
Abstract - C
networks, fuzzy
networks and
usefulness and
applications. V
technological re
capable of rep1
experience.

The concept
underlining thei
and comparisoi
learning algorit
architectures a r
illustrated with
identification, sc
diagnosis tool,
compression usii
prediction, etc.

In the later
systems, includi
Takagi-Sugano
building blocks
of fuzzy and ne]
several applica
concluded with
chip.

Fascination a
McCulloch and
elementary col~
introduced his 1
introduced the
Widrow and €
ADALINE and
Machines" [lo] I
The publication
book with somt
sometime a fas
achievements i
backpropagatior
unnoticed. The
area started in
Kohonen uns
backpropagatior
stared rapid dew

Neuro-fuzzy Systems and Their Applications

Bogdan M. Wilamowski
llniversity of Wyoming

Department of Electrical Engineering
Laramie WY 82071
wilam@uwyo.edu

ikational intelligence combines neural
ms, and evolutional computing. Neural
systems, have already proved their

been found useful for many practical
re a t the beginning of the third
ion. Now neural networks are being
, highly skilled people with all their

*tificial neural networks is presented,
que features and limitations. A review
various supervised and unsupervised
follows. Several special, easy to train,
wn. The neural network presentation is
1 practical applications such as speaker
recognition of various equipment as a
-itten character recognition, data
Ise coupled neural networks, time series

9 the presentation the concept of fuzzy
he conventional Zadeh approach and
itecture, is presented. The basic
my systems are discussed. Comparisons
systems, are given and illustrated with

The fuzzy system presentation is
scription of the fabricated VLSI fuzzy

[. INTRODUCTION

artificial neural networks started when
in 1943 developed their model of an
g neuron and when Hebb in 1949
ng rules. A decade latter Rosenblatt
pron concept. In the early sixties
Leveloped intelligent systems such as
)ALINE. Nilson in his book "Learning
mrized many developments of that time.
e Mynsky and Paper in 1969 wrote the
maging results and this stopped for
on of artificial neural networks, and
le mathematical foundation of the
orithm by Werbos in 1974 went
:nt rapid growth of the neural network
with Hopfield recurrent network and

rised training algorithms. The
lrithm described by Rumelhard in 1986
ent of neural networks.

11. " R O N

Biological neuron has a complicated structure which
receives trains of pulses on hundreds of excitatory and
inhibitory inputs. Those incoming pulses are summed and
averaged with different weights during the time period of
latent sumnution. If the summed value is higher than a
threshold then the neuron generates a pulse which is sent to
neighboring neurons. If the value of the summed weighted
inputs is higher, the neuron generates pulses more iiequently.

An above simplified description of the neuron action leads
to a very complex neuron model which is not practical.
McCulloch and Pitts in 1943 show that even with a very
simple neuron model it is possible to build logic and memory
circuits. The McCulloch-Rtts neuron model assumes that
incoming and outgoing signals may have only binary values 0
and 1. If incoming signals summed through positive or
negative weights have a value larger than threshold T, then
the neuron output is set to 1. Otherwise it is set to 0.

Examples of McCulloch-Pitts neurons realizing OR, AND,
NOT and MEMORY operations are shown in Fig. 1. Note,
that the structure of OR and AND gates can be identical and
only threshold is different. These simple neurons, known also
as perceptrons, are usually more powerful than typical logic
gam used in computers.

memory -
A *' write 1

write 0

A+BC

Fig. 1 Several lcgical opentiom using netwcrks with McCulla;h-pitts neurons.

Multilayer neural networks usually use continuous
activation functions, either unipolar

I
1 + exp(-het)

o = ffnet) =

or bipolar
o = j n e t) = tanh(0.5het) = - 1

2
I + exp(-het)

0-7803-4503-7198/$10.00 1998 IEEE T3 5

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

mailto:wilam@uwyo.edu

These continuous activation functions allow for the
Typical gradient based training of multilayer networks.

activation functions are shown in Fig. 2.

+ +

Fig.2. Typical adivation funciions: (a) hard threshdd unipolar. (b) hard
b h l d bipolar, (c) Continuous unipolar, (d) continucus bipdar.

111. W-EDFORWARD NEURAL NETWORKS

Simplest and most commonly used neural networks use
only for one directional signal flow. Furthermore, most of
feedforwad neural networks are organized in layers. An
example of the three layer feedforward neural network is
shown in Fig. 3. This network consists of input nodes, two
hidden layers, and an output layer.

hidden
hidden layer #2 output

h layer h

Fig. 3. An exanple ofthe three layer feedfonvard neural network, which is
also known as the backprcpgation network

w3= - I

Fig. 4. Linear separation ofpaaerns in the two-dimensional space by a single
neuron.

A single neuron is capable of separating input patterns into
two categories and this separation is linear. For example, the
separation line shown in Fig. 4, which are crossing xl and x2
axes at points xlo and xzo, can be achieved with a neuron
having weights:

0-7803-4503-7/98/$10.00 1998 IEEE T3 6

for i = 1 to n : w,,+~ = - 1 I
M.', = -

x,o
One neuron can divide only linearly separated patterns. In

order to select just one region in n-dimensional input space,
more than n+l neurons should be used. If more input clusters
should be selected then the number of neurons in the input
(hidden) layer should be properly multiplied. If the number of
neurons in the input (hidden) layer is not limited, then all
classification problems can be solved using the three layer
network. The linear separation property of neurons makes
some problems spectally difficult for neural networks, such as
exclusive OR, parity computation for several bits, or to
separate patterns laying on two neighboring spirals.

The feedfaward neural networks are used for nonlinear
transformation (mapping) of a multidimensional input
variable into another multidimensional output variable. In
theory, any input-output mapping should be possible if neural
network has enough neurons in hidden layers (size of output
layer is set by the number of outputs required). Practically, it
is not an easy task and presently, there is no satisfactory
method to define how many neurons should be used in hidden
layers. Usually this is found by try and error method. In
general, it is known that if more neurons are used, more
complicated shapes can be mapped. On the other side,
networks with large number of neurons lose their ability for
generalization, and it is more likely that such network will try
to map noise supplied to the input also.

IV. LEARNING ALGORITHMS

Weights in artificial neurons are adjusted during a training
procedure. Various learning algorithms were developed but
only a few are suitable for multilayer neuron networks. Some
use only local information about signals in the neurons others
require information Erom outputs. Supervised algorithms
require a supervisor who always knows what outputs should
be unsupervised algorithms need no such information.
Common learning rules are described below.

A. Hebbian Learning Rule

Hebb in 1949 developed unsupervised learning rule which
was based on the assumption that if two neighbor neurons
must be activated and deactivated at the same time, then the
weight connecting these neurons should increase. For neurons
operating in the opposite phase, the weight between them
should decrease. If there is no melation, the weight should
remain unchanged. This assumption can be described by the
formula

Awij = cxioj
where wij is the weight !Yom i-th toj-th neuron, c is the

learning constant, Xi is the signal on the i-th input and oj is the
output signal. The training process starts usually with values
of all weights set to zero. This learning rule can be used for
both soft and hard threshold neurons. The absolute values of
the weights are usually proportional to the learning time,
which is undesired.

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

B. Correlation leoming rule

The correlation lewning rule uses a similar principle as the
Hebbian learning rule. It assumes that weights between
simultaneously respcklding neurons should be largely positive,
and weights between neurons with opposite reaction should be
largely negative. hriathematically, this can be written that
weights should be proportional to the product of states of
connected neurons. In contrary to the Hebbian rule, the
melation rule is of the supervised type. Instead of actual
response, the desired response is used for weight change
calculation

A W , = C X I ~ J

This training algcirithm starts with initialization of weights
to zero values.

C. Instar leaminlt rule

If input vectors, and weights, are normalized, or they have
only binary bipolar values (-I or +Z), then the net value will
have the largest pabitive value when the weights have the
same values as the iniput signals. Therefore, weights should be
changed only if they pre different from the signals

A w , = C (X , - w,)
Note, that the infbrmation required for the weight is only

taken kom the input signals. This is a local and unsupervised
learning algorithm.

D. W A - Winner Takes All
The WTA is a madifioltion of the instar algorithm where

weights are modifiedl only for the neuron with the highest net
value. Weights of remaining neurons are left unchanged. This
unsupervised algorithm @"e we do not know what are
desired outputs) has a global character. The WTA algorithm,
developed by Kohonien in 1982, is often used for autmatic
clustering and for extracting statistical properties of input data.

E. Outstar leamiizg rule

In the outstar leaning rule it is required that weights
connected to the cerlain node should be equal to the desired
outputs for the neurons connected through those weights

A w , = C (d j - wij)

where 4 is the desired neuron output and c is small
learning constant which mer decreases during the learning
procedure. This is the supervised training procedure because
desired outputs must be known. Both instar and outstar
learning rules were developed by Grossberg in 1974.

F. Widrow-Hoff (LMS) learning nile

Widrow and Hoff in 1962 developed a supervised training
algorithm which allows to train a neuron for the desired
response. This rule was derived by minimizing the square of
the difference between ner and output value.

0-7803-4503-7/98/$10.00 1998 IEEE T3 7

p = l

where Error, is the error forj-th neuron, P is the number of
applied patterns, db is the desired output forj-th neuron when
p-th pattern is applied. This rule is also known as the LMS
(Least Mean Square) rule. By calculating a derivative of the
error with respect to wi, one can find a formula for the weight
change.

p = l

Note, that weight change Awij is a sum of the changes from
each of the individual applied patterns. Therefore, it is
possible to correct weight after each individual pattern was
applied. If the learning constant c is chosen to be small, then
both methods gives the same result. The LMS rule works well
for all type of activation functions. This rule tries to enforce
the net value to be equal to desired value. Sometimes, this is
not what we are looking for. It is usually not important what
the net value is, but it is important if the net value is positive
or negative. For example, a very large net value with a proper
sign will result in large error and this may be the preferred
solution.

G. Linear regression

The LMS learning rule requires hundreds or thousands of
iterations before it converges to the proper solution. Using the
linear regression the same result can be obtained in only one
step.

Considering one neuron and using vector notation for a set
of the input patterns X applied through weights w the vector
of net values net is calculated using

Xw = net
where X is a rectangular array (n+I)*p, n is the number of

inputs, and p is the number of patterns. Note that the size of
the input patterns is always augmented by one, and this
additional weight is responsible for the threshold. This
method, similar to the LMS rule, assumes a linear activation
function, so the net values net should be equal to desired
output values d

xw = d
Usuallyp > n+Z, and the above equation can be solved only

in the least mean square error sense
w =(XTX)'XTd

or to convert the set of p equations with n+l unknowns to
the set of n+Z equations with n+I unknowns. Weights are a
solution of the equation

Yw = 2

where elements of the Y matrix and the z vector are given
by

P P

p = l p d

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

H. Delta learning rule

The LMS method assumes linear activation function net =
0, and the obtained solution is sometimes far from optimum as
it is shown in Fig. 5 for a simple two dimensional case, with
four pattems belonging to two categories. In the solution
obtained using the LMS algorithm one pattern is
misclassified. If error is defined as

D

Errorj = 2 (o j p - djp)l
p= I

Then the derivative of the error with respect to the weight
U:.; is

Note, that this derivative is proportional to the derivative of
the activation function f(net). Thus, this type of approach is
possible only for continuous activation functions and this
method Canna be used with hard activation functions. In this
respect the LMS method is more general. The derivatives
most common continuous activation functions are

f' = o(l - 0) for the unipolar and
f' = 0.5(1 - 02) forthebipolar.

Using the cumulative approach, the neuron weight
M ' ~ ~ should be changed with a direction of gradient

P

p = l

in case of the incremental training for each applied pattern

the weight change should be proportional to input signal x,,
to the difkrence between desired and actual outputs dp-op,
and to the derivative of the activation function 7,. Similar to
the LMS rule, weights can be updated in both the incremental
and the cumulative methods. In comparison to the LMS rule,
the delta rule always leads to a solution close to the optimum.
As it is illustrated in Fig 5, when the delta rule is used, all four
patterns are classified correctly.

AWIJ - - c XI fJ, (d, - 0,)

I. Nonlinear regression method

'I'he delta method is usually very slow. Solution can be very
fast when nonlinear regression algorithm is adopted [l]. The
total error for one neuron j and pattern p is now defined by
a simple difference:

where net=w1x1+w2x2+ wnxn. The derivative of this
error with respect to the ifh weight of the j" neuron can be
written as:

= d J p - o J p (r l e t)

dEJp - do, dnet -_--- d y dnet d y - -f,x,,

The error function can then be approximated by the first
two terms of the linear approximation around a given
mint:

therefore

I""]-
vw,

or
X A w = v

Matrix X is usually rectangular and above equation can be
only solves using pseudo inversion technique.

A w = (X'X)-* XTv
The (X7X)'XT matrix is composed of input pattems only,
and it must be computed only once

8 I

Fig. 6. Comparison of Algorithm where the algorithms can be identified by
the labels A-regression, B-nunimum distance. C-modified nunimum distance.
and D-modified regression and delta (back propagation) algonthm.

Rp. 5. An example with a comparison of results obtained using LMS and
Delta training a l g a i h . Note that LMS is not able to find the proper solution.

0-7803-4503-7/98/$10.00 1998 IEEE T3 8

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

TABLE 1. Learning rules for single neuron
General formula

Hebb rule (unsupeirvised):

correlation rule (supervised):

perceptron fixed rale:

perceptron adjustable rule:

Awl = a S x

6=0

S = d

6 Z d - o

XTW net 6 = (d -0)- = (d - o) ~
llX11

xTx
LMS (Widrow-Hoff) rule:

delta rule:

pseudoinverse rule (for linear system):

w = (x'x)-'x'd
iterative pseudoinverse rule (for nonlinear system):

6 = d -net

6 = (d - 0) f '

T d -0 w = (x'x)'x --
f '

J. Error Backpropagation leaming

The delta learning rule can be generalized for multilayer
networks. Using a :similar approach, as it is described for the
delta rule, the gradient of the global error can be computed in
respect to each weight in the network. Interestingly

where c is the learning constant, x, is the signal on the i-th
neuron input, and j;' is the derivative of activation function.
The cumulative error E, on neuron output is given by

A WIJ = c X I f J l E,

J J' k=I

where K is the number of network outputs, and Alk is the
small signal gain fjrom the input of j-th neuron to the k-th
network output as Fig. 7 shows. The calculation of the back
propagating error is kind of artificial to the real nervous
system. Also, the error backpropagation method is not
practical from the point of view of hardware realization.
Instead, it is simpler to find signal gains firom the input of the
j-th neuron to each of the network output (Fig. 7). In this case
weights are corrected using

K

k=1
Note, that the above formula is general, no matter if

neurons are arranged in layers or not. One way to find gains
A$ is to introduce ani incremental change on the input of the j -
th neuron and observe the change in the k-th network output.
This procedure requires only forward signal propagation, and
it is easy to implenrent in a hardware realization. Another
pcxsible way, is to calculate gains through each layer and then

0-7803-4503-7/98/5:10.00 1998 IEEE T3 9

find the total gains as products of layer gains. This procedure
is equally or less computational intensive than a calculation of
cumulative errors in the error backpropagation algorithm.

The backpropagation algorithm has a tendency for
oscillation. In order to smooth up the process, the weights
increment Aw,, can be modified acccording to Rumelhart,
Hinton, and Wiliams [141

or according to Sejnowski and Rosenberg (1987)
W l J (n + I) = w l J (n) + AWIJ(n) + a W t J (n - l)

w,(n + 1) = wg (n) + (1 - a) A w,, (n) + U!, w,, (n - 1)
where a is the momentum term.
r-------- 1

i

+ I Y
Fig. 7. illustration dthe c o n q ofthe gain computation in neural networks

The backpropagation algorithm can be significantly
speedup, when after finding components of the gradient,
weights are modified along the gradient direction until a
minimum is reached. This process can be carried on without
the necessity of computational intensive gradient calculation at
each step. The new gradient components are calculated once
a minimum on the direction of the previous gradient is
obtained. This process is only possible for cumulative weight
adjustment. One method to find a minimum along the
gradient direction is the tree step process of finding error for
three points along gradient direction and then, using a
parabola approximation, jump direcxly to the minimum. The
fast learning algorithm using the above approach was
proposed by Fahlman [2] and it is known as the quickprop.

The backpropagation algorithm has many disadvantages
which leads to very slow convergence. One of the most
painful is this, that in the backpropagation algorithm the
learning process almost perishes for neurons responding with
the maximally wrong answer. For example if the value on the
neuron output is close to + I and desired output should be
close to - I , then the neuron gainf(nett-0 and the error signal
cannot back propagate, so the learning procedure is not
effective. To overcome this difficulty, a modified method for
derivative calculation was introduced by Wilamowski and
Torvik [a]. The derivative is calculated as tQe slope of a line
connecting the point of the output value with the point of the
desired value as shown in Fig. 8

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

output I

Wg.8 IllustratiOn of the modified derivative calmlation fa fa=
mvergence ofthe enor baclqropagation algorithm

- Odesired - oacmal

netdesired - netactual

Note, that for small errors, equation converges to the
derivative of activation function at the point of the output
value. With an increase of the system dimensionality, a
chance for local minima decrease. It is believed that the
described above phenomenon, rather than a trapping in local
minima, is responsible for convergence problems in the error
backpropagation algorithm.

K. Lavenberg-Marquardt learning

The Lavenberg-Marquardt learning algorithm is the second
order search method of a minimum. At each iteration step
error surface is approximated by parabolic approximation and
the minimum of the paraboloid is the solution for the step.

Simples approach require function approximation by first
terms of Taylor series

1
2

F (w ~ + ~) = F(wk +Aw)+g:Aw, i--Aw:AkAwk

where g = V E is gradient and A = V 2 E is Hessian of
global error E.

dE aE aE Gradient -, - - ...
my, a W 2 * aw,'

a 2 E a 2 E a 2 E

a 2 E a 2 E a Z E

a 2 E a'E d 2 E

- - - ... w &,my,
- - ~ ...

Hessian * aw2aw, &*;z &&J3

- - - ...
a W 3 . a w l "v, my: .

Steepest decent (error backpropagation) method calculates
weights using:

while Newton method uses:
Wk+l = wk -a g

Wk+l = wk -A,'g
The Newton method is practical only for small networks
where Hessian Ak can be calculated and inverted. In the

Lavenberg-Marquardt method the Hessian AI, is
approximated by product of Jacobians

A = 2JTJ
and gradient as

where e is vector of output errors and Jacobian J is
g = 2JTe

- - aE, aE, aE, .-.
my, my, my,

- - aE, aE, aE, ...
e* hyz hu" .

aEZ aE2 aE,
Jacobian * my, &J2 &J3

- - - ...

.~

It is much easier to calculate Jacobian than Hessian and
also usually Jacobian is much smaller so less memory is
required. Therefore weights can be calculated as

or

Wk+l = wk - (J:J, I'JEe
To secure convergence the Lavenberg-Marquardt
introduces p parameter

when p = 0 this method is similar to the second order
Newton method. For larger values of p parameter the
Lavenberg-Marquardt works as the steepest decent method
with small time steps. The m parameter is automatically
adjusted during computation process so good convergence
is secured. The Lavenberg-Marquardt recently becomes
very popular because it will usually converge in 5 to 10
iteration steps. Main disadvantage of this method is a large
memory requirement and therefore it cannot be used for

V. SPECIAL FEEDFORWARD NETWORKS

The multilayer backpropagation network, as shown in Fig.
3, is a commonly used feedforwad network. This network
consists of neurons with the sigmoid type continuous
activation function presented in Figures 2(c) and 2(d). In
most cases, only the one hidden layer is required, and the
number of neurons in the hidden layer are chosen to be
propartional to the problem complexity. The number of
neurons in the hidden layer is usually found by a try and error
process. The training process starts with all weights
randomized to small values, and then the error
backpropagation algorithm is used to find a solution. When
the leaming process does not converge, the training is
repeated with a new set of randomly chosen weights. Nguyen
and Widrow [16] proposed an experimental approach for the
two layer network weight initialization. In the second layer,
weights are randomly chosen in the range fiom -0.5 to +0.5.
In the first layer, initial weights are calculated from

0-7803-4503-7/98/$10.00 1998 IEEE T40

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

where 5, is the mdom number firom -0.5 to +0.5 and the

p = 0 . 7 P ~
where n is the number of inputs, and N is the number of

hidden neurons in the first layer. This type of weight
initialization usually leads to faster solutions.

For adequate solutions with backpropagation networks,
many tries are typically required with different network
structures and different initial random weights. This
encouraged researchers to develop feedforward networks
which can be more reliable. Some of those networks are
described below.

scaling factor i3 is given by
I

A. Functional lit& nenvork

One layer neural networks are relatively easy to train, but
these networks can solve only linearly separated problems.
The concept of furictional link networks was developed by
Nilson bodc [lo] and late elaborated by Pa0 [13] using the
functional link network shown in Fig. 9.

0

.... 4

0
&

U
Fig. 9. The fundional link netwcrk

Using nonlinear terms with initially determined functions,
the actual number of inputs supplied to the one layer neural
network is increasecl. In the simplest case nonlinear elements
are higher order tcms of input patterns. Note that the
functional link network can be treated as a one layer network,
where additional input data are generated off line using
nonlinear transformations. The learning procedure for one
layer is easy and fast. Fig. 10 shows an XOR problem solved
using functional link networks. Note, that when the
functional link approach is used, this difficult problem
becomes a trivial one. The problem with the functional link
network is that p r o p selection of nonlinear elements is not
an easy task. However, in many practical cases it is not
difficult to predict what kind of transformation of input data
may linearize the problem, so the functional link approach can
be used.

untpolcrr neuron bipolar neuron

Fig. 10 Funtional link networks for sdution ofthe XOR problem: (a) using
unipdar signals, (b) using bipolar signals.

0-7803-4503-7/98/$10.00 1998 IEEE T4 1

Kohonen Grossberg
layer I'\ o layer

summing
unipolar circuits
neurons

Fig. 11 The ccunterpropagaton network.

B. Feedforward version of the counterpropagation network

The counterpropagation network was originally proposed
by Hecht-Nilsen [3] and modified feedfbrward version
described by &ada [26]. This network, which is shown in
Fig. 11, requires numbers of hidden neurons equal to the
number of input patterns, or more exactly, to the number of
input clusters. The first layer is known as the Kohonen layer
with unipolar neurons. In this layer only one neuron, the
winner, can be active. The second is the Grossberg outstar
layer. The Kohonen layer can be trained in the unsupervised
mode, but that need not be the case. When binary input
patterns are considered, then the input weights must be exactly
equal to the input patterns. In this case

net = x'w = (n - 2HD(x,w))
where n is the number of inputs, w are weights, x is the

input vector, and HD(w,x) is the Hamming distance between
input pattern and weights.

Since for a given input pattern, only one neuron in the first
layer may have the value of one and remaining neurons have
zero values, the weights in the output layer are equal to the
required output pattern.

The feedforward counterpropagation network may also use
analog inputs, but in this case all input data should be
normalized

A Xi = -
w i = x i llXi l l

The counterpropagation network is very easy to design.
The number of neurons i ~ i the hidden layer should be equal to
the number of patterns (clusters). The weights in the input
layer should be equal to the input patterns and, the weights in
the output layer should be equal to the output patterns. This
simple network can be used for rapid prototyping.

C. WA architecture

The winner take all WTA network was proposed by
Kohonen in 1988 [12]. This is basically a one layer network
used in the unsupervised training algorithm to extract a
statistical property of the input data (Fig. 12). At the first step
all input data is normalized so the length of each input vector
is the same, and usually equal to unity. The activation

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

functions of neurons are unipolar and continuous. The
learning process starts with a weight initialization to small
random values. During the learning process the weights are
changed only for the neuron with highest value on the output -
the winner

Aww = c (x - ww)
where w, are weights of the winning neuron, x is the input

vector, and c is the learning constant.
Kohonen

2
Y

-a 2
2

s
tu‘
-a Y

r?
0
s2

Fig. 12 A winner take all - “TA architemre for cluster extrading in the
unsupwvised training mode: (a) network COM&O~S, (b) single layer network
arranged into a hexagonal +.

The algorithm is modified in such a way that not only the
winning neuron, but also neighboring neurons are allowed for
the weight change. At the same time, the learning constant c
decreases with the distance Erom the winning neuron. After
such a unsupervised training procedure, the Kohonen layer is
able to organize data into clusters.

Fig. 13. Input pattern transformation on a sphere

D. Projection on sphere

There are various method to transform input
space onto hypersphere without necessity of the
information lost [11][21]. In every case the dimensionality
of the problem must be increased. The simples way of
transforming input space into hypersphere is to use all
input variables untouched zi = xi and add one additional
input z “ + ~

(i = 1,2, ..., n)
zl ={4* (i = n + l)

where llxll’ = xTx is the norm (length) of the input vector.
Note that zTz = const therefore all patterns in new

transformed z-space are located on a hypersphere with
radius R .

z T z = x ~ +x:+...+xi +(, /Rz -x: +x:+...+x~)* = R2

The p a m s of the transfmed z space have the same magnitudes
and lie on the n+l hypesphere. Fach cluster can now be cut out
by a single hyperplane in the n+l dimensional space. Ihe
separaticpl hypsplanes should be normal to the vectars speakcl

plane of the k-th cluster can be easily found using the point and
normal vector formula:

by thet~l~~tfXS’ CentfXS of @Ivity ZCk. ~ U C l h S fOr the S€pX2lbtl

zcl(z-ze,) = o
where z c k is the center of gravity of the vector and q is a point
transfmed &om the edge of the cluster. To visualize the problem
let us consider a simple two dimensional example with three
clusters shown in Fig. 14.

E Sarajedini and Hecht-Nielsen network

Let us consider stored vector w and input pattern x.
Both input and stored patterns have the same dimension n.
The square Euclidean distance between x and w is:

0-7803-4503-7/98/$10.00 1998 IEEE T42

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

After defactorizatioti

finally

where net = xTw is the weighted sum of input signals. Fig.
16 shows the netRork which is capable of calculating the
square of Euclidean distance between input vector x and
stored pattern w.

i t x - ~ ' =.r; + x i + . . . + X i +%$ +w,'+...+Wn'-2(x1w; +X21+\ +...+ X"1V")

Ik - wllZ = x T x + wTw - 2xTw = 11x112 + 1 1 ~ 1 1 2 - 2net

500

400

300

200

100

0
30

30

0-0

Fig. 16. Network capable of calculating square of Euclidean distance
between input pattemx ;md stored pattern w. (a) network; (b) Euclidean
distance calculation forrn vector (15,15)

In order to calculate the square of Euclidean distance
the following mod] fications are required: (i) bias equal to
Ilwll', (ii) additional input with square of input vector
magnitude llwIl2, and (iii) weights equal to components of
stored vector multiplied by -2 factor. Note that when
additional input with the square of magnitude is added
than simple weighted sum type of network is capable of
calculating square of Euclidean distance between x and w.
This approach can be directly incorporated into RBF and
LVQ networks.

With the approach presented on Fig. 2 several neural
network techniques such as RBF, LVQ, and GR can be
used with classical weighted sum type neurons without
necessity of computing the Euclidean distance in a
traditional way. All what is required is to add additional
input with the magnitude of the input pattem.

E. Cascade corrdarion architecture

The cascade coirrelation architecture was proposed by
Fahlman and Lebiere in 1990. The process of network
building starts with a one layer neural network and hidden
neurons are added as needed. The network architecture is
shown in Fig. 17.

0-7803-4503-7/981$10.00 1998 IEEE T43

hidden neurons

Fig. 17. The cascade carelation architeuure.

In each training step, the new hidden neuron is added and
its weights are adjusted to maximize the magnitude of the
correlation between the new hidden neuron output and the
residual error signal on the network output that we are trying
to eliminate. The correlation parameter S defined below must
be maximized

-
s = 1 (v, - v) (E , - E)J

o=I ,=I

where 0 is the number of network outputs, P is the number
of training patterns, V, is output on the new hidden neuron,
and E,, is the error on the network output. By finding the
gradient, ~SW;,, the weight adjustment for the new neuron
can be found as

O P

o=l p = l

where 0, is the sign of the correlation between the new
neuron output value and network output, &, ' is the derivative of
activation function for pattern p, and xt, is the input signal.
The output neurons are trained using the delta
(backpropagation) algorithm. Each hidden neuron is trained
just once and then its weights are fkozen. The nehork
learning and building process is completed when satisfied
results are obtained.

G. Radial basisfunction networks

The structure of the radial basis network is shown in Fig.
16. This type of network usually has only one hidden layer
with special "neurons". Each of these "neurons" responds
only to the inputs signals close to the stored pattem. The
output signal h, of the i-th hidden "neuron" is computed using
formula

hi = exp (-- llx;--;lr]
where x is the input vector, s, is the stored pattern

representing the center of the i cluster, and q is the radius of
this cluster. Note, that the behavior of this "neuron"
significantly differs form the biological neuron. In this
"neuron", excitation is not a function of the weighted sum of
the input signals. Instead, the distance between the input and
stored pattern is computed. If this distance is zero then the
"neuron" responds with a maximum output magnitude equal

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

to one. This "neuron" is capable of recognizing certain
patterns and generating output signals being functions of a
similarity. Features of this "neuron" are much more powerful
than a neuron used in the bckpropagation networks. As a
consequence, a network made of such "neurons" is also more
powerful.

If the input signal is the same as a pattern stored in a
neuron , then this "neuron" responds with 1 and remaining
"neurons" have 0 on the output, as it is illustrated in Fig. 16.
Thus, output signals are exactly equal to the weights coming
out from the active "neuron". This way, if the number of
"neurons" in the hidden layer is large, then any input output
mapping can be obtained. Unfortunately, it may also happen
that for some pattems several "neurons" in the first layer will
respond with a non-zero signal. For a proper approximation
the sum of all signals from hidden layer should be equal to
one. In order to meet this requirement, output signals are
often normalized as shown in Fig. 18.

hidden "neurons"

Fig. 18 A typical structure ofthe radial basis fundion network.

The radial based networks could be designed, or trained.
Training is usually carried on in two steps. In the first step the
hidden layer is usually trained in the unsupenised mode for
choosing best pattems for cluster representation. A similar
approach, as used in the WTA architecture, can be used. Also
in this step, radiuses must be found for a proper overlapping
of clusters. The second step of training is the error
backpropagation algorithm carried on only for the output
layer. Since this is a supervised algorithm for one layer only,
the training is very rapid, 100 or lo00 times faster than in the
backpropagation multilayer network. This makes the radial
basis-function network very attractive. Also, this network can
be easily modeled using digital computers, however, its
hardware implementation would be very difficult.

VI. RECURRENT NEURAL NETWORKS

In contrast to feedforward neural networks, recurrent
networks neuron outputs could be connected with their inputs.
Thus, signals in the network can continuously circulated.
Until now only a limited number of recurrent neural networks
were described.

A. Hopfield network

The single layer recurrent network was analyzed by
Hopfield in 1982. This network shown in Fig. 19 has

unipolar hard tlireshold neurons with outputs equal to 0 or 1.
Weights are given by a symmetrical square matrix W with
zero elements (N;, = 0 for i=j) on the main diagonal. The
stability of the system is usually analyzed by means of the
energy function

I N N
E = - - ~ J ~ d w , v l v j

2 1=1 j=1

Aw,] = Awjl = (2v, - I) (2v, - I)
It was proved that during signal circulation the energy E of

the network decreases and system converges to the stable
points. This is especially true when values of system outputs
are updated in the asynchronous mode. This means that at the
given cycle, only one random output can be changed to the
required value. Hopfield also proved that those stable points
to which the system converges can by programmed by
adjusting the weights using a modified Hebbian rule. Such
memory has limited storage capacity. Based on experiments,
Hopfield estimated that the maximum number of stored
patterns is 0.1 SN, where N is the number of neurons.

Fig. 19 A Hopfield network OT au"ciat ive mmry

B. Autoassociative memory

Hopfield in 1984 extended the concept of his
network to autoassociative memories. In the same network
structure as shown in Fig. 19, the bipolar neurons were used
with outputs equal to -1 of + I , In this network pattern s,,, are
stored into the weight matrix W using autmelation
algorithm

M
w = &sT, - M I

m = l

where M is the number of stored pattern, and Z is the unity
matrix. Note, that W is the square symmetrical matrix with
elements on the main diagonal equal to zero (wj for i=j).
Using a modified formula, new patierns can be added or
subtracted from memory. When such memory is exposed to a
binary bipolar pattern by enforcing the initial network states,

0-7803-4503-7198/$10.00 1998 IEEE T44

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

then after signal circulation the network will converge to the
closest (most similar) stored pattern or to its complement.
This stable point will be at

I
2

E(v) = - -vTWv

the closest minimum of the energy functionLike the
Hopfield network, the autoassociative memory has limited
storage capacity, which is estimated to be about Mm=0.15N.
When the number of stored patterns is large and close to the
memory capacity, the network has a tendency to converge to
spurious states which were not stored. These spurious states
are additional minima of the energy function.

C. BAM

The concxpt of the autoaSSoCiative memory was
extended to bidirectional associative memories - BAM by
Kosko [7][8]. This memory shown in Fig. 20 is able to
associate pairs of the patterns a and b. This is the two layer
nmork with the output of the second layer connected directly
to the input of the first layer. The weight matrix of the second
layer is WT and it is W for the first layer. The rectangular
weight matrix W is obtained as a sum of the cross melation
matrixes

M
W = Camb,

m=l

where M is the number of stored pairs, and U,,, and 6, are
the stored vector pairs. If the nodes a or b are initialized with
a vector similar to the stored one, then after signal circulation,
both stored patterns U,,, and b, should be recovered. The
BAM has similar limited memory capacity and memory
corruption problem!; as the autoassociative memory. The
BAM concept can Ix: extended for association of three or more
vectors.

(4 (b)
Fig. 20. An example of the bid ired id autoasudive nlemuy - BAh4: (a)
drawn as a two layer net\& with cira~lating signals (b) drawn as two layer
network with bi-diredional signal flow.

VII. FUZZY SYS’IEMS

A. Fuzzy variables and basic operations

In contrary to the Boolean logic where variables can have
only binary states, ixi fuzzy logic all variables may have any

0-7803-4503-7/98/!i10.00 1998 IEEE T45

values W e e n zero and one. The fuzzy logic consists of the
same basic A - AND, v - OR, and NOT operators:
A A B A C ==> min(A, B. C] - smallest value of A or B or C
A v B v C ==> m (A , B, C)- largest value of A or B or C
A = > I - A - one minus value of A
Forexample0.1~0.8~0.4 = O.l,O.IvO.8v0.4 = 0.8, and 0.3
= 0.7. The above rules are also known as Zadeh [25] AND,
OR, and NOT operators. One can note that these rules are true
also for classical binary logic.

-

B. Fuzzy controllers and basic blocks

The principle of operation of the fuzzy controller
significantly differs kom neural networks. The block diagram
of a fuzzy controller is shown in Fig. 21.(a) In the first step,
analog inputs are converted into a set of fuzzy variables. In
this step usually for each analog input 3 to 9 fuzzy variables
are generated. Each fuzzy variable has an analog value
between zero and one. In the next step a fuzzy logic is applied
to the input fuzzy variables and a resulting set of the output
variables is generated. In the last step, known as
defuzzification, firom a set of output fuzzy variables, one or
more output analog variables are generated, which are to be
used as control variables.

U
7

I

Fig. 21. Typical fuzzy systems (a) proposed b-deh, @) proposed by
Takagi-Sugano, and (c) suitable for VLSI implementation

C. Fum>cation

The purpose of fuzzification is to convert an analog variable
input into a set of fuzzy variables, For higher accuracy more
fuzzy variables will be chosen. To illustrate the fuzzification
process let us consider that the input variable is the
temperature, and this is coded into five fuzzy variables: cold,
cool, normal, warm, and hot. Each fuzzy variable should
obtain a value between zero and one, which describes a degree
of association of the analog input (temperature) within the
given fuzzy variable. Sometimes, instead of term of degree of
association, the degree of membership is used. The process of

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

fuzzification is illustrated in Fig. 22. For example, for a
temperature of V F , the following set of fuzzy variables is
obtained: [O, 0.5, 0.3, 0, 01, and for T=80"F it is [O, 0, 0.2,
0.7, 01. Usually only one or two fuzzy variables have a value
diffsent than zero. In the presented example, trapezoidal
function are used for calculation of the degree of association.
Various different functions as the triangular, or the gaussian
can also be used, as long as the computed value is in the range
from zero to one. Always each membership function is
described by only three or four parameters, which have to be
stored in memory.

Yl y 2

' 1 '11 t12

' 2 t21 '22

' 3 t31 32 t t

' 4 '41 t42

' 5 '51 t t 52

For proper design of the fuzzification stage, certain practical
rules should be used:
1. Each point of the input analog variable should belong to at
least one and no more then two membership functions.
2. For overlapping functions, the sum of two membership
functions must not be larger than one. This also means that
overlaps must not cross the points of maximum values (ones).
3. For higher accuracy, more membership function should be
used. However, very dense functions lead to a frequent system
reaction, and sometimes to a system instability.

574 8 0 4
cold

shown in Fig. 22. In the first step fuzzy variables obtained
from rule evaluations are used to modify the membership
function employing the f m u l a

For example, if output fuzzy variables are: 0, 0.3, 0.7, 0.0,
then the modified membership functions have shapes shown
by the thick line in Fig. 24. The analog value of the z vatlable
is found as a "center of gravity" of modified membership

y 3

'13 p; tz) = minfpk tz), Z k 1
t23

3 3 .
' 4 3 ~ functions !&.*(Z)

53 27,~; (z)zdz

D. Rule Evaluation

Fuzzy rules are specified in the fuzzy table as it is shown for
a given system. Let us consider a simple system with two
analog input variables x and y , and one output variable z. We
have to design a fuzzy system generating z asf(x.y). Let us
also assume that after fuzzification the analog variable x is
represented by five fuzzy variables: xI, x2, x3, .Q, x5 and an
analog variable y is represented by three fuzzy variables: yI , y2,

y3. Let us also assume that an analog output variable is
represented by four fuzzy variables: zI, z2, 23. G. The key issue
of the design prows is to set proper output fuzzy variables .Q

for all combination of input fuzzy variables, as it is illustrated
in the table (a) shown in Fig. 23. The designer has to spsclfy
many rules such as: if inputs are represented by fuzzy
variables x, and vj then the output should be represented by
fuzzy variable a. It is only required to specify what
membership functions of the output variable are associated
with a combination of input fuzzy variables. Once the fuzzy
table is specified, the fuzzy logic amputation is proceeded
with two steps. At first each field of the fuzzy table is filled
with intermediate fuzzy variables tl,, obtained from AND
operator tv=min(xc,y,/, as shown in Fig. 23(b). This step is
independent of the required rules for a given system. In the
second step the OR (max) operator is used to compute each
output fuzzy variable a. In the given example in Fig. 22

tZ2/, ~ = m a x { t ~ ~ , t ~ ~ , t 4 5 / . Note that the formulas depend on the
specifications given in the fuzzy table shown in Fig 23(a).

ZI=max(t I I , t 12 . t2 I , t31 / , 8 = m a X (t I . ~ , t 2 2 , t 4 I , t 5 I / , Z.?'"t23,t32,t42,

-
Rg. 24. IlIusaatiMl of the defuzzifcation process.

E. Defuuijicarion

As a result of fuzzy rule evaluation, each analog output
The variable is represented by several fuzzy variables.

0-7803-4503-71981$10.00 1998 IEEE T46

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

In the case when shapes of the output membership functions
pdz) are the same, the above equation can simplified to

n

C Z k ZCk
- k= 1

Zanalog -
$Zk
k= 1

where n is the numkr of membership function of &dog output
variable, is fuzzy output variables obtained from rule
evaluation, and zck are analog values corresponding to the
center of k-th memtership function.

VIII. VLSI FUZZY CHIP

The classical approach to fuzzy systems presented by
Zadeh 1251 is difficult to implement in analog hardware.
Especially difficuli is the defuzzifier where signal division
must be implemenlted. Division can be avoided through use
of feedback loops, but this approach can lead to limited
accuracy and stabdity problems. Also, in the case of the
classical fuzzy system shown in Fig. 21, the information
about the required control surface is encoded in three
places: in the fuzzifier, in the defuzzifier, and in the
prewired connections between MIN and MAX operators.
Although the architecture is relatively simple, it is not
suitable for custom programming.

J U

u u
Fig. 25. Architecture of VLSI fuzzy controller

The concept of the proposed circuit is shown in Fig. 25.
Fuzzification is done in a traditional manner with
additional normadization which leads to a linear
interpolation of the output between stored points. The
second stage is an array of cluster cells with fuzzy “AND”
operators. Instead of classical defuzzification, simplified
Takagi-Sugeno singleton inference rules 181 with
normalization are used. The output is then normalized and
calculated as a weighted sum of the signals approaching
from all selected atas.

A. Fuuifier

Various fuzzifier circuits that can be implemented in
bipolar or MOS technology have already been proposed.
Most approaches use two source- or emitter-coupled
differential pairs lor a single membership function. The
approach proposed here differs from the previous
techniques in two ways (i) it is simpler - only one
differential pair is required per membership function and
(ii) the fuzzy outputs are automatically normalized;

therefore the sum of all the signals representing the fuzzy
variables of a single input is constant.

The fuzzifier circuit is presented in Fig. 26. This design
requires only one differential pair for each membership
function, in contrast to earlier designs where at least two
differential pairs were required. Also the output currents
are automatically normalized because the sum of I1
through I6 is always equal to IO. Thus the normalization
circuit is integrated within the fuzzifier.

C .- :I:
D

1,
(a)

Fuzzyfier circuit

0 1 2 3 4 5

Input voltage VI
(b)

Fig. 26. Fuzzyfier circuit with four differential pairs creating five
membership functions: three Gaussiadtrapezoidal-like in the center and two
sigmoidal types at the ends of the input range: (a) circuit diagram and (b)
fuzzyfier characteristics generated by SPICE program .

B. Array @Rule Selection Circuits

Each rule selection circuit is connected to one fuzzy
variable from each fuzzifier. Therefore the number of these
circuits is equal to nl*nz, where nl and n2 are numbers of
fuzzy variables for each fuzzifier. The rule selection circuit
cell is activated only if both fuzzy inputs have non-zero

0-7803-4503-7/98/$10.00 1998 IEEE T47

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

values. Due to the specific shapes of the fuzzifier
membership functions, where only two membership
functions can overlap, a maximum of four cluster cells are
active at a time. Although current mode MIN and MAX
operators are possible, it is much easier to convert currents
from the fuzzifiers into volhges and use the simple rule
selection circuits with the fuzzy conjunction (AND) or
fuzzy MIN operator.

The voltage on the common node of all sources always
follows the highest potential of any of the transistor gates,
so it operates as a MAX/OR circuit. However using the
negative signal convention (lower voltages for higher
signals) this circuit performs the MIN/AND function. This
means that the output signal is low only when all inputs
are low. A cluster is selected when all fuzzy signals are
significantly lower than the positive battery voltage.
Selectivity of the circuit increases with larger W/L ratios.
Transistor M3 would be required only if three fuzzifier
circuits were used with three inputs.

C. Normalization circuit

In order to obtain proper outputs it is essential that
normalization occurs before weights are applied to the
summed currents. The normalization circuit can be
implemented using the same concept as the rule selection
circuit. For the negative signal convention, PMOS
transistors supplied by a common current source are
required. The normalization circuit is shown in Fig. 27.
The voltage on the common node A follows the lowest
input potential. The normalization circuit consists of
transistors M1, M2, ... MN connected to a single common
current source. This means that the sum of all drain
currents of transistors M1, M2, ... MN is always constant
and equal to ID. The W/L ratios in current mirrors can
determine the output value for each cluster. Currents from
all cluster cells are summed to form the output current.

m ID
Tn

Fig. 27. Normalization circuit

E. VLSI implementation

A universal fuzzy approximator has been designed and
fabricated. In order to make the chip universal, each
fuzzifier consists of seven differential pairs with seven
equally spaced reference voltages. This results in eight
membership functions for each input and 8*8 = 64 cluster
cells. Sixty-four adjustable current mirrors for setting
weights of output signals are programmed with 6 bit
accuracy. For an arbitrary two-dimensional function only
6*64=384 bits are required for programming. A test chip
has been implemented in the 2 p n-well MOSIS process
using more than 2000 transistors to perform the analog
signal processing. To simplify the test chip
implementation, current sources were programmed at the
contact mask level. Fig. 28 shows a comparison between
the desired and the actually measured control surface from
the fuzzy chip.

1

10
4

1

10

1

D. Weight circuit
V. REFER.E!NCES

The weights for different clusters can be assigned by
setting proper W/L ratios for current sources. This task can
be also accomplished by introducing a digitally
programmable current mirrors.

0-7803-4503-7/98/$10.00 1998 IEEE T48

[l] Andersen, Thomas J. and B.M. Wilamowski, “A.
Modified Regression Algorithm for Fast One Layer Neural
Network Training”, World Congress of Neural Networks,

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

vol. 1, pp. 687.690, Washington DC, USA, July 17-21,
1W5.

[21 Fahlman, S. E. "Faster-learning variations on
backpropagation: An empirical study." Proceedings of
the Connectioriist Models Summer School, eds. D.
Touretzky, G. Ilinton, and T. Sejnowski, San Mateo,
CA: Morgan Kaufmann, 1988.

[3] Hecht-Nielsen, R. "Counterpropagation Networks,"
Appl. Opt., vol. 26(23) pp. 4979-4984, 1987.

[4] Hopfield, J. J. "Neural networks and physical systems
with emergent collective computation abilities.
Proceedings of the National Academy of Science, vol

[5] Hopfield, J. J. "Neurons with graded response have
collective computational properties like those of two-
state neurons." Proceedings of the National Academy
of Science, ~0181, pp. 3088-3092, 1984.

[6] Kohonen, T. "The self-organized map," Proc. IEEE,

[7] Kosko, B. "Adaptive Bidirectional Associative
Memories," App. Opt. vol26, pp 4947-4959, 1987

[8] Kosko, B. "Bidirectional Associative Memories,"
IEEE Transaction on System Man, and Cybernnetics

[9] Nguyen, D. and B. Widrow, "Improving the learning
speed of 2-layer neural networks, by choosing initial
values of the adaptive weights." Roc. Intl. Join Conf.
on Neural Networks, San Diego Ca, June 1990.

[lo] Nilson N. J., (1%5) Leaming Machines: Foundations of
Trainable Paaem chssifim New York: McGraw Hill.

[l l] O t a Y . a n d B . V v ' i i ~ (1994)"Inputdata

79, pp. 2554-2558, 1982.

VOI 78(9), pp. 1464-1480, 1990

V O ~ 18, pp. 49-60, 1988.

transformation &Ybetteapattesnclass~cation with less
neurons,'' Proc. qf World Congress on Neural Nemrks, San
Diego, califomia vol. 3, pp 667-672.

[12]0ta Y., B M.Wilamowski, Analog Hardware
Implementation of a Voltage-Mode Fuzzy Min-Max
Controller, Journal of Circuits, Systems, and
Computers, Vol. 6, No.2, pp. 171-184, 1996.

[13]Pao, Y. H. , Adaptive Pattern Recognition and Neural
Networks, REading, Mass.: Addison-Wesley
Publishing Co., 1989.

[14]Rumelhart, D. E., G. E. Hinton, and R. J. Williams,
"Learning internal representation by error
propagation," Parallel Distributed Processing, vol 1,
pp. 318-362, Cambrige, MA: MIT Press 1986

[15] sarajedrni A., EL zkxht-Nielsen, (1992) The best of both
worlds: Casasent networks integrate multilayer p e " s
and radial basis functions, Iruematwmd Joint Cbnference on
Neural Nemrks, IlI, 905-910.

[161 Specht, D. F. "General regression neural network."
IEEE Transactions on Neural Networks, vol 2, pp.

[171 Specht, D. F. "Probalistic neural networks", Neural
Networks, vol. 3, pp. 109-118.

[18]Takagi and MI. Sugeno, Derivation of Fuzzy Control
Rules from Human Operator's Control Action. Proc. of
the IFAC Symp. on Fuzzy In$ Knowledge
Representation and Decision Analysis, pp. 55-60, July
1989.

568-576, 1992.

[19]Tapkan, Baskin I. and Bog& M. Wilamowski,
"Trainable Functional Link Neural Network Architecture",
presented at ANNIE95 - Artificial Neural Networks in

[20]Wilamowski B. M. and R C. Jaeger, "Neuro-Fuzzy
Architecture for CMOS Implementation" accepted for
IEEE Transaction on Industrial Electronics

[21]Wilamowski B. M., " Modified EBP Algorithm with
Instant Training of the Hidden Layer", proceedings of
Industrial Electronic Conference (IECON97), New
Orleans, November 9-14, 1997, pp. 1097-1101.

[22]Wilamowski, B. M. and Richard C. Jaeger, "VLSI
Implementation of a Universal Fuzzy Controller,"
ANNIE96 - Artificial Neural Networks in Engineering,
St. Louis, Missouri, USA, November 11-14,1996.

[23]Wilamowski, B. M., "Neural Networks and Fuzzy
Systems" chapters 124.1 to 124.8 in The Electronic
HandW. CRC Press 1996, pp. 1893-1914.

[24] Wilamowski, B.M. and L. Torvik, "Modification of
Gradient Computation in the Back-Propagation
Algorithm", presented at ANNIE'93 - Artificial Neural
Networks in Engineering, St. Louis, Missouri,
November 14-17,1993;

[25] Zadeh, L. A. "Fuzzy sets."lnformution and Control,

[26] Zurada, J. Introduction to Artificial Neural Systems,
V O ~ 8, 338-353, 1965.

West Publishing 1992.

0-7803-4503-7/98/$10.00 1998 lEEE T49

Authorized licensed use limited to: Auburn University. Downloaded on November 29, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

