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[. INTRODUCTION 

artificial neural networks started when 
in 1943 developed their model of an 
g neuron and when Hebb in 1949 
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11. " R O N  

Biological neuron has a complicated structure which 
receives trains of pulses on hundreds of excitatory and 
inhibitory inputs. Those incoming pulses are summed and 
averaged with different weights during the time period of 
latent sumnution. If the summed value is higher than a 
threshold then the neuron generates a pulse which is sent to 
neighboring neurons. If the value of the summed weighted 
inputs is higher, the neuron generates pulses more iiequently. 

An above simplified description of the neuron action leads 
to a very complex neuron model which is not practical. 
McCulloch and Pitts in 1943 show that even with a very 
simple neuron model it is possible to build logic and memory 
circuits. The McCulloch-Rtts neuron model assumes that 
incoming and outgoing signals may have only binary values 0 
and 1. If incoming signals summed through positive or 
negative weights have a value larger than threshold T, then 
the neuron output is set to 1. Otherwise it is set to 0. 

Examples of McCulloch-Pitts neurons realizing OR, AND, 
NOT and MEMORY operations are shown in Fig. 1. Note, 
that the structure of OR and AND gates can be identical and 
only threshold is different. These simple neurons, known also 
as perceptrons, are usually more powerful than typical logic 
gam used in computers. 

memory - 
A *' write 1 

write 0 

A+BC 

Fig. 1 Several lcgical opentiom using netwcrks with McCulla;h-pitts neurons. 

Multilayer neural networks usually use continuous 
activation functions, either unipolar 

I 
1 + exp(-het) 

o = ffnet) = 

or bipolar 
o = j n e t )  = tanh(0.5het) = - 1  

2 
I + exp(-het) 
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These continuous activation functions allow for the 
Typical gradient based training of multilayer networks. 

activation functions are shown in Fig. 2. 

+ + 
--- 

Fig.2. Typical adivation funciions: (a) hard threshdd unipolar. (b) hard 
b h l d  bipolar, (c) Continuous unipolar, (d) continucus bipdar. 

111. W-EDFORWARD NEURAL NETWORKS 

Simplest and most commonly used neural networks use 
only for one directional signal flow. Furthermore, most of 
feedforwad neural networks are organized in layers. An 
example of the three layer feedforward neural network is 
shown in Fig. 3. This network consists of input nodes, two 
hidden layers, and an output layer. 

hidden 
hidden layer #2 output 

h layer h 

Fig. 3. An exanple ofthe three layer feedfonvard neural network, which is 
also known as the backprcpgation network 

w3= - I  

Fig. 4. Linear separation ofpaaerns in the two-dimensional space by a single 
neuron. 

A single neuron is capable of separating input patterns into 
two categories and this separation is linear. For example, the 
separation line shown in Fig. 4, which are crossing xl and x2 
axes at points xlo and xzo, can be achieved with a neuron 
having weights: 
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for i = 1 to n : w,,+~ = - 1 I 
M.', = - 

x,o 
One neuron can divide only linearly separated patterns. In 

order to select just one region in n-dimensional input space, 
more than n+l neurons should be used. If more input clusters 
should be selected then the number of neurons in the input 
(hidden) layer should be properly multiplied. If the number of 
neurons in the input (hidden) layer is not limited, then all 
classification problems can be solved using the three layer 
network. The linear separation property of neurons makes 
some problems spectally difficult for neural networks, such as 
exclusive OR, parity computation for several bits, or to 
separate patterns laying on two neighboring spirals. 

The feedfaward neural networks are used for nonlinear 
transformation (mapping) of a multidimensional input 
variable into another multidimensional output variable. In 
theory, any input-output mapping should be possible if neural 
network has enough neurons in hidden layers (size of output 
layer is set by the number of outputs required). Practically, it 
is not an easy task and presently, there is no satisfactory 
method to define how many neurons should be used in hidden 
layers. Usually this is found by try and error method. In 
general, it is known that if more neurons are used, more 
complicated shapes can be mapped. On the other side, 
networks with large number of neurons lose their ability for 
generalization, and it is more likely that such network will try 
to map noise supplied to the input also. 

IV. LEARNING ALGORITHMS 

Weights in artificial neurons are adjusted during a training 
procedure. Various learning algorithms were developed but 
only a few are suitable for multilayer neuron networks. Some 
use only local information about signals in the neurons others 
require information Erom outputs. Supervised algorithms 
require a supervisor who always knows what outputs should 
be unsupervised algorithms need no such information. 
Common learning rules are described below. 

A. Hebbian Learning Rule 

Hebb in 1949 developed unsupervised learning rule which 
was based on the assumption that if two neighbor neurons 
must be activated and deactivated at the same time, then the 
weight connecting these neurons should increase. For neurons 
operating in the opposite phase, the weight between them 
should decrease. If there is no melation, the weight should 
remain unchanged. This assumption can be described by the 
formula 

Awij = cxioj 
where wij is the weight !Yom i-th toj-th neuron, c is the 

learning constant, Xi is the signal on the i-th input and oj is the 
output signal. The training process starts usually with values 
of all weights set to zero. This learning rule can be used for 
both soft and hard threshold neurons. The absolute values of 
the weights are usually proportional to the learning time, 
which is undesired. 
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B. Correlation leoming rule 

The correlation lewning rule uses a similar principle as the 
Hebbian learning rule. It assumes that weights between 
simultaneously respcklding neurons should be largely positive, 
and weights between neurons with opposite reaction should be 
largely negative. hriathematically, this can be written that 
weights should be proportional to the product of states of 
connected neurons. In contrary to the Hebbian rule, the 
melation rule is of the supervised type. Instead of actual 
response, the desired response is used for weight change 
calculation 

A W ,  = C X I ~ J  

This training algcirithm starts with initialization of weights 
to zero values. 

C. Instar leaminlt rule 

If input vectors, and weights, are normalized, or they have 
only binary bipolar values (-I or +Z), then the net value will 
have the largest pabitive value when the weights have the 
same values as the iniput signals. Therefore, weights should be 
changed only if they pre different from the signals 

A w ,  = C ( X ,  - w, )  
Note, that the infbrmation required for the weight is only 

taken kom the input signals. This is a local and unsupervised 
learning algorithm. 

D. W A  - Winner Takes All 
The WTA is a madifioltion of the instar algorithm where 

weights are modifiedl only for the neuron with the highest net 
value. Weights of remaining neurons are left unchanged. This 
unsupervised algorithm @"e we do not know what are 
desired outputs) has a global character. The WTA algorithm, 
developed by Kohonien in 1982, is often used for autmatic 
clustering and for extracting statistical properties of input data. 

E. Outstar leamiizg rule 

In the outstar leaning rule it is required that weights 
connected to the cerlain node should be equal to the desired 
outputs for the neurons connected through those weights 

A w ,  = C ( d j  - wij) 

where 4 is the desired neuron output and c is small 
learning constant which mer decreases during the learning 
procedure. This is the supervised training procedure because 
desired outputs must be known. Both instar and outstar 
learning rules were developed by Grossberg in 1974. 

F. Widrow-Hoff (LMS) learning nile 

Widrow and Hoff in 1962 developed a supervised training 
algorithm which allows to train a neuron for the desired 
response. This rule was derived by minimizing the square of 
the difference between ner and output value. 
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p = l  

where Error, is the error forj-th neuron, P is the number of 
applied patterns, db is the desired output forj-th neuron when 
p-th pattern is applied. This rule is also known as the LMS 
(Least Mean Square) rule. By calculating a derivative of the 
error with respect to wi, one can find a formula for the weight 
change. 

p = l  

Note, that weight change Awij is a sum of the changes from 
each of the individual applied patterns. Therefore, it is 
possible to correct weight after each individual pattern was 
applied. If the learning constant c is chosen to be small, then 
both methods gives the same result. The LMS rule works well 
for all type of activation functions. This rule tries to enforce 
the net value to be equal to desired value. Sometimes, this is 
not what we are looking for. It is usually not important what 
the net value is, but it is important if the net value is positive 
or negative. For example, a very large net value with a proper 
sign will result in large error and this may be the preferred 
solution. 

G. Linear regression 

The LMS learning rule requires hundreds or thousands of 
iterations before it converges to the proper solution. Using the 
linear regression the same result can be obtained in only one 
step. 

Considering one neuron and using vector notation for a set 
of the input patterns X applied through weights w the vector 
of net values net is calculated using 

Xw = net 
where X is a rectangular array (n+I)*p, n is the number of 

inputs, and p is the number of patterns. Note that the size of 
the input patterns is always augmented by one, and this 
additional weight is responsible for the threshold. This 
method, similar to the LMS rule, assumes a linear activation 
function, so the net values net should be equal to desired 
output values d 

xw = d 
Usuallyp > n+Z, and the above equation can be solved only 

in the least mean square error sense 
w =(XTX)'XTd 

or to convert the set of p equations with n+l unknowns to 
the set of n+Z equations with n+I unknowns. Weights are a 
solution of the equation 

Yw = 2 

where elements of the Y matrix and the z vector are given 
by 

P P 

p = l  p d  
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H. Delta learning rule 

The LMS method assumes linear activation function net = 
0, and the obtained solution is sometimes far from optimum as 
it is shown in Fig. 5 for a simple two dimensional case, with 
four pattems belonging to two categories. In the solution 
obtained using the LMS algorithm one pattern is 
misclassified. If error is defined as 

D 

Errorj = 2 ( o j p  - djp)l 
p= I 

Then the derivative of the error with respect to the weight 
U:.; is 

Note, that this derivative is proportional to the derivative of 
the activation function f(net). Thus, this type of approach is 
possible only for continuous activation functions and this 
method Canna be used with hard activation functions. In this 
respect the LMS method is more general. The derivatives 
most common continuous activation functions are 

f' = o(l  - 0) for the unipolar and 
f' = 0.5(1 - 02)  forthebipolar. 

Using the cumulative approach, the neuron weight 
M ' ~ ~  should be changed with a direction of gradient 

P 

p = l  

in case of the incremental training for each applied pattern 

the weight change should be proportional to input signal x,, 
to the difkrence between desired and actual outputs dp-op, 
and to the derivative of the activation function 7,. Similar to 
the LMS rule, weights can be updated in both the incremental 
and the cumulative methods. In comparison to the LMS rule, 
the delta rule always leads to a solution close to the optimum. 
As it is illustrated in Fig 5, when the delta rule is used, all four 
patterns are classified correctly. 

AWIJ - - c XI fJ, (d, - 0,) 

I. Nonlinear regression method 

'I'he delta method is usually very slow. Solution can be very 
fast when nonlinear regression algorithm is adopted [l]. The 
total error for one neuron j and pattern p is now defined by 
a simple difference: 

where net=w1x1+w2x2+ ..... wnxn. The derivative of this 
error with respect to the ifh weight of the j" neuron can be 
written as: 

= d J p  - o J p ( r l e t )  

dEJp - do, dnet -_--- d y  dnet d y  - -f,x,, 

The error function can then be approximated by the first 
two terms of the linear approximation around a given 
mint: 

therefore 

I""]- 
vw, 

or 
X A w = v  

Matrix X is usually rectangular and above equation can be 
only solves using pseudo inversion technique. 

A w = (X'X)-* XTv 
The (X7X)'XT matrix is composed of input pattems only, 
and it must be computed only once 

8 I 

Fig. 6.  Comparison of Algorithm where the algorithms can be identified by 
the labels A-regression, B-nunimum distance. C-modified nunimum distance. 
and D-modified regression and delta (back propagation) algonthm. 

Rp. 5. An example with a comparison of results obtained using LMS and 
Delta training a l g a i h .  Note that LMS is not able to find the proper solution. 
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TABLE 1. Learning rules for single neuron 
General formula 

Hebb rule (unsupeirvised): 

correlation rule (supervised): 

perceptron fixed rale: 

perceptron adjustable rule: 

Awl = a S x  

6=0 

S = d  

6 Z d - o  

XTW net 6 = (d -0)- = (d - o ) ~  
llX11 

xTx 
LMS (Widrow-Hoff) rule: 

delta rule: 

pseudoinverse rule (for linear system): 

w = (x'x)-'x'd 
iterative pseudoinverse rule (for nonlinear system): 

6 = d -net 

6 = (d - 0 ) f '  

T d -0 w = (x'x)'x -- 
f '  

J. Error Backpropagation leaming 

The delta learning rule can be generalized for multilayer 
networks. Using a :similar approach, as it is described for the 
delta rule, the gradient of the global error can be computed in 
respect to each weight in the network. Interestingly 

where c is the learning constant, x, is the signal on the i-th 
neuron input, and j;' is the derivative of activation function. 
The cumulative error E, on neuron output is given by 

A WIJ = c X I  f J l  E,  

J J' k=I 

where K is the number of network outputs, and Alk is the 
small signal gain fjrom the input of j-th neuron to the k-th 
network output as Fig. 7 shows. The calculation of the back 
propagating error is kind of artificial to the real nervous 
system. Also, the error backpropagation method is not 
practical from the point of view of hardware realization. 
Instead, it is simpler to find signal gains firom the input of the 
j-th neuron to each of the network output (Fig. 7). In this case 
weights are corrected using 

K 

k=1 
Note, that the above formula is general, no matter if 

neurons are arranged in layers or not. One way to find gains 
A$ is to introduce ani incremental change on the input of the j -  
th neuron and observe the change in the k-th network output. 
This procedure requires only forward signal propagation, and 
it is easy to implenrent in a hardware realization. Another 
pcxsible way, is to calculate gains through each layer and then 
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find the total gains as products of layer gains. This procedure 
is equally or less computational intensive than a calculation of 
cumulative errors in the error backpropagation algorithm. 

The backpropagation algorithm has a tendency for 
oscillation. In order to smooth up the process, the weights 
increment Aw,, can be modified acccording to Rumelhart, 
Hinton, and Wiliams [ 141 

or according to Sejnowski and Rosenberg (1987) 
W l J ( n + I )  = w l J ( n )  + AWIJ(n)  + a W t J ( n - l )  

w,(n + 1)  = wg (n)  + (1  - a) A w,, (n) + U!, w,, (n - 1 )  
where a is the momentum term. 
r-------- 1 

i 

+ I  Y 
Fig. 7. illustration dthe c o n q  ofthe gain computation in neural networks 

The backpropagation algorithm can be significantly 
speedup, when after finding components of the gradient, 
weights are modified along the gradient direction until a 
minimum is reached. This process can be carried on without 
the necessity of computational intensive gradient calculation at 
each step. The new gradient components are calculated once 
a minimum on the direction of the previous gradient is 
obtained. This process is only possible for cumulative weight 
adjustment. One method to find a minimum along the 
gradient direction is the tree step process of finding error for 
three points along gradient direction and then, using a 
parabola approximation, jump direcxly to the minimum. The 
fast learning algorithm using the above approach was 
proposed by Fahlman [2] and it is known as the quickprop. 

The backpropagation algorithm has many disadvantages 
which leads to very slow convergence. One of the most 
painful is this, that in the backpropagation algorithm the 
learning process almost perishes for neurons responding with 
the maximally wrong answer. For example if the value on the 
neuron output is close to + I  and desired output should be 
close to - I ,  then the neuron gainf(nett-0 and the error signal 
cannot back propagate, so the learning procedure is not 
effective. To overcome this difficulty, a modified method for 
derivative calculation was introduced by Wilamowski and 
Torvik [a]. The derivative is calculated as tQe slope of a line 
connecting the point of the output value with the point of the 
desired value as shown in Fig. 8 
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output I 

Wg.8 IllustratiOn of the modified derivative calmlation fa fa= 
mvergence ofthe enor baclqropagation algorithm 

- Odesired - oacmal 

netdesired - netactual 

Note, that for small errors, equation converges to the 
derivative of activation function at the point of the output 
value. With an increase of the system dimensionality, a 
chance for local minima decrease. It is believed that the 
described above phenomenon, rather than a trapping in local 
minima, is responsible for convergence problems in the error 
backpropagation algorithm. 

K. Lavenberg-Marquardt learning 

The Lavenberg-Marquardt learning algorithm is the second 
order search method of a minimum. At each iteration step 
error surface is approximated by parabolic approximation and 
the minimum of the paraboloid is the solution for the step. 

Simples approach require function approximation by first 
terms of Taylor series 

1 
2 

F ( w ~ + ~ ) =  F(wk +Aw)+g:Aw, i--Aw:AkAwk 

where g = V E  is gradient and A = V 2 E  is Hessian of 
global error E. 

dE aE aE Gradient -, - - ... 
my, a W 2 *  aw,' 

a 2 E  a 2 E  a 2 E  

a 2 E  a 2 E  a Z E  

a 2 E  a'E d 2 E  

- - - ... w &,my, 
- - ~ ... 

Hessian * aw2aw, &*;z &&J3 

- - - ... 
a W 3 . a w l  "v, my: . 

Steepest decent (error backpropagation) method calculates 
weights using: 

while Newton method uses: 
Wk+l = wk -a g 

Wk+l = wk -A,'g 
The Newton method is practical only for small networks 
where Hessian Ak can be calculated and inverted. In the 

Lavenberg-Marquardt method the Hessian AI, is 
approximated by product of Jacobians 

A = 2JTJ 
and gradient as 

where e is vector of output errors and Jacobian J is 
g = 2JTe 

- -  aE, aE, aE, .-. 
my, my, my, 

- -  aE, aE, aE, ... 
e* hyz hu" . 

aEZ aE2 aE, 
Jacobian * my, &J2 &J3 

- - - ... 

.~ 

It is much easier to calculate Jacobian than Hessian and 
also usually Jacobian is much smaller so less memory is 
required. Therefore weights can be calculated as 

or 

Wk+l = wk - (J:J, I'JEe 
To secure convergence the Lavenberg-Marquardt 
introduces p parameter 

when p = 0 this method is similar to the second order 
Newton method. For larger values of p parameter the 
Lavenberg-Marquardt works as the steepest decent method 
with small time steps. The m parameter is automatically 
adjusted during computation process so good convergence 
is secured. The Lavenberg-Marquardt recently becomes 
very popular because it will usually converge in 5 to 10 
iteration steps. Main disadvantage of this method is a large 
memory requirement and therefore it cannot be used for 

V. SPECIAL FEEDFORWARD NETWORKS 

The multilayer backpropagation network, as shown in Fig. 
3, is a commonly used feedforwad network. This network 
consists of neurons with the sigmoid type continuous 
activation function presented in Figures 2(c) and 2(d). In 
most cases, only the one hidden layer is required, and the 
number of neurons in the hidden layer are chosen to be 
propartional to the problem complexity. The number of 
neurons in the hidden layer is usually found by a try and error 
process. The training process starts with all weights 
randomized to small values, and then the error 
backpropagation algorithm is used to find a solution. When 
the leaming process does not converge, the training is 
repeated with a new set of randomly chosen weights. Nguyen 
and Widrow [16] proposed an experimental approach for the 
two layer network weight initialization. In the second layer, 
weights are randomly chosen in the range fiom -0.5 to +0.5. 
In the first layer, initial weights are calculated from 
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where 5, is the mdom number firom -0.5 to +0.5 and the 

p = 0 . 7 P ~  
where n is the number of inputs, and N is the number of 

hidden neurons in the first layer. This type of weight 
initialization usually leads to faster solutions. 

For adequate solutions with backpropagation networks, 
many tries are typically required with different network 
structures and different initial random weights. This 
encouraged researchers to develop feedforward networks 
which can be more reliable. Some of those networks are 
described below. 

scaling factor i3 is given by 
I 

A. Functional lit& nenvork 

One layer neural networks are relatively easy to train, but 
these networks can solve only linearly separated problems. 
The concept of furictional link networks was developed by 
Nilson bodc [lo] and late elaborated by Pa0 [13] using the 
functional link network shown in Fig. 9. 

0 

.... 4 

0 
& 

U 
Fig. 9. The fundional link netwcrk 

Using nonlinear terms with initially determined functions, 
the actual number of inputs supplied to the one layer neural 
network is increasecl. In the simplest case nonlinear elements 
are higher order tcms of input patterns. Note that the 
functional link network can be treated as a one layer network, 
where additional input data are generated off line using 
nonlinear transformations. The learning procedure for one 
layer is easy and fast. Fig. 10 shows an XOR problem solved 
using functional link networks. Note, that when the 
functional link approach is used, this difficult problem 
becomes a trivial one. The problem with the functional link 
network is that p r o p  selection of nonlinear elements is not 
an easy task. However, in many practical cases it is not 
difficult to predict what kind of transformation of input data 
may linearize the problem, so the functional link approach can 
be used. 

untpolcrr neuron bipolar neuron 

Fig. 10 Funtional link networks for sdution ofthe XOR problem: (a) using 
unipdar signals, (b) using bipolar signals. 
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Kohonen Grossberg 
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summing 
unipolar circuits 
neurons 

Fig. 11 The ccunterpropagaton network. 

B. Feedforward version of the counterpropagation network 

The counterpropagation network was originally proposed 
by Hecht-Nilsen [3] and modified feedfbrward version 
described by &ada [26]. This network, which is shown in 
Fig. 11, requires numbers of hidden neurons equal to the 
number of input patterns, or more exactly, to the number of 
input clusters. The first layer is known as the Kohonen layer 
with unipolar neurons. In this layer only one neuron, the 
winner, can be active. The second is the Grossberg outstar 
layer. The Kohonen layer can be trained in the unsupervised 
mode, but that need not be the case. When binary input 
patterns are considered, then the input weights must be exactly 
equal to the input patterns. In this case 

net = x'w = (n - 2HD(x,w)) 
where n is the number of inputs, w are weights, x is the 

input vector, and HD(w,x) is the Hamming distance between 
input pattern and weights. 

Since for a given input pattern, only one neuron in the first 
layer may have the value of one and remaining neurons have 
zero values, the weights in the output layer are equal to the 
required output pattern. 

The feedforward counterpropagation network may also use 
analog inputs, but in this case all input data should be 
normalized 

A Xi = -  
w i = x i  llXi l l  

The counterpropagation network is very easy to design. 
The number of neurons i ~ i  the hidden layer should be equal to 
the number of patterns (clusters). The weights in the input 
layer should be equal to the input patterns and, the weights in 
the output layer should be equal to the output patterns. This 
simple network can be used for rapid prototyping. 

C. WA architecture 

The winner take all WTA network was proposed by 
Kohonen in 1988 [12]. This is basically a one layer network 
used in the unsupervised training algorithm to extract a 
statistical property of the input data (Fig. 12). At the first step 
all input data is normalized so the length of each input vector 
is the same, and usually equal to unity. The activation 
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functions of neurons are unipolar and continuous. The 
learning process starts with a weight initialization to small 
random values. During the learning process the weights are 
changed only for the neuron with highest value on the output - 
the winner 

Aww = c ( x  - ww) 
where w, are weights of the winning neuron, x is the input 

vector, and c is the learning constant. 
Kohonen 

2 
Y 

-a 2 
2 

s 
tu‘ 
-a Y 

r? 
0 
s2 

Fig. 12 A winner take all - “TA architemre for cluster extrading in the 
unsupwvised training mode: (a) network COM&O~S, (b) single layer network 
arranged into a hexagonal +. 

The algorithm is modified in such a way that not only the 
winning neuron, but also neighboring neurons are allowed for 
the weight change. At the same time, the learning constant c 
decreases with the distance Erom the winning neuron. After 
such a unsupervised training procedure, the Kohonen layer is 
able to organize data into clusters. 

Fig. 13. Input pattern transformation on a sphere 

D. Projection on sphere 

There are various method to transform input 
space onto hypersphere without necessity of the 
information lost [11][21]. In every case the dimensionality 
of the problem must be increased. The simples way of 
transforming input space into hypersphere is to use all 
input variables untouched zi = xi and add one additional 
input z “ + ~  

( i =  1,2, ..., n) 
zl ={4* ( i = n + l )  

where llxll’ = xTx is the norm (length) of the input vector. 
Note that zTz = const therefore all patterns in new 

transformed z-space are located on a hypersphere with 
radius R .  

z T z = x ~  +x:+...+xi +(, /Rz -x: +x:+...+x~)* = R2 

The p a m s  of the transfmed z space have the same magnitudes 
and lie on the n+l hypesphere. Fach cluster can now be cut out 
by a single hyperplane in the n+l dimensional space. Ihe 
separaticpl hypsplanes should be normal to the vectars speakcl 

plane of the k-th cluster can be easily found using the point and 
normal vector formula: 

by thet~l~~tfXS’ CentfXS of @Ivity ZCk. ~ U C l h S  fOr the S€pX2lbtl 

zcl(z-ze,) = o 
where z c k  is the center of gravity of the vector and q is a point 
transfmed &om the edge of the cluster. To visualize the problem 
let us consider a simple two dimensional example with three 
clusters shown in Fig. 14. 

E Sarajedini and Hecht-Nielsen network 

Let us consider stored vector w and input pattern x. 
Both input and stored patterns have the same dimension n. 
The square Euclidean distance between x and w is: 
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After defactorizatioti 

finally 

where net = xTw is the weighted sum of input signals. Fig. 
16 shows the netRork which is capable of calculating the 
square of Euclidean distance between input vector x and 
stored pattern w. 

i t x - ~ '  =.r; + x i  + . . . + X i  +%$ +w,'+...+Wn'-2(x1w; +X21+\ +...+ X"1V") 

Ik - wllZ = x T x  + wTw - 2xTw = 11x112 + 1 1 ~ 1 1 2  - 2net 

500 

400 

300 

200 

100 

0 
30 

30 

0-0 

Fig. 16. Network capable of calculating square of Euclidean distance 
between input pattemx ;md stored pattern w. (a) network; (b) Euclidean 
distance calculation forrn vector (15,15) 

In order to calculate the square of Euclidean distance 
the following mod] fications are required: (i) bias equal to 
Ilwll', (ii) additional input with square of input vector 
magnitude llwIl2, and (iii) weights equal to components of 
stored vector multiplied by -2 factor. Note that when 
additional input with the square of magnitude is added 
than simple weighted sum type of network is capable of 
calculating square of Euclidean distance between x and w. 
This approach can be directly incorporated into RBF and 
LVQ networks. 

With the approach presented on Fig. 2 several neural 
network techniques such as RBF, LVQ, and GR can be 
used with classical weighted sum type neurons without 
necessity of computing the Euclidean distance in a 
traditional way. All what is required is to add additional 
input with the magnitude of the input pattem. 

E. Cascade corrdarion architecture 

The cascade coirrelation architecture was proposed by 
Fahlman and Lebiere in 1990. The process of network 
building starts with a one layer neural network and hidden 
neurons are added as needed. The network architecture is 
shown in Fig. 17. 
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hidden neurons 

Fig. 17. The cascade carelation architeuure. 

In each training step, the new hidden neuron is added and 
its weights are adjusted to maximize the magnitude of the 
correlation between the new hidden neuron output and the 
residual error signal on the network output that we are trying 
to eliminate. The correlation parameter S defined below must 
be maximized 

- 
s = 1 (v, - v) ( E ,  - E)J 

o=I ,=I 

where 0 is the number of network outputs, P is the number 
of training patterns, V, is output on the new hidden neuron, 
and E,, is the error on the network output. By finding the 
gradient, ~SW;,, the weight adjustment for the new neuron 
can be found as 

O P  

o=l p = l  

where 0, is the sign of the correlation between the new 
neuron output value and network output, &, ' is the derivative of 
activation function for pattern p, and xt, is the input signal. 
The output neurons are trained using the delta 
(backpropagation) algorithm. Each hidden neuron is trained 
just once and then its weights are fkozen. The nehork 
learning and building process is completed when satisfied 
results are obtained. 

G. Radial basisfunction networks 

The structure of the radial basis network is shown in Fig. 
16. This type of network usually has only one hidden layer 
with special "neurons". Each of these "neurons" responds 
only to the inputs signals close to the stored pattem. The 
output signal h, of the i-th hidden "neuron" is computed using 
formula 

hi = exp ( -- llx;--;lr] 
where x is the input vector, s, is the stored pattern 

representing the center of the i cluster, and q is the radius of 
this cluster. Note, that the behavior of this "neuron" 
significantly differs form the biological neuron. In this 
"neuron", excitation is not a function of the weighted sum of 
the input signals. Instead, the distance between the input and 
stored pattern is computed. If this distance is zero then the 
"neuron" responds with a maximum output magnitude equal 
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to one. This "neuron" is capable of recognizing certain 
patterns and generating output signals being functions of a 
similarity. Features of this "neuron" are much more powerful 
than a neuron used in the bckpropagation networks. As a 
consequence, a network made of such "neurons" is also more 
powerful. 

If the input signal is the same as a pattern stored in a 
neuron , then this "neuron" responds with 1 and remaining 
"neurons" have 0 on the output, as it is illustrated in Fig. 16. 
Thus, output signals are exactly equal to the weights coming 
out from the active "neuron". This way, if the number of 
"neurons" in the hidden layer is large, then any input output 
mapping can be obtained. Unfortunately, it may also happen 
that for some pattems several "neurons" in the first layer will 
respond with a non-zero signal. For a proper approximation 
the sum of all signals from hidden layer should be equal to 
one. In order to meet this requirement, output signals are 
often normalized as shown in Fig. 18. 

hidden "neurons" 

Fig. 18 A typical structure ofthe radial basis fundion network. 

The radial based networks could be designed, or trained. 
Training is usually carried on in two steps. In the first step the 
hidden layer is usually trained in the unsupenised mode for 
choosing best pattems for cluster representation. A similar 
approach, as used in the WTA architecture, can be used. Also 
in this step, radiuses must be found for a proper overlapping 
of clusters. The second step of training is the error 
backpropagation algorithm carried on only for the output 
layer. Since this is a supervised algorithm for one layer only, 
the training is very rapid, 100 or lo00 times faster than in the 
backpropagation multilayer network. This makes the radial 
basis-function network very attractive. Also, this network can 
be easily modeled using digital computers, however, its 
hardware implementation would be very difficult. 

VI. RECURRENT NEURAL NETWORKS 

In contrast to feedforward neural networks, recurrent 
networks neuron outputs could be connected with their inputs. 
Thus, signals in the network can continuously circulated. 
Until now only a limited number of recurrent neural networks 
were described. 

A. Hopfield network 

The single layer recurrent network was analyzed by 
Hopfield in 1982. This network shown in Fig. 19 has 

unipolar hard tlireshold neurons with outputs equal to 0 or 1. 
Weights are given by a symmetrical square matrix W with 
zero elements (N;, = 0 for i=j) on the main diagonal. The 
stability of the system is usually analyzed by means of the 
energy function 

I N N  
E = - - ~ J ~ d w , v l v j  

2 1=1 j=1  

Aw,] = Awjl  = (2v,  - I) (2v,  - I )  
It was proved that during signal circulation the energy E of 

the network decreases and system converges to the stable 
points. This is especially true when values of system outputs 
are updated in the asynchronous mode. This means that at the 
given cycle, only one random output can be changed to the 
required value. Hopfield also proved that those stable points 
to which the system converges can by programmed by 
adjusting the weights using a modified Hebbian rule. Such 
memory has limited storage capacity. Based on experiments, 
Hopfield estimated that the maximum number of stored 
patterns is 0.1 SN, where N is the number of neurons. 

Fig. 19 A Hopfield network OT au"ciat ive  mmry 

B. Autoassociative memory 

Hopfield in 1984 extended the concept of his 
network to autoassociative memories. In the same network 
structure as shown in Fig. 19, the bipolar neurons were used 
with outputs equal to -1 of + I ,  In this network pattern s,,, are 
stored into the weight matrix W using autmelation 
algorithm 

M 
w = &sT, - M I  

m = l  

where M is the number of stored pattern, and Z is the unity 
matrix. Note, that W is the square symmetrical matrix with 
elements on the main diagonal equal to zero (wj for i=j). 
Using a modified formula, new patierns can be added or 
subtracted from memory. When such memory is exposed to a 
binary bipolar pattern by enforcing the initial network states, 
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then after signal circulation the network will converge to the 
closest (most similar) stored pattern or to its complement. 
This stable point will be at 

I 
2 

E(v)  = - -vTWv 

the closest minimum of the energy functionLike the 
Hopfield network, the autoassociative memory has limited 
storage capacity, which is estimated to be about Mm=0.15N. 
When the number of stored patterns is large and close to the 
memory capacity, the network has a tendency to converge to 
spurious states which were not stored. These spurious states 
are additional minima of the energy function. 

C. BAM 

The concxpt of the autoaSSoCiative memory was 
extended to bidirectional associative memories - BAM by 
Kosko [7][8]. This memory shown in Fig. 20 is able to 
associate pairs of the patterns a and b. This is the two layer 
nmork with the output of the second layer connected directly 
to the input of the first layer. The weight matrix of the second 
layer is WT and it is W for the first layer. The rectangular 
weight matrix W is obtained as a sum of the cross melation 
matrixes 

M 
W = Camb, 

m=l 

where M is the number of stored pairs, and U,,, and 6, are 
the stored vector pairs. If the nodes a or b are initialized with 
a vector similar to the stored one, then after signal circulation, 
both stored patterns U,,, and b, should be recovered. The 
BAM has similar limited memory capacity and memory 
corruption problem!; as the autoassociative memory. The 
BAM concept can Ix: extended for association of three or more 
vectors. 

(4 (b)  
Fig. 20. An example of the bid ired id  autoasudive nlemuy - BAh4: (a) 
drawn as a two layer net\& with cira~lating signals (b) drawn as two layer 
network with bi-diredional signal flow. 

VII. FUZZY SYS’IEMS 

A. Fuzzy variables and basic operations 

In contrary to the Boolean logic where variables can have 
only binary states, ixi fuzzy logic all variables may have any 
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values W e e n  zero and one. The fuzzy logic consists of the 
same basic A - AND, v - OR, and NOT operators: 
A A B A C ==> min(A, B. C] - smallest value of A or B or C 
A v B v C ==> m ( A ,  B, C)- largest value of A or B or C 
A = > I - A  - one minus value of A 
Forexample0.1~0.8~0.4 = O.l,O.IvO.8v0.4 = 0.8, and 0.3 
= 0.7. The above rules are also known as Zadeh [25] AND, 
OR, and NOT operators. One can note that these rules are true 
also for classical binary logic. 

- 

B. Fuzzy controllers and basic blocks 

The principle of operation of the fuzzy controller 
significantly differs kom neural networks. The block diagram 
of a fuzzy controller is shown in Fig. 21.(a) In the first step, 
analog inputs are converted into a set of fuzzy variables. In 
this step usually for each analog input 3 to 9 fuzzy variables 
are generated. Each fuzzy variable has an analog value 
between zero and one. In the next step a fuzzy logic is applied 
to the input fuzzy variables and a resulting set of the output 
variables is generated. In the last step, known as 
defuzzification, firom a set of output fuzzy variables, one or 
more output analog variables are generated, which are to be 
used as control variables. 

U 
7 

I 

Fig. 21. Typical fuzzy systems (a) proposed b-deh, @) proposed by 
Takagi-Sugano, and (c) suitable for VLSI implementation 

C. Fum>cation 

The purpose of fuzzification is to convert an analog variable 
input into a set of fuzzy variables, For higher accuracy more 
fuzzy variables will be chosen. To illustrate the fuzzification 
process let us consider that the input variable is the 
temperature, and this is coded into five fuzzy variables: cold, 
cool, normal, warm, and hot. Each fuzzy variable should 
obtain a value between zero and one, which describes a degree 
of association of the analog input (temperature) within the 
given fuzzy variable. Sometimes, instead of term of degree of 
association, the degree of membership is used. The process of 
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fuzzification is illustrated in Fig. 22. For example, for a 
temperature of V F ,  the following set of fuzzy variables is 
obtained: [O, 0.5, 0.3, 0, 01, and for T=80"F it is [O, 0, 0.2, 
0.7, 01. Usually only one or two fuzzy variables have a value 
diffsent than zero. In the presented example, trapezoidal 
function are used for calculation of the degree of association. 
Various different functions as the triangular, or the gaussian 
can also be used, as long as the computed value is in the range 
from zero to one. Always each membership function is 
described by only three or four parameters, which have to be 
stored in memory. 

Yl y 2  

' 1  '11 t12 

' 2  t21 '22 

' 3  t31 32 t t  

' 4  '41 t42 

' 5  '51 t t  52 

For proper design of the fuzzification stage, certain practical 
rules should be used: 
1. Each point of the input analog variable should belong to at 
least one and no more then two membership functions. 
2. For overlapping functions, the sum of two membership 
functions must not be larger than one. This also means that 
overlaps must not cross the points of maximum values (ones). 
3. For higher accuracy, more membership function should be 
used. However, very dense functions lead to a frequent system 
reaction, and sometimes to a system instability. 

574 8 0 4  
cold 

shown in Fig. 22. In the first step fuzzy variables obtained 
from rule evaluations are used to modify the membership 
function employing the f m u l a  

For example, if output fuzzy variables are: 0, 0.3, 0.7, 0.0, 
then the modified membership functions have shapes shown 
by the thick line in Fig. 24. The analog value of the z vatlable 
is found as a "center of gravity" of modified membership 

y 3  

'13 p; tz) = minfpk tz), Z k  1 
t23 

3 3 .  
' 4 3 ~  functions !&.*(Z) 

53 27,~; (z)zdz 

D. Rule Evaluation 

Fuzzy rules are specified in the fuzzy table as it is shown for 
a given system. Let us consider a simple system with two 
analog input variables x and y ,  and one output variable z. We 
have to design a fuzzy system generating z asf(x.y). Let us 
also assume that after fuzzification the analog variable x is 
represented by five fuzzy variables: xI,  x2, x3, .Q, x5 and an 
analog variable y is represented by three fuzzy variables: yI ,  y2, 

y3. Let us also assume that an analog output variable is 
represented by four fuzzy variables: zI, z2, 23. G. The key issue 
of the design prows is to set proper output fuzzy variables .Q 

for all combination of input fuzzy variables, as it is illustrated 
in the table (a) shown in Fig. 23. The designer has to spsclfy 
many rules such as: if inputs are represented by fuzzy 
variables x, and vj then the output should be represented by 
fuzzy variable a. It is only required to specify what 
membership functions of the output variable are associated 
with a combination of input fuzzy variables. Once the fuzzy 
table is specified, the fuzzy logic amputation is proceeded 
with two steps. At first each field of the fuzzy table is filled 
with intermediate fuzzy variables tl,, obtained from AND 
operator tv=min(xc,y,/, as shown in Fig. 23(b). This step is 
independent of the required rules for a given system. In the 
second step the OR (max) operator is used to compute each 
output fuzzy variable a. In the given example in Fig. 22 

tZ2/, ~ = m a x { t ~ ~ , t ~ ~ , t 4 5 / .  Note that the formulas depend on the 
specifications given in the fuzzy table shown in Fig 23(a). 

ZI=max( t I I , t 12 . t2 I , t31 / ,  8 = m a X ( t I . ~ , t 2 2 , t 4 I , t 5 I / ,  Z.?'"t23,t32,t42, 

- 
Rg. 24. IlIusaatiMl of the defuzzifcation process. 

E. Defuuijicarion 

As a result of fuzzy rule evaluation, each analog output 
The variable is represented by several fuzzy variables. 
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In the case when shapes of the output membership functions 
pdz) are the same, the above equation can simplified to 

n 

C Z k  ZCk 
- k= 1 

Zanalog - 
$Zk 
k= 1 

where n is the numkr of membership function of &dog output 
variable, is fuzzy output variables obtained from rule 
evaluation, and zck are analog values corresponding to the 
center of k-th memtership function. 

VIII. VLSI FUZZY CHIP 

The classical approach to fuzzy systems presented by 
Zadeh 1251 is difficult to implement in analog hardware. 
Especially difficuli is the defuzzifier where signal division 
must be implemenlted. Division can be avoided through use 
of feedback loops, but this approach can lead to limited 
accuracy and stabdity problems. Also, in the case of the 
classical fuzzy system shown in Fig. 21, the information 
about the required control surface is encoded in three 
places: in the fuzzifier, in the defuzzifier, and in the 
prewired connections between MIN and MAX operators. 
Although the architecture is relatively simple, it is not 
suitable for custom programming. 

J U  

u u  
Fig. 25. Architecture of VLSI fuzzy controller 

The concept of the proposed circuit is shown in Fig. 25. 
Fuzzification is done in a traditional manner with 
additional normadization which leads to a linear 
interpolation of the output between stored points. The 
second stage is an array of cluster cells with fuzzy “AND” 
operators. Instead of classical defuzzification, simplified 
Takagi-Sugeno singleton inference rules 181 with 
normalization are used. The output is then normalized and 
calculated as a weighted sum of the signals approaching 
from all selected atas. 

A. Fuuifier 

Various fuzzifier circuits that can be implemented in 
bipolar or MOS technology have already been proposed. 
Most approaches use two source- or emitter-coupled 
differential pairs lor a single membership function. The 
approach proposed here differs from the previous 
techniques in two ways (i) it is simpler - only one 
differential pair is required per membership function and 
(ii) the fuzzy outputs are automatically normalized; 

therefore the sum of all the signals representing the fuzzy 
variables of a single input is constant. 

The fuzzifier circuit is presented in Fig. 26. This design 
requires only one differential pair for each membership 
function, in contrast to earlier designs where at least two 
differential pairs were required. Also the output currents 
are automatically normalized because the sum of I1 
through I6 is always equal to IO. Thus the normalization 
circuit is integrated within the fuzzifier. 

C .- :I: 
D 

1, 
(a) 

Fuzzyfier circuit 

0 1 2 3 4 5 

Input voltage VI 
(b) 

Fig. 26. Fuzzyfier circuit with four differential pairs creating five 
membership functions: three Gaussiadtrapezoidal-like in the center and two 
sigmoidal types at the ends of the input range: (a) circuit diagram and (b) 
fuzzyfier characteristics generated by SPICE program . 

B. Array @Rule Selection Circuits 

Each rule selection circuit is connected to one fuzzy 
variable from each fuzzifier. Therefore the number of these 
circuits is equal to nl*nz, where nl and n2 are numbers of 
fuzzy variables for each fuzzifier. The rule selection circuit 
cell is activated only if both fuzzy inputs have non-zero 

0-7803-4503-7/98/$10.00 1998 IEEE T47 

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore.  Restrictions apply. 



values. Due to the specific shapes of the fuzzifier 
membership functions, where only two membership 
functions can overlap, a maximum of four cluster cells are 
active at a time. Although current mode MIN and MAX 
operators are possible, it is much easier to convert currents 
from the fuzzifiers into volhges and use the simple rule 
selection circuits with the fuzzy conjunction (AND) or 
fuzzy MIN operator. 

The voltage on the common node of all sources always 
follows the highest potential of any of the transistor gates, 
so it operates as a MAX/OR circuit. However using the 
negative signal convention (lower voltages for higher 
signals) this circuit performs the MIN/AND function. This 
means that the output signal is low only when all inputs 
are low. A cluster is selected when all fuzzy signals are 
significantly lower than the positive battery voltage. 
Selectivity of the circuit increases with larger W/L ratios. 
Transistor M3 would be required only if three fuzzifier 
circuits were used with three inputs. 

C. Normalization circuit 

In order to obtain proper outputs it is essential that 
normalization occurs before weights are applied to the 
summed currents. The normalization circuit can be 
implemented using the same concept as the rule selection 
circuit. For the negative signal convention, PMOS 
transistors supplied by a common current source are 
required. The normalization circuit is shown in Fig. 27. 
The voltage on the common node A follows the lowest 
input potential. The normalization circuit consists of 
transistors M1, M2, ... MN connected to a single common 
current source. This means that the sum of all drain 
currents of transistors M1, M2, ... MN is always constant 
and equal to ID. The W/L ratios in current mirrors can 
determine the output value for each cluster. Currents from 
all cluster cells are summed to form the output current. 

m ID 
Tn 

Fig. 27. Normalization circuit 

E. VLSI implementation 

A universal fuzzy approximator has been designed and 
fabricated. In order to make the chip universal, each 
fuzzifier consists of seven differential pairs with seven 
equally spaced reference voltages. This results in eight 
membership functions for each input and 8*8 = 64 cluster 
cells. Sixty-four adjustable current mirrors for setting 
weights of output signals are programmed with 6 bit 
accuracy. For an arbitrary two-dimensional function only 
6*64=384 bits are required for programming. A test chip 
has been implemented in the 2 p n-well MOSIS process 
using more than 2000 transistors to perform the analog 
signal processing. To simplify the test chip 
implementation, current sources were programmed at the 
contact mask level. Fig. 28 shows a comparison between 
the desired and the actually measured control surface from 
the fuzzy chip. 

1 

10 
4 

1 

10 

1 

D. Weight circuit 
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