vector of firing strengths denoted by w is
normalized and the resulting vector is represented by
W,

# inputs

nl’y("‘)

, 25
Wai =3 Rules # Inpuls 25)
Hij ( )

=1 j=1

With the definition given in (25), and the realization
described by (24), the adjustable parameter set is
selected -as the y parameters of the defuzzifier. The
Jacobian can now be formulated as given by (26).

Jy= "[wnl Wi wnR] (26)

The method presented in this paper uses solely the
instantaneous observations contrary to what commonly
adopted in the literature. Therefore the Jacobian has
only one row. By construction of the algorithm
presented, the internal parameter 4, is defined as
follows;

-Qtanh( ]+KAy, X))

€q
The parameter £ that defines the boundary layer is
selected as unity for all adjustable parameters and for all
simulations presented in this study. The parameter
stabilizing law defimed in (20) imposes the update rule
formulated in (28), whereas the cost minimizing update
rule, which is based on the Levenberg-Marquardt
method, predicts the necessary parameter change value
as described by (29). The final form of the update rule
proposed can then be formulated as a weighted average
of these two values. This is described by (30).

Ay, vss = B min (Ayih |y [ken (v, )+ 4, 28)

Ayi =Ny 29)
Ay, = 218y yss T8y iy - 30)
! a)+a,
V. PLANT MODEL

In this study, a two degrees of freedom direct drive
robotic manipulator is used as the test bed. Since the
dynamics of such a mechatronic system is modeled by
nonlinear and coupled differential equations, precise
output tracking becomes a difficult objective due to the
strong interdependency between the variables involved.
Furthermore, the ambiguities concerning the friction
related dynamics in the plant model make the design
much more complicated. Therefore the methodology
adopted must be intelligent in some sense.

The general form of robot dynamics is described by

{31) where M), V(B,é) , 7(t) and f stand for the state
varying inertia matrix, vector of coriolis terms, applied
torque inputs and friction terms respectively.

M@E¥+7(0.6)=7-71 31

If the angular positions and angular velocities are
described as the state variables of the system, four
coupled and first order differential equations can define
the model. In (32) and (33), the terms seen in (31) are
given explicitly.

=[P| +2p3cos(6y) p +pscos(ty )] 32)

P2 +pycos6y) P2

V(@,é): [— 92(29; + 92 )pa sin(ﬂz)] (33)
6 p3sin6,)

In above, p; = 2.0857, p; = 0.1168 and p; = 0.1630. The
details of the plant model are presented in [12].
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V1. SIMULATION STUDIES

In the simulation studies presented, the plant
introduced in Sec, 5 is controlled by the fuzzy system
considered in Sec. 4. The main objective is to keep the
update dynamics in a stable region. This is achieved
through a suitable combination of Levenberg-Marquardt
optimization technique and the strategy based on the
variable structure systems approach. The architecture of
the control system is itlustrated in Fig. 2.

The reference velocity trajectory, described by (34)
and depicted in Fig. 3, is used in the simulations with
zero initial errors.

b1z = ol - ook (afe = 2])- - (e -12)) B9

The results presented concern the adjustment of only
the defuzzifier parameters during the learning process
and the membership functions are kept constant. The
choice on the initial values of the membership function
parameters is made so that the region of interest is
covered appropriately. In the training of the controller,
the squared sum of paramefric changes can be defined
to be the total cost of stability, which is described by
(35).

Rules Rules,
J(,){ El (Ayf(t))z} +[ 2 (ij.(,))z LA @ (39

ELBOW | j=1
AXIS AXIS

The state tracking error and the cost of stability
graphs are depicted in Figs. 4 and 5 respectively, It is
evident from Fig. 4 that once a fluctuation occurs on the
error or rate of error, it is dampened out by the use of
VSC philosophy in the learning strategy. The produced
control signal is depicted in Fig. 6. In the simulations
discussed, the settings used are given in Table 1.

Table 2. The Settings Used in the Simulations

T, 2.5 msec, | Q 0.1
0.1 K 0.1
4 L0 £ . 1.0
a; | 3.0V #Rules 9 (for each link)
a: |20V #EIS Inputs | 2 (for cach link)

A remarkable property of the algorithm presented is
the fact that it operates on-line. Therefore, the
difficulties that are likely to occur in on-line learning
and control are alleviated by the robustness provided by
VSS technique. Finally, for the evaluation of Jacobian
matrix, the conventional Levenberg-Marquardt
optimization technique requires the outputs of a
computationally intelligent system for a set of input
patterns. Therefore the dimensions of the Jacobian
increase and the computational cost increases. Since the
methodology adopted in this paper uotilizes an on-line
learning strategy, the response to a single input patiern
is sufficient to construct an instant value of Facobian.
This stipulates that the computational burden introduced
by the VS8S part is compensated by the reduction in
Jacobian dimensions. This dimensionality is the
fundamental  problem in  Levenberg-Marquardt

optimization procedure due to the necessity of matrix
inversion at each step.

VII. CONCLUSIONS

In this paper, a novel technique for improving
learning performance of computationally intelligent
architectures is presented. An approximate model of the
Levenberg-Marquardt  optimization procedure s
constructed and variable structure systems approach is
incorporated into the proposed form of the parameter
update law. In this procedure, Levenberg-Marquardt
optimization method is responsible for the minimization
of squared etror while the variable structure systems
based law is responsible for the stability in the
parameter space. The conventional approaches suffer
from some handicaps, such as imperfect modeling,
noisy observations or time varying parameters. If the
effects of these factors are transformed to the cost
hypersurface, whose dimensionality is determined by
the adjustable design parameters, it is evident that the
surface may have directions along which the sensitivity
derivatives assume large values. In these cases,
Levenberg-Marquardt optimization procedure evaluates
large parametric displacements, which can eventually
lead to a locally divergent behavior. In control
engineering practice, such a behavior constitutes a
potential danger from a safety point of view, The
approach presented in this paper takes care of the
instantaneous fluctuations in parameter space. Since the
variable structure systems approach is well known with
its robustness property, an appropriate combination of
Levenberg-Marquardt optimization technique and
variable structure systems can eliminate the handicaps
stated in the preceding paragraph. The fluctuations that
are most likely to occur in the parameter space during
training are dampened out. The combination is therefore
a good candidate for efficient parameter tuning, In the
application example presented, the results confirm the
prominent features of the approach, which are discussed
in the previous section. The algorithm is applicable to
any neuro-fuzzy system model provided that the model
output is differentiable with respect to the parameter of
interest.
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