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Abstract. Oil well diagnosis usually requires sophisticated tools and specialized
sensors placed on the surface and in the bottom of the well. The purpose of this
study is to identify oil well parameters based on the measurement the terminal
characteristics of the electrical motor. The quality of the oil well could be
monitored continuously and proper adjustments could be made. Such approach may
lead to significant savings in electrical energy, which is required to pump the oil.
With this approach, motors with smaller nominal power can be used instead of
overrated motors operating at a fraction of their nominal power. The application of
this new technology could lead to constant and effective monitoring of oil wells.
These approach leads to better diagnosis, adjustment, choice of an optimum
pumping rate, and more efficient use of energy.

1 Introduction

Several techniques are used for oil well diagnosis. These approaches usually require
sophisticated tools and introduce specialized sensors placed on the surface and in the
bottom of the well [1][2]. Recently, there is a significant interest in identifying
characteristics of the oil well using neural networks [3]-[13]. Neural networks are also
used for identifying faults of electrical motors, which are used to drive the oil pump.
Such diagnosis of electrical motors, using their terminal parameters is already very
advanced [14]-[20].

The purpose of this study is to identify oil well parameters based on the measurement of
the terminal characteristics of the electrical motors. This approach does not require
special instrumentation and can be used on any oil well with a pump driven by an
induction motor. The quality of the oil well could be monitored continuously and proper
adjustments could be made. Such approach may lead to significant savings in electrical
energy required to pump the oil.
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2 Oil well model

It would be very difficult and definitely very costly to introduce fault in real oil wells
(Fig.1). Therefore, a very complex model of an oil well was developed, so that all
possible faults can be easily introduced. For the induction motor, the relatively simple,
third order model was used. In addition to the three motor state variables, four state
variables for the pumpjack were used: angular flywheel velocity, angular flywheel
acceleration, beam angle, and beam angular velocity. Note that a relatively complex
nonlinear relationship must be used between the angular position of the gear flywheel
and the angular position of the pumpjack beam. For deep wells, the diameter of the
sucker rod changes and this leads to different stiffness and different mass for every
section of sucker rod. This distributed parameter system can be properly approximated by
lumped six state variable systems representing displacement and velocities of sucker rod
sections. Qil flow in the tube can be modeled by two additional state variables
representing displacement and velocity. A three-dimensional model of oil flow through
the formation can describe oil pressure distribution around the well. If radial uniformity
is assumed, this problem can be reduced to a one-dimensional distributed parameter case,
which can be well approximated with 10 state variables representing oil pressure for 10
different distances from the well. Overall the entire system is described by a 25-order
system of differential equations and 25 state variables.
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Fig. 1. Oil well with pump jack.

There are very different time constants in the system. An induction motor operates at
60 Hz and typical time constants are of the order of 0.1 to 0.2 s. A pumpjack operates
with cycles varying from 5 to 20 seconds. Transient responses in the well itself have
time constants from several hours to several weeks, or even years, when the well capacity
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is considered. Significant differences in time constants make the system very stiff and
difficult to analyze. Traditional forward Fuler or Runge-Kuta methods would require the
use of very small time steps and an unrealistically long simulation time. Such stiff
dynamic systems require implicit integration methods. The key issue was to find an
efficient method to simulate this very large set of nonlinear differential equations. It
turned out that there is a very simple and efficient solution. Instead of developing
dedicated code in FORTRAN or in C the entire system was simulated using the SPICE
program, which has an excellently developed algorithm to handle very stiff dynamic
systems with second order Gear integration scheme.
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Fig. 2. Equivalent diagram for differential equation used in SPICE program. Voltage on each
capacitor represents one state variable,

The approach is illustrated by the example with the equivalent circuit for an i-th
differential equation for the state variable x; is shown on Fig. 2. Note that recent versions
of SPICE programs have nonlinear dependent sources. In the case shown in Fig. 2. three
dependent current sources could also be combined into one, controlled by a nonlinear
expression of many variables. The system of 25 differential equations is relatively
complex, but the simulation time for one set of parameters is usually completed within
15-30 seconds on the Pentium 200MHz computer using PSPICE program version 7.1.

3 Data preprocessing and generation of training patterns

Sample results of oil well simulations using the complex model are shown in Fig. 3 and
4. Fig. 3 shows transient responses during operation in normal conditions and Fig. 4.
shows the same responses with a leakage of the traveling valve. Note the significant
differences, especially in Fig. 3 (d) and Fig. 4 (d). Unfortunately the measurement of
such parameters at the bottom of the well is not easy. The purpose of this work was to
identify oil well parameters by sole measurements of the terminal parameters of the
induction motor and to use neural networks for data processing.
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Fig. 3. Results of simulation of the 1500m deep oil well in normal condition (a) sucker rod
displacements, (b) sucker rod velocities, (c) forces and torques, and (d) oil flow.
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Fig. 4. Results of simulation of the 1500m deep oil well with leaking traveling valve (a) sucker
rod displacements, (b) sucker rod velocities, (c) forces and torques, and (d) oil flow.

Measurement of currents and voltages at terminals of the three-phase induction
motor operating at 60Hz leads to the collection of tremendous amounts of data, It turns
out that most of the important information is contained in the instantaneous power of the
induction motor [18]. The data for the transient waveform of the instantaneous power is
processed with FFT (Fast Fourier Transform). The Fourier coefficients on the complex
plane are generated, as shown in Fig. 5. Since this mechanical system includes several
large masses with inertia the system works as high order low-pass filter, therefore, only
the first nine Fourier components is used. As a result, each instantaneous power
waveform is represented by 19 numeric values: 9 real, 9 imaginary, and one representing

the dc offset. These 19 values were used as the input pattern for the neural network
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Fig. 5. Conversion of instantaneous power waveform into Fourier coefficients: (a) case with
normal operation and (b) case with leaking traveling valve.
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4 Neural network architecture and training

All neural network processing was done using SNNS software, which can be acquired
free of charge from http://www.informatik uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html
Various feedforward architectures were explored with one pattern file used for training
and with another pattern file used for verification. All input and output patterns were
scaled in such a way that input and output values changed within the -1 to +1 range.
Good results were obtained using a two hidden layer neural network with full
connections across layers with 5 neurons in each hidden layer. Several different training
algorithms were explored such as Backpropagation [22], Quickprop[23], RPROP[24],
Backpercolation[25], and Conjugate Gradient Method[26]. It turned out that for this case
the most efficient was the RPROP algorithm.
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Fig. 6. Oil pressure distribution in vicinity of the well: (a) spatial distribution around well with
pumping time as parameter and (b) transient response of the pressure in the well with soil
permeability as parameter.

The leakage of the traveling valve, the leakage of the standing valve, the effective oil
depth, and the location of balance mass on the beam, were four outputs of the neural
network. Initially, both training patterns and verification patterns were generated in such
way that for each pattern only one variable (for example, leakage of the traveling valve)
was modified and the remaining parameters had normal values. In this case the neural
network was able to identify the correct fault in 100% cases. More importantly the neural
network was also able to identify how much a certain parameter has deteriorated. For
example, what is the leakage, what is the effective depth, or what is the location of the
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balance mass. The accuracy of this identification varied from 10 %, in the case of the
effective oil depth, to 50%, in the case of the standing valve leakage.

nonlinear nature between the parameters,
Fortunately, three of four of the investigated parameters (the leakages and the mass
tion) can be assumed constant during experiments, which leads to the identification
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