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Abstract  A new electronic model of Pulse-Coupled Neural
Network is proposed. This model exhibits very interesting
features such as: segmentation, feature extraction, orientation
independence and noise tolerance. Segmentation means that
the output pattern depends strongly on the spatial location of
the pixels in respect to one other. Feature extraction means
that if the input image includes several patterns, then it is very
likely the temporal output is a superposition of features in that
image. The output temporal pattern is independent of the
orientation of image or orientation of fragments of the image.
With relatively low noise (less than 10%) the output pattern is
virtually independent of the noise.

1. Introduction

The research in the area of Pulse-Coded Neural
Networks and their abilities in the field of image
manipulation inspire the proposed network.  Some features
of Pulse-Coded Neural Networks (PCNN) for optical
image applications are image smoothing, segmentation,
feature extraction and recognition [1]-[7]. Combining the
Synchronization Effect with the pulse neuron introduces
many new features into the area of neural network image
techniques [4][9][10]. The addition of the Synchronization
Effect introduces the idea of coupling the pulse-coded
neurons to create a Pulse-Coupled Neural Network.  The
proposed network offers some powerful features: the
ability to recognize an image or part of an image without
regard to its orientation, inherent noise tolerance and a
form of data compression [11][12].  The PCNN concept is
also very simple and cost effective when considering its
design and hardware requirements [13]-[16]. The purpose
of this work is to use pulse behavior of neurons for image
processing. The paper presents the ability of PCNNs to
convert an image from its spatial representation to a
temporal representation.

The most basic component of the human’s nervous
system is a neuron.  In the human body, there exists on the
order of 11 billion neurons. The method by which signals
are propagated through the nervous system is via encoded
pulse streams of small electrical currents.  When the
internal potential of the Axon Hillock exceeds the synaptic
threshold, an electrical pulse is sent to the next neuron.

The time between pulses is called the refractory
period.  What can be considered the entry point of a neural
impulse is the dendrite.  Next, the body of the neuron feeds
an electrical pulse from the axon through the synaptic gap
and into another neuron.

In a biological neuron, axons may be long compared
to the whole neuron.  The axons are coated in a myelin
sheath, which acts as an insulator for the neuron.  There

exist open spots along the sheath where the sodium and the
potassium ions may pass freely.  These spots are referred
to as the nodes of Ranvier, which allow small amounts of
sodium and potassium ions to be exchanged.

The electronic model of a neuron [13]-[16] operating in
pulse mode is shown in Fig. 1.  The amount of energy
generated in single pulse depends on the value of capacitance
C1, while the refractory period is set by the C2*R2 time
constant.

Input positive and negative currents are integrated on
capacitance C1.  The neuron generates a pulse once the
input voltage on the capacitor exceeds the activation
threshold. Various hardware models of the pulse-coded
neuron were developed, and all have properties similar to
the concept diagram shown in Fig. 1.  A unique feature of
the neuron in Fig. 1 is that the input and the output are on
the same node.
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Fig. 1. Electronic Model of Neuron

The input-output node A integrates electrical current
on C1, which eventually reaches the activation threshold.
The threshold level is determined by the VTH of transistor
M1 and transient voltage on capacitance C2 (node B).
Once the threshold is reached, all transistors M1, M2 and
M3 conduct current charging both C1 and C2.  Once C1 and
C2 are fully charged, VGS of M1 falls below the threshold
level and transistors M1, M2 and M3 revert to the cutoff
region again.  The brief interval when the transistors are in
their active modes of operation causes a pulse at the
output.  Next, C1 and C2 discharge at the rate of their
respective time constants. During the refractory period,
threshold values decrease with time starting with a very
high value immediately following the pulse. This
eventually decreases to a steady state value.  The
refractory period depends on time constant of C2. During
the refractory period threshold is given by a formula:
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Pulse coupled neurons have several properties which

distinguish them from more common neurons used in
artificial neural networks such as frequency modulation
and synchronization effect. When these neurons are used
for image processing it leads to series interesting effects
such as: effects of segmentation, feature extraction,
orientation independence, and noise elimination.

2. Frequency modulation

The magnitude of the input current determines how
soon or late the neuron will fire.  This feature of mapping
the input magnitude to a time domain pulse is similar to
the relation between the eye of a human and the human
visual cortex.  Light acts as a stimulus to the neurons
inside the eye, where the magnitude of the stimulus is
dependent on the intensity of the light.  The stimulus of the
light regulates the frequency of the pulse stream that
travels to the visual cortex in the brain. Fig 2 shows how a
pulse neuron responds to the input stimulation of a sine
wave.
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Fig. 2. Response of pulse neuron due to sine input
stimulation.

3. Synchronization effect

When neighboring neurons are coupled together as
shown in Fig. 3, the synchronization effect occurs. It
means that firing neuron may trigger a similar action in
neighboring neurons if their dc excitation is already close
to a threshold. By adjusting the coupling strength, the
radius of influence that each output has on its neighbors
may be increased or decreased.
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Fig. 3. Coupling between neighboring neurons

In image processing applications the light intensity of
a given pixel stimulate the associated neuron. The time
response is different depending on the coupling strength
between neighboring neurons as shown in Fig. 4.  Strong
coupling neurons have a tendency to fire together for
similar stimulus as shown in Fig. 4(b)
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Fig. 4.  Synchronization effect: (a) with weak coupling and
(b) with strong coupling.
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Fig. 5. Pulse responses for identical number of pixels
with the same intensity but with different shapes.

Other example is shown in Fig. 5 (a) and (b). The
intensity of gray colors in both figures are identical and
number of pixels with the same intensity are identical too.
One may observe in Fig. 5 that very different pulse responses
depend on the shape of images. The quantities of similar
magnitude inputs that are grouped together and fire
synchronously are represented along the y-axis as events.
For instance, assume an input image that is one quarter
light gray (input magnitude of 250), and three quarters



dark gray (input magnitude of 10). Very large circuits were
simulated with SPICE programs where temporal patterns
were recorded. Output signals were recorded only for 256
discrete times.

4. Effects of segmentation

Fig. 6. Shows three pictures of a globe.  The first
picture is undistorted, but the second and third are
modified such that all the original pixels have been
retained, but reorganized.  The PCNN differs from a
histogram in respect to the pulses and how they represent
groupings within the input image.  All patterns have the
same histogram; the output of a PCNN is quite different.

Fig. 6. Input image of globe

The PCNN outputs for the globes if Fig. 6 are shown
in Fig. 7 through Fig. 9.  The outputs are apparently very
different.  This is of course attributed to the rearrangement
of the pixels within each image. Note significant difference
in output patterns between original image and the distorted
ones.
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Fig. 7. PCNN output of globe with no segmentation

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

time

# 
of

 e
ve

nt
s

Globe (slight distortion)

Fig. 8. PCNN output of globe with slight segmentation
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Fig. 9. PCNN output of globe with major segmentation

5. Orientation Independence

The ability to map spatial input to temporal output
allows PCNNs to disregard the orientation of the applied
input image.  Fig. 10 shows image of butterfly with
different orientations. It turns out that the output patterns
are identical for all images shown in Fig 10. Example of
such output pattern is shown in Fig. 11. One may observe
that even though the orientation of the butterfly changes,
the input groups (i.e. the antennas or the wings) remain the
same when considering relative positions.

         

         
Fig. 10. Butterfly images with different orientations
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Fig. 11.  Output pattern for butterfly image with 90 degree
rotation. Patterns for 0 degrees, 180 degrees, and 270 degrees

are identical!



6. Feature extraction

Another capability of the PCNN is feature extraction,
or pattern subset recognition Feature extraction allows the
output spectrum of an image to be recognized as a subset
of another image.

Fig. 12. Fire (left) and flame only (right) input Images

The two images shown in Fig. 12 have apparent
similarities and the output patterns shown in Fig. 13 and 14
reflect this.  There is a significant overlap of Fig. 14 in Fig.
13 this is what makes feature extraction possible.
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Fig. 13. PCNN output of complete image of fire
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Fig. 14. PCNN output of flame only

By applying multiple PCNNs to one image, multiple
images may be recognized within one input image.  This
occurs since image recognition for a PCNN is not only
rotation independent, but also independent of physical
location at the input

What may be difficult for a PCNN to recognize
properly is a feature that is surrounded by similar inputs.
An example of this may be when trying to identify a green

chameleon on a green leaf.  If the edges of the feature
synchronize with the surroundings, then feature extraction
is much more difficult.

7. Noise elimination

Images shown in Fig. 15 are without noise and with
10% of noise. The output patterns for these two cases are
shown in Fig. 16 and Fig. 17 respectively.

Fig. 15. Flower without noise and with noise.
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Fig. 16. Output patrern for the flower without noise
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Fig. 17. Output patrern for the flower with noise

8. Conclusion

The proposed method of image recognition works
extremely well in all of its simplicity.  The PCNN has
many features that resemble the human visual system.
This thesis explores an area of pulse coded neural network
that is original in its approach.  The resemblance to the



human eye is quite spectacular, and all the features that
exhibited by implementing the synchronization are quite
impressive.

Image recognition using a pulse coupled neural
network involves translating a spatial domain input to a
time domain output.  The input is applied as a magnitude
scaled input, like a visual input to a human eye.  The
output is a series of pulses that represent the magnitude of
the input as well as the size of the grouping of like-
magnitude inputs.  A pulse-coded neuron represents a
biological neuron in the manner in which it reacts to
stimulation.  By coupling pulse-coded neurons, small
amounts of current may cause a neuron that is near to
firing to synchronize with its coupled firing neighbor.
Features other than image recognition include orientation
independence at the input, image data reduction, noise
tolerance and scaled, and sub-image feature recognition.
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