Neuro-fuzzy Systems and Their Applications

Bogdan M. Wilamowski
University of Wyoming
Department of Electrical Engineering
Laramie WY 82071
wilam @uwyo.edu

Abstract - Computational intelligence combines neural
networks, fuzzy systems, and evolutional computing. Neural
networks and fuzzy systems, have already proved their
usefulness and have been found useful for many practical
applications. We are at the beginning of the third
technological revolution. Now neural networks are being
capable of replacing highly skilled people with all their
experience.

The concept of artificial neural networks is presented,
underlining their unique features and limitations. A review
and comparison of various supervised and unsupervised
learning algorithms follows. Several special, easy to train,
architectures are shown. The neural network presentation is
illustrated with many practical applications such as speaker
identification, sound recognition of various equipment as a
diagnosis tool, written character recognition, data
compression using pulse coupled neural networks, time series
prediction, etc.

In the later part of the presentation the concept of fuzzy
systems, including the conventional Zadeh approach and
Takagi-Sugano architecture, is presented. The basic
building blocks of fuzzy systems are discussed. Comparisons
of fuzzy and neural systems, are given and illustrated with
several applications. The fuzzy system presentation is
concluded with a description of the fabricated VLSI fuzzy
chip.

[. INTRODUCTION

Fascination about artificial neural networks started when
McCulloch and Pitts in 1943 developed their model of an
clementary computing neuron and when Hebb in 1949
introduced his leamning rules. A decade latter Rosenblatt
introduced the perceptron concept. In the early sixties
Widrow and Holf developed intelligent systems such as
ADALINE and MADALINE. Nilson in his book "Learning
Machines" [10} summarized many developments of that time.
The publication of the Mynsky and Paper in 1969 wrote the
book with some discouraging results and this stopped for
sometime a fascination of artificial neural networks, and
achievements in the mathematical foundation of the
backpropagation algorithm by Werbos in 1974 went
unnoticed. The current rapid growth of the neural network
area started in 1982 with Hopfield recurrent network and
Kohonen unsupervised training algorithms. The
backpropagation algorithm described by Rumelhard in 1986
stared rapid development of neural networks.

1. NEURON

Biological neuron has a complicated structure which
receives trains of pulses on hundreds of excitatory and
inhibitory inputs. Those incoming pulses are summed and
averaged with different weights during the time period of
latent summation. 1f the summed value is higher than a
threshold then the neuron generates a pulse which is sent to
neighboring neurons. If the value of the summed weighted
inputs is higher, the neuron generates pulses more frequently.

An above simplified description of the neuron action leads
to a very complex neuron model which is not practical.
McCulloch and Pitts in 1943 show that even with a very
simple neuron model it is possible to build logic and memory
circuits. The McCulloch-Pitts neuron model assumes that
incoming and outgoing signals may have only binary values 0
and /. If incoming signals summed through positive or
negative weights have a value larger than threshold T, then
the neuron output is set to /. Otherwise it is set to 0.

Examples of McCulloch-Pitts neurons realizing OR, AND,
NOT and MEMORY operations are shown in Fig. 1. Note,
that the structure of OR and AND gates can be identical and
only threshold is different. These simple neurons, known also
as perceptrons, are usually more powerful than typical logic
gates used in computers.

A~gl

B> T=0.5
+1

Cc

A+B+C

O @ »

+1
+ ABC
+1

memory

Fig. 1 Several logical operations using networks with McCulloch-Pitts neurons.

Multilayer neural networks usually use continuous

activation functions, either unipolar
1

0 = e = o Cner)

or bipolar
2
= finet) = tanh{(0.5Anet) = —+——— - |
@ = finet () 1 + exp(-Aner)

These continuous activation functions allow for the
gradient based training of multilayer networks. Typical
activation functions are shown in Fig. 2.

{a) - (b)

I <

Fig.2. Typical activation functions: (a) hard threshold unipolar, (b) hard
threshold bipolar, (c) continuous unipolar. (¢} continuous bipolar.

III. FEEDFORWARD NEURAL NETWORKS

Simplest and most commonly used neural networks use
only for one directional signal flow. Furthermore, most of
feedforward neural networks are organized in layers. An
example of the three layer feedforward neural network is
shown in Fig. 3. This network consists of input nodes, two
hidden layers, and an output layer.

hidden
hidden layer #2 output
> layer
7
Sl (N e
KA IR,
3{3‘:\!’%‘.‘.-:@ 1‘-‘5_"[’; Y
(C N

+1

Fig. 3. Anexampie of the three layer feedforward neural network, which is
also known as the backpropagation network.

xla
* * *
* *
* * Xy X, w,= _:
10
* we ——
* x . = Xy
* -1

w,=

Fig.4. Linear separation of patterns in the two-dimensional space by a single
neuron.

A single neuron is capable of separating input patterns into
two categories and this separation is linear. For example, the
separation line shown in Fig. 4, which are crossing x; and x,
axes at points xj and x,, can be achieved with a neuron
having weights:

W, = — for {=1ton; Waes = -1

One neuron can divide only linearly separated patterns, |
order 1o select just one region in n-dimensional input spa:
more than zn+1 neurons should be used. If more input clust
should be selected then the number of neurons in the iny
(hidden) layer should be properly multiplied. If the numbery
neurons in the input (hidden) layer is not limited, then 4
classification problems can be solved using the three lay
network. The linear separation property of neurons mak
some problems specially difficult for neural networks, such;
exclusive OR, parity computation for several bits, ory
separate patterns laying on two neighboring spirals.

The feedforward neural networks are used for nonling
transformation (mapping) of a multidimensional inp
variable into another multidimensional output variable, |
theory, any input-output mapping should be possible if neu
network has enough neurons in hidden layers (size of oup
layer is set by the number of outputs required). Practically i
is not an easy task and presently, there is no satisfacin
method to define how many neurons should be used in hidd
layers. Usually this is found by try and error method. |
general, it is known that if more neurons are used, mo
complicated shapes can be mapped. On the other si¢
networks with large number of neurons lose their ability fy
generalization, and it is more likely that such network will
to map noise supplied to the input also.

IV. LEARNING ALGORITHMS

Weights in artificial neurons are adjusted during a trainiy
procedure. Various learning algorithms were developed by
only a few are suitable for multilayer neuron networks. Som
use only local information about signals in the neurons othe
require information from outputs. Supervised algorithm
require a supervisor who always knows what outputs shou
be unsupervised algorithms need no such informatio
Common learning rules are described below.

A. Hebbian Learning Rule

Hebb in 1949 developed unsupervised learning rule whig
was based on the assumption that if two neighbor neuron
must be activated and deactivated at the same time, then t
weight connecting these neurons should increase. For neuron
operating in the opposite phase, the weight between then
should decrease. If there is no correlation, the weight shouli
remain unchanged. This assumption can be described by th
formula

A Wij = CXioj

where wy is the weight from i-th to j-th neuron, c is th
learning constant, x; is the signal on the i-th input and o is th
output signal. The training process starts usually with valug
of all weights set to zero. This learning rule can be used fa
both soft and hard threshold neurons. The absolute values o
the weights are usually proportional to the learning time
which is undesired.

B. Correlation learning rule

The correlation learning rule uses a similar principle as the
Hebbian learning rule. It assumes that weights between
simultaneously responding neurons should be largely positive,
and weights between neurons with opposite reaction should be
largely negative. Mathematically, this can be written that
weights should be proportional to the product of states of
connected neurons. In contrary to the Hebbian rule, the
correlation rule is of the supervised type. Instead of actual
response, the desired response is used for weight change
calculation

A wi = cxid j

This training algorithm starts with initialization of weights

to zero values.

C. Instar leaning rule

If input vectors, and weights, are normalized, or they have
only binary bipolar values (- or +1), then the net value will
have the largest positive value when the weights have the
same values as the input signals. Therefore, weights should be
changed only if they are different from the signals

Aw; = C(Xi - Wi)

Note, that the information required for the weight is only
taken from the input signals. This is a local and unsupervised
leaming algorithm.

D. WIA - Winner Takes All

The WTA is a modification of the instar algorithm where
weights are modified only for the neuron with the highest ner
value. Weights of remaining neurons are left unchanged. This
unsupervised algorithm (because we do not know what are
desired outputs) has a global character. The WTA algorithm,
developed by Kohonen in 1982, is often used for automatic
clustering and for extracting statistical properties of input data.

E. Outstar learning rule

In the outstar learning rule it is required that weights
connected to the certain node should be equal to the desired
outputs for the neurons connected through those weights

Aw; = c(d; - wy)

where d; is the desired neuron output and ¢ is small
leaming constant which further decreases during the learning
procedure. This is the supervised training procedure because
Jesired outputs must be known. Both instar and outstar
earning rules were developed by Grossberg in 1974,

F. Widrow-Hoff (LMS) learning rule

Widrow and Hoff in 1962 developed a supervised training
Igorithm which allows to train a neuron for the desired
esponse. This rule was derived by minimizing the square of
e difference between ner and output value.

P

Error; = 2 (net,'p - djp)z
p=1
where Error; is the error for j-th neuron, P is the number of
applied patterns, dj, is the desired output for j-th neuron when
Pp-th pattern is applied. This rule is also known as the LMS
(Least Mean Square) rule. By calculating a derivative of the
error with respect o w;, one can find a formula for the weight

change.
P

= Cxy Z (djp -
p=1

Note, that weight change Aw;; is a sum of the changes from
each of the individual applied patterns. Therefore, it is
possible to correct weight after each individual pattern was
applied. If the learning constant c is chosen to be small, then
both methods gives the same result. The LMS rule works well
for all type of activation functions. This rule tries to enforce
the net value to be equal to desired value. Sometimes, this is
not what we are looking for. It is usually not important what
the ner value is, but it is important if the net value is positive
or negative. For example, a very large net value with a proper
sign will result in large error and this may be the preferred
solution.

Aw; netp)

G. Linear regression

The LMS learning rule requires hundreds or thousands of
iterations before it converges to the proper solution. Using the
linear regression the same result can be obtained in only one
step.

Considering one neuron and using vector notation for a set
of the input patterns X applied through weights w the vector
of net values net is calculated using

Xw =net
where X is a rectangular array (n+1)*p, n is the number of
inputs, and p is the number of patterns. Note that the size of
the input patterns is always augmented by one, and this
additional weight is responsible for the threshold. This
method, similar to the LMS rule, assumes a linear activation
function, so the net values net should be equal to desired
output values d
Xw = d

Usually p > n+1, and the above equation can be solved only
in the least mean square error sense

w=(x™X)'x"d

or to convert the set of p equations with n+/ unknowns to
the set of n+1 equations with n+/ unknowns. Weights are a
solution of the equation

Yw = z

where elements of the ¥ matrix and the z vector are given

by

P P
Y = inp-xjp Zi = inpdp
p=1 p=1

H. Delta learning rule

The LMS method assumes linear activation function net =
o, and the obtained solution is sometimes far from optimum as
it is shown in Fig. 5 for a simple two dimensional case, with
four patterns belonging to two categories. In the solution
obtained using the ILMS algorithm one pattern s

misclassified. If error is defined as
P

2. (o
p=1

Then the derivative of the error with respect to the weight
Wy is

djp)z

Error;

d Error; L dfi net,
S22 23 (o - dy)nets)
dw; oy d net),

Note, that this derivative is proportional to the derivative of
the activation function f{net). Thus, this type of approach is
possible only for continuous activation functions and this
method cannot be used with hard activation functions, In this
respect the LMS method is more general. The derivatives
Iost common continuous activation functions are

f = o0ll - 0) for the unipolar and

f =051 - 0?) for the bipolar.

Using the cumulative approach, the neuron weight
wy; should be changed with a direction of gradient

P
OIP) f/’p

AW;j = C X z (djp
p=1
in case of the incremental trainin g for each applied pattern
AW,‘,‘ = C x; fj' (dj - 0,’)

the weight change should be proportional to input signal x;,
to the difference between desired and actual outputs dj-0,,
and to the derivative of the activation function Sp. Similar to
the LMS rule, weights can be updated in both the incremental
and the cumulative methods. In comparison to the LMS rule,
the delta rule always leads to a solution close to the optimum,
As it is illustrated in Fig 5, when the delta rule is used, all four
patterns are classified correctly.

A%z ';
6 -4
“Ix
5 :
’?Fg’
44 ~ ’
31 %’ [
Q)
4 % |e [
1 * Q
5 X,
AN I'Tz 13y 4 5§ & &5
-1
-2

Fig. 5. An example with a comparison of results obtained using LMS and
Delta training algorithms. Note that LMS is not able to find the proper solution.

L Nonlinear regression method

The delta method is usually very slow. Solution can be y
fast when nonlinear regression algorithm is adopted [1].
total error for one neuron J and pattern p is now definegt
a simple difference:

E=d,-o, (net)
where net=wx,+w,xy+..... wokn. The derivative of §
error with respect to the /* weight of the j* neuron can)
written as:

dE, _ do,, dnet 'y

dw, dnet dw, e
The error function can then be approximated by the fi
two terms of the linear approximation around a giw
point:

. dE, dE, dE,
= 2 + i LR SUS —_—]
E,=E,. dw. Aw, dw, Aw, dn. Aw,
therefore
[d o
1
X X X Xy d: -0,
X X X x| [V f
: : : : VW: - -
Xot Xp2 X3 Xy : d[’ "0y
: : : : wa fp
Xeo Xeo Xno 0 Xm :
dp “Op
S
or
XAw=v

Matrix X is usually rectangular and above equation can b
only solves using pseudo inversion technique.

!
aw=(X"X)'X"y
The (XT X)' X" matrix is composed of input patterns only
and it must be computed only once

5 8
Fig. 6. Comparison of Algorithms where the algorithms can be identified by

the labels A-regression, B-minimum distance, C -modified minimum distance,
and D-modified regression and delta (back propagation) algorithm.

TABLE 1. Learning rules for single neuron

General formula
{ Aw. =a d x
Hebb rule (unsupervised):
d=0
correlation rule (supervised):
o0=d
perceptron fixed rule:
0=d-o
perceptron adjustable rule:
x'w net
6 =(d=0P " = (d-0)™

[

LMS (Widrow-Hoff) rule:
0 =d —net
delta rule:
S=(d-o)f’
pseudoinverse rule (for linear system):
1
w=("x]'x"d
iterative pseudoinverse rule (for nonlinear system):
1 rd—
w= (x’x) x" ——
f

J. Error Backpropagation learning

The delta learning rule can be generalized for multilayer
networks. Using a similar approach, as it is described for the
delta rule, the gradient of the global error can be computed in
respect to each weight in the network. Interestingly

AWij = C x; fjv E,‘

where ¢ is the learning constant, x; is the signal on the i-th
neuron input, and f;’ is the derivative of activation function,
The cumulative error E; on neuron output is given by
] K
Ei = — Z (or - di) A
U=y
where K is the number of network outputs, and Ay is the
small signal gain from the input of J-th neuron to the k-th
network output as Fig. 7 shows. The calculation of the back
propagating error is kind of artificial to the real nervous
system. Also, the error backpropagation method is not
practical from the point of view of hardware realization,
Instead, it is simpler to find signal gains from the input of the
J-thneuron to each of the network output (Fig. 7). In this case
weights are corrected using

K
Aw; = ¢ x Z (ox - dr) Aj
k=1

Note, that the above formula is general, no matter if
neurons are arranged in layers or not. One way to find gains
Ay is to introduce an incremental change on the input of the j-
th neuron and observe the change in the k-rk network output.
This procedure requires only forward signal propagation, and
it is easy to implement in a hardware realization. Another
possible way, is to calculate gains through each layer and then

find the total gains as products of layer gains. This progedure
is equally or less computational intensive than a calculation of
cumnulative errors in the error backpropagation algorithm,

The backpropagation algorithm has a tendency‘ for
oscillation. In order to smooth up the process, the weights
increment Awj; can be modified according to Rumelhart,
Hinton, and Wiliams [14]

win+1) = wy(n) + Aw;(n) + cAw(n-1)
or according to Sejnowski and Rosenberg (1987)

wi(n+1) = wy(n) + (I - a)Aw,(n) + A w;(n-1)

where o is the momentum term.

1
M do, 9
:] AU = dnet .

+1
Fig. 7. Iustration of the concept of the gain computation in neural networks

The backpropagation algorithm can be significantly
speedup, when after finding components of the gradient,
weights are modified along the gradient direction until a
minimum is reached. This process can be carried on without
the necessity of computational intensive gradient calculation at
each step. The new gradient components are calculated once
a minimum on the direction of the previous gradient is
obtained. This process is only possible for cumulative weight
adjustment. One method to find a minimum along the
gradient direction is the tree step process of finding error for
three points along gradient direction and then, using a
parabola approximation, jump directly to the minimum. The
fast learning algorithm using the above approach was
proposed by Fahlman [2] and it is known as the quickprop.

The backpropagation algorithm has many disadvantages
which leads to very slow convergence. One of the most
painful is this, that in the backpropagation algorithm the
learning process almost perishes for neurons responding with
the maximally wrong answer. For example if the value on the
neuron output is close to +/ and desired output should be
close to -1, then the neuron gain fTnet)=0 and the error signal
cannot back propagate, so the leaming procedure is not
effective. To overcome this difficulty, a modified method for
derivative calculation was introduced by Wilamowski and
Torvik [24]. The derivative is calculated as the slope of a line
connecting the point of the output value with the point of the
desired value as shown in Fig. 8

A finet)

+1] output

actual derivative

net

ire
output

Fig.8 lllustration of the modified derivative calculation for faster
convergence of the error backpropagation algorithm.

Odesirm' — oactual
net desired — n‘etarthl

Note, that for small errors, equation converges to the
derivative of activation function at the point of the output
value. With an increase of the system dimensionality, a
chance for local minima decrease. It is believed that the
described above phenomenon, rather than a trapping in local
minima, is responsible for convergence problems in the error
backpropagation algorithm.

-ﬁnodif =

K. Lavenberg-Marquardt leaming

The Lavenberg-Marquardt learning algorithm is the second
order search method of a minimum. At each iteration step
error surface is approximated by parabolic approximation and
the minimum of the paraboloid is the solution for the step.

Simples approach require function approximation by first
terms of Taylor series

F(w,,)=F(w,+Aw)+glAw, +~;—Aw:AkAwk

where g = VE is gradient and A = V?E is Hessian of
global error E,

. J0E JE OFE
Gradient = 5“'—1 -é-w—z 5“—)3
o*E *E IE

W owidw, Ow,dw,

J*E _32_E o0’E

Hessian = Ow,dw, Ow; Ow,om
0'E o’E)

aw_;‘awl aws?“"z a_wf—

Steepest decent (error backpropagation) method calculates
weights using:
Win =W, — g
while Newton method uses;
— ~1

Win =W, — Ak g
The Newton method is practical only for small networks
where Hessian Ay can be calculated and inverted. In the

Lavenberg-Marquardt method the Hessian A, i
approximated by product of Jacobians
A=2)")
and gradient as
g=2J"e
where e is vector of output errors and Jacobian J is
ow, Ow, Ow,
Jacobian = 9w, dw, ow,
I Oy O

It is much easier to calculate Jacobian than Hessian and
also usually Jacobian is much smaller so less memory is
required. Therefore weights can be calculated as

Wi =W, _(2J2Jk)1 ZJ:e
or
Win =W, "(JfJJIer

To secure convergence the Lavenberg-Marquardt
introduces [parameter
Wi =W, _(JLT-Jk +ﬂI)IJIe

when g = 0 this method is similar to the second ordy
Newton method. For larger values of | parameter t
Lavenberg-Marquardt works as the steepest decent metho
with small time steps. The m parameter is automaticall
adjusted during computation process so good convergeng
is secured. The Lavenberg-Marquardt recently become
very popular because it will usually converge in 5 to If

iteration steps. Main disadvantage of this method is a larg
memory requirement and therefore it cannot be used for

V. SPECIAL FEEDFORWARD NETWORKS

The multilayer backpropagation network, as shown in Fig
3, is a commonly used feedforward network. This network
consists of neurons with the sigmoid type continuo
activation function presented in Figures 2(c) and 2(d). I
most cases, only the one hidden layer is required, and the
number of neurons in the hidden layer are chosen to b
proportional to the problem complexity. The number o
neurons in the hidden layer is usually found by a try and error
process. The training process starts with all weight
randomized to small values, and then the e
backpropagation algorithm is used to find a solution. When
the learning process does not comverge, the training i
repeated with a new set of randomly chosen weights. Nguyen
and Widrow [16] proposed an experimental approach for the
two layer network weight initialization. In the second layer,
weights are randomly chosen in the range from -0.5 to +0.5,
In the first layer, initial weights are calculated from

_ Bz

W‘J - N
.

Waery = random(—f+f)

where z; is the random number from -0.5 o +0.5 and the
scaling factor 8 is given by

1
B =07py

where 7 is the number of inputs, and N is the number of
hidden neurons in the first layer. This type of weight
initialization usually leads to faster solutions,

For adequate solutions with backpropagation networks,
many tries are typically required with different network
structures and different initial random weights. This
encouraged researchers to develop feedforward networks
which can be more reliable. Some of those networks are
described below.

A. Functional link network

One layer neural networks are relatively easy to train, but
these networks can solve only linearly separated problems,
The concept of functional link networks was developed by
Nilson book [10] and late elaborated by Pao [13] using the
functional link network shown in Fig. 9.

inpurets

outputs

Fig. 9. The functional link network

Using nonlinear terms with initially determined functions,
the actual number of inputs supplied to the one layer neural
network is increased. In the simplest case nonlinear elements
are higher order terms of input patterns. Note that the
functional link network can be treated as a one layer network,
where additional input data are generated off line using
nonlinear transformations. The learning procedure for one
layer is easy and fast. Fig. 10 shows an XOR problem solved
using functional link networks. Note, that when the
functional link approach is used, this difficult problem
becomes a trivial one. The problem with the functional link
network is that proper selection of nonlinear elements is not
an easy task. However, in many practical cases it is not
difficult to predict what kind of transformation of input data
may linearize the problem, so the functional link approach can
be used.

unipolar neuron bipolar neuron

0.5

Fig. 10 Functional link networks for solution of the XOR problem: (a) using
unipolar signals, (b) using bipolar signals.

Kohonen
layer

Grossberg
layer

normalized inputs
outputs

summing

unipolar circuits

neurons
Fig. 11 The counterpropagation network.
B. Feedforward version of the counterpropagation network

The counterpropagation network was originally proposed
by Hecht-Nilsen (3] and modified feedforward version
described by Zurada [26]. This network, which is shown in
Fig. 11, requires numbers of hidden neurons equal to the
number of input patterns, or more exactly, to the number of
input clusters, The first layer is known as the Kohonen layer
with unipolar neurons. In this layer only one neuron, the
winner, can be active. The second is the Grossberg outstar
layer. The Kohonen layer can be trained in_the unsupervised
mode, but that need not be the case. When binary input
patterns are considered, then the input weights must be exactly
equal to the input patterns. In this case

net = x'w = (n - 2HD(x,w))

where 7 is the number of inputs, w are weights, x is the
input vector, and HD(w,x) is the Hamming distance between
input pattern and weights.

Since for a given input pattern, only one neuron in the first
layer may have the value of one and remaining neurons have
zero values, the weights in the output layer are equal to the
required output pattern.

The feedforward counterpropagation network may also use
analog inputs, but in this case all input data should be
normalized
A~ _ Xi

il

The counterpropagation network is very easy to design.
The number of neurons in the hidden layer should be equal to
the number of patterns (clusters). The weights in the input
layer should be equal to the input patterns and, the weights in
the output layer should be equal to the output patterns. This
simple network can be used for rapid prototyping.

Wi Xi

C. WTA architecture

The winner take all WTA network was proposed by
Kohonen in 1988 [12]. This is basically a one layer network
used in the unsupervised training algorithm to extract a
statistical property of the input data (Fig. 12). At the first step
all input data is normalized so the length of each input vector
is the same, and usually equal to unity. The activation

functions of neurons are unipolar and continuous. The
learning process starts with a weight initialization to small
random values. During the learning process the weights are
changed only for the neuron with highest value on the output -
the winner

Aw, = c(X - wy)
where w,, are weights of the winning neuron, x is the input
vector, and ¢ is the learning constant.

Kohonen
laver

winner

normalized inputs

Fig. 12 A winner take all - WTA architecture for cluster extracting in the
unsupervised training mode: (a) network connections, (b) single layer network
arranged into a hexagonal shape.

The algorithm is modified in such a way that not only the
winning neuron, but also neighboring neurons are allowed for
the weight change. At the same time, the learning constant ¢
decreases with the distance from the winning neuron. After
such a unsupervised training procedure, the Kohonen layer is
able to organize data into clusters.

Fig. 13. Input pattern transformation on a sphere
D. Projection on sphere

There are various method to transform input
space onto hypersphere without necessity of the
information lost [11]{21]. In every case the dimensionality
of the problem must be increased. The simples way of
transforming input space into hypersphere is to use all
input variables untouched z; = x; and add one additional
input Z,.

e

where lIxI? = x"x is the norm (length) of the input vector.
Note that z'z = const therefore all patterns in new

(i=12,...,n)
(i=n+1

transformed z-space are located on a hypersphere wil
radius R.

-
2

Zz=xl+x+ +x +(\/R2 —x}+x5+-+x2] =R

The patterns of the transformed z space have the same magnifu
and lie on the n+/ hypersphere. Each cluster can now be iy
by a single hyperplane in the n+/ dimensional space. 1
separation hyperplanes should be normai to the vectors sped
by thetclusters’ centers of gravity zc,. Equations for the sepanif
plane of the k-th cluster can be easily found using the pointg
normal vector formula:
zci(z-ze,) = 0

where zc; is the center of gravity of the vector and ze; is a
transformed from the edge of the cluster. To visualize the
let us consider a simple two dimensional example with
clusters shown in Fig. 14

o4 x x x
x
4 x ° x
x o X2 o dyen

8 x o

x X X
8 - .

4 4 2 0 2 4 L} 8

edges are marked.

Hg. 15. Spiral problem sotved with sigmoidal type neurons

E. Sarajedini and Hecht-Nielsen network

Let us consider stored vector w and input patien
Both input and stored patterns have the same dimensio
The square Euclidean distance between x and w is:

w,)2 +(x2 - wz)2 +-~+(xn - w")z

fIx - Wﬂ2 = (Xl

o v e e

After defactorization
fr-wf =l e A w] AW e w! —2()tlwl +x,W, +---+x_lw")
finally
-wl’=x"x+ww-2x"w=[xI" +lw| - 2ner

where net = x'w is the weighted sum of input signals. Fig.
16 shows the network which is capable of calculating the
square of Euclidean distance between input vector x and
stored pattern w.

"
KOCKINALY g
03000, %, 11111117/
KK
SRS
NS
R y
‘s

30

Fig. 16. Network capable of calculating square of Euclidean distance
between input patternx and stored patternw. (a) network; (b) Euclidean
distance calculation form vector (15,15)

In order to calculate the square of Euclidean distance
the following modifications are required: (i) bias equal to
Iwl’, (ii) additional input with square of input vector
magnitude liwl®, and (i) weights equal to components of
stored vector multiplied by -2 factor. Note that when
additional input with the square of magnitude is added
than simple weighted sum type of network is capable of
calculating square of Euclidean distance between x and w.
This approach can be directly incorporated into RBF and
LVQ networks.

With the approach presented on Fig. 2 several neural
network techniques such as RBF, LVQ, and GR can be
used with classical weighted sum type neurons without
necessity of computing the Euclidean distance in a
traditional way. All what is required is to add additional
input with the magnitude of the input pattern.

E. Cascade correlation architecture

The cascade correlation architecture was proposed by
Fahlman and Lebiere in 1990. The process of network
building starts with a one layer neural network and hidden
neurons are added as needed. The network architecture is
shown in Fig. 17.

hidden neurons

output
neurons

outputs

inputs

weights adjusted every step
e~ ONCe adjusted weights and then frozen

Fig. 17. The cascade correlation architecture.

In each training step, the new hidden neuron is added and
its weights are adjusted to maximize the magnitude of the
correlation between the new hidden neuron output and the
residual error signal on the network output that we are trying
to eliminate. The correlation parameter S defined below must
be maximized

o P _ .
2|2 (Ve - V)(Ep - E)
o=l p=i

where O is the number of network outputs, P is the number
of training patterns, V, is output on the new hidden neuron,
and E,, is the error on the network output. By finding the
gradient, 35/0w;, the weight adjustment for the new neuron

can be found as
0 P
Awi = > > 0o (Ew - EJ) o xp

o=1 p=1]

where o, is the sign of the correlation between the new
neuron output value and network output, ;' is the derivative of
activation function for pattern p, and x,, is the input signal.
The output neurons are trained using the delta
(backpropagation) algorithm. Each hidden neuron is trained
just once and then its weights are frozen. The network
learing and building process is completed when satisfied
results are obtained.

S =

G. Radial basis function networks

The structure of the radial basis network is shown in Fig.
16. This type of network usually has only one hidden layer
with special "neurons”. Each of these "neurons” responds
only to the inputs signals close to the stored pattern. The
output signal #; of the i-th hidden "neuron” is computed using
formula

2
-
1 2 0-2

where x is the input vector, s; is the stored pattern
representing the center of the cluster, and o; is the radius of
this cluster. Note, that the behavior of this "neuron”
significantly differs form the biological neuron. In this
"neuron”, excitation is not a function of the weighted sum of
the input signals. Instead, the distance between the input and
stored pattern is computed. If this distance is zero then the
"neuron” responds with a maximum output magnitude equal

to one. This "neuron” is capable of recognizing certain
patterns and generating output signals being functions of a
similarity. Features of this "neuron” are much more powerful
than a neuron used in the backpropagation networks. As a
consequence, a network made of such "neurons” is also more
powerful.

If the put signal is the same as a pattern stored in a
neuron , then this "neuron” responds with / and remaining
"neurons” have 0 on the output, as it is illustrated in Fig. 16.
Thus, output signals are exactly equal to the weights coming
out from the active "neuron”. This way, if the number of
"neurons” in the hidden layer is large, then any input output
mapping can be obtained. Unfortunately, it may also happen
that for some patterns several "neurons” in the first layer will
respond with a non-zero signal. For a proper approximation
the sum of all signals from hidden layer should be equal to
one. In order to meet this requirement, output signals are
often normalized as shown in Fig. 18.

hidden "neurons”

inputs
x is close w0 5,
outputs

output

summin i
8 normalization

circuit

Fig. 18 A typical structure of the radial basis function network.

The radial based networks could be designed, or trained.
Training is usually carried on in two steps. In the first step the
hidden layer is usually trained in the unsupervised mode for
choosing best patterns for cluster representation. A similar
approach, as used in the WTA architecture, can be used. Also
in this step, radiuses o; must be found for a proper overlapping
of clusters. The second step of training is the error
backpropagation algorithm carried on only for the output
layer. Since this is a supervised algorithm for one layer only,
the training is very rapid, 100 or 1000 times faster than in the
backpropagation multilayer network. This makes the radial
basis-function network very attractive. Also, this network can
be easily modeled using digital computers, however, its
hardware implementation would be very difficuit.

VI. RECURRENT NEURAL NETWORKS

In contrast to feedforward neural networks, recurrent
networks neuron outputs could be connected with their inputs.
Thus, signals in the network can continuously circulated.
Until now only a limited number of recurrent neural networks
were described.

A. Hopfield nerwork

The single layer recurrent network was analyzed by
Hopfield in 1982. This network shown in Fig. 19 has

unipolar hard threshold neurons with outputs equal to 0 o]
Weights are given by a symmetrical square matrix W wi
zero elements (w; = O for i=j) on the main diagonal. Ty
stability of the system is usually analyzed by means of i

energy function

N

E= - 2 Wi Viv;
j=1

Awi = Aw;i = (2vi - 1) (2v; - 1)

It was proved that during signal circulation the energy £(
the network decreases and system converges to the st
points. This is especially true when values of system outpy
are updated in the asynchronous mode. This means that atty
given cycle, only one random output can be changed to ty
required value. Hopfield also proved that those stable poin
to which the system converges can by programmed b
adjusting the weights using a modified Hebbian rule. Suj
memory has limited storage capacity. Based on experimeny
Hopfield estimated that the maximum number of stor
patterns is 0. /5N, where N is the number of neurons.

1 N
E i=1

Fig. 19 A Hopfield network or autoassociative memory

B. Autoassociative memory

Hopfield in 1984 extended the concept of hi
network to autoassociative memories. In the same netwat
structure as shown in Fig. 19, the bipolar neurons were usy
with outputs equal to -7 of +/. In this network pattern s,, ar
stored into the weight matrix W using autocorrelatio
algorithm

M
W= D sush - M1

m=1

where M is the number of stored pattern, and 1 is the unity
matrix. Note, that W is the square symmetrical matrix with
elements on the main diagonal equal to zero (wj for i=))
Using a modified formula, new patterns can be added «
subtracted from memory. When such memory is exposed 03
binary bipolar pattern by enforcing the initial network states,

then after signal circulation the network will converge to the
closest (most similar) stored pattern or to its complement.
This stable point will be at

E(v) = - évTWv

the closest minimum of the energy functionLike the
Hopfield network, the autoassociative memory has limited
storage capacity, which is estimated to be about M,,=0.15N.
When the number of stored patterns is large and close to the
memory capacity, the network has a tendency to converge to
spurious states which were not stored. These spurious states
ar additional minima of the energy function.

C. BAM

The concept of the autoassociative memory was
extended to bi-directional associative memories - BAM by
Kosko [7][8]. This memory shown in Fig. 20 is able to
associate pairs of the patterns @ and b. This is the two layer
network with the output of the second layer connected directly
to the input of the first layer. The weight matrix of the second
layer is W' and it is W for the first layer. The rectangular
weight matrix W is obtained as a sum of the cross correlation
matrixes

M
W = zam bm
m=1

where M is the number of stored pairs, and a,, and b,, are
the stored vector pairs. If the nodes a or b are initialized with
a vector similar to the stored one, then after signal circulation,
both stored patterns a,, and b,, should be recovered. The
BAM has similar limited memory capacity and memory
corruption problems as the autoassociative memory. The
BAM concept can be extended for association of three or more
vectors.

(a) (b)
Fig. 20. An example of the bi-directional autoassociative memory - BAM: (a)
drawn as a two layer network with circulating signals (b) drawn as two layer
network with bi-directional signal flow.

VII. FUZZY SYSTEMS

A. Fuzzy variables and basic operations

In contrary to the Boolean logic where variables can have
only binary states, in fuzzy logic all variables may have any

values between zero and one. The fuzzy logic consists of the
same basic A - AND, v - OR, and NOT operators:

A AB A C ==>min{A,B,C] - smallest value of A or B or C
Av Bv C ==> max{A,B,CJ- largest value of A or B or C

A =>]-A - one minus value of A

For example 0.IA0.800.4 = 0.1, 0.1v0.8v0.4 = 0.8, and 0.3
= (.7. The above rules are also known as Zadeh [25] AND,
OR, and NOT operators. One can note that these rules are true
also for classical binary logic.

B. Fuzzy controllers and basic blocks

The principle of operation of the fuzzy controller
significantly differs from neural networks. The block diagram
of a fuzzy controller is shown in Fig. 21.(a) In the first step,
analog inputs are converted into a set of fuzzy variables. In
this step usually for each analog input 3 to 9 fuzzy variables
are generated. Each fuzzy variable has an analog value
between zero and one. In the next step a fuzzy logic is applied
to the input fuzzy variables and a resulting set of the output
variables is generated. In the last step, known as
defuzzification, from a set of output fuzzy variables, one or
more output analog variables are generated, which are to be
used as control variables.

" »
5 s g 2
N S N 8 L) 8) §
=Y S S 2
e[e]) 8
g s 5 g
®] © T o
w%\%m—'\a—’\a—'\ﬁ—i\v.
i 22y uzzyl o Inzy] =y @
lz%/e/g__/%__/g__/:&on
€ £ 2 g
?ﬁg'o\.iﬁm'\g%:;ﬁ\ﬁa'\gg-%
MRE[SEMME 5™
3 O ket o 0]
- c >

Fig. 21. Typical fuzzy systems (a) proposed byZadeh, (b) proposed by
Takagi-Sugano, and (c) suitable for VLSI implementation

C. Fuzification

The purpose of fuzzification is to convert an analog variable
input into a set of fuzzy variables. For higher accuracy more
fuzzy variables will be chosen. To illustrate the fuzzification
process let us consider that the input variable is the
temperature, and this is coded into five fuzzy variables: cold,
cool, normal, warm, and hot. Each fuzzy variable should
obtain a value between zero and one, which describes a degree
of association of the analog input (temperature) within the
given fuzzy variable. Sometimes, instead of term of degree of
association, the degree of membership is used. The process of

fuzzification is illustrated in Fig. 22. For example, for a
temperature of 57°F, the following set of fuzzy variables is
obtained: [0, 0.5, 0.3, 0, 0], and for T=80°F it is [0, 0, 0.2,
0.7, 0]. Usually only one or two fuzzy variables have a value
different than zero. In the presented example, trapezoidal
function are used for calculation of the degree of association.
Various different functions as the triangular, or the gaussian
can also be used, as long as the computed value is in the range
from zero to one. Always each membership function is
described by only three or four parameters, which have to be
stored in memory.

For proper design of the fuzzification stage, certain practical
rules should be used:
1. Each point of the input analog variable should belong to at
least one and no more then two membership functions.
2. For overlapping functions, the sum of two membership
functions must not be larger than one. This also means that
overlaps must not cross the points of maximum values (ones).
3. For higher accuracy, more membership function should be
used. However, very dense functions lead to a frequent system
reaction, and sometimes to a system instability.

57"F 80°F
normal | warm
30 40 50 60 l
(a)
hot 0 hot 0
5 LN) LN Y
srF B M(B B0 § | normal
< <
f‘:_? cool 05 % cool 0
o cold > 0 & cold 0

Fig. 20. Fuzification process: (a) a typical membership functions for the
fuzzification and the defuzzification processes, (b) examples of converting a
temperature into fuzzy variables.

y] yg y3 y] y2 y3
IR RIS AU URILE
21515253 X 161l
X3 15153 5y X311 T520 s
a2 %505 I
X5 %2153 %4 X5 511852 s
(a) (b)

Fig. 21. Fuzzy tables: (@} a table with fuzzy rules, (b) table with the intermediate
variables #;.

D. Rule Evaluation

Fuzzy rules are specified in the fuzzy table as it is shown fy
a given system. Let us consider a simple system with tw
analog input variables x and y, and one output variable z. W
have to design a fuzzy system generating z as fix,v). Lety
also assume that after fuzzification the analog variable 1
represented by five fuzzy variables: x;, X3, X3 X4 Xs and g
analog variable y is represented by three fuzzy variables: v, y,
ys. Let us also assume that an analog output variable
represented by four fuzzy variables: z;, z;, 75, 4. The key iss
of the design process is to set proper output fuzzy variables;
for all combination of input fuzzy variables, as it is illustralg
in the table () shown in Fig. 23. The designer has to speci
many rules such as: if inputs are represented by fum
variables x; and v; then the output should be represented b
fuzzy variable z. It is only required to specify wh
membership functions of the output variable are associaty
with a combination of input fuzzy variables. Once the fuz
table is specified, the fuzzy logic computation is proceeds
with two steps. At first each field of the fuzzy table is filly
with intermediate fuzzy variables l;, obtained from AN
operator ty=min{x,y;/, as shown in Fig. 23(b). This stepi
independent of the required rules for a given system. In th
second siep the OR (max) operator is used to compute ead
output fuzzy variable z;. In the given example in Fig. 1)
=mMax{t;ntin o la), 2=maxft ot ts), z=max{istnl,
Is2], Zy=max{ts;tetss). Note that the formulas depend on th
specifications given in the fuzzy table shown in Fig 23(a).

1

Fig. 24. Illustration of the defuzzification process.
E. Defuzzification

As a result of fuzzy rule evaluation, each analog outpu
variable is represented by several fuzzy variables. The
purpose of defuzzification is to obtain analog outputs. This
can be done by using the similar membership function
shown in Fig. 22. In the first step fuzzy variables obtainef
from rule evaluations are used to modify the membership
function employing the formula

Hi(z) = min{f,(2), 2)
For example, if output fuzzy variables are: 0, 0.3, 0.7, 0.,
then the modified membership functions have shapes shown
by the thick line in Fig. 24. The analog value of the z variable
is found as a "center of gravity” of modified membership
functions i, (z)

n +t>
2 [Hiteyedz

k=1 o
n +°°

z j Ly (2)dz

k=1 _oe

Zanalog

In the case when shapes of the output membership functions
Wz) are the same, the above €quation can simplified to

n

sz Wk

— k=]
Zanalog = n

ZZk

k=1
where n is the number of membership function of Zanalog OULpUL
variable, 7 is fuzzy output variables obtained from rule
evaluation, and zc, are analog values corresponding to the
center of k-th membership function.

VII. VLSIFUZZY CHIP

The classical approach to fuzzy systems presented by
Zadeh [25] is difficult to implement in analog hardware.
Especially difficult is the defuzzifier where signal division
must be implemented. Division can be avoided through use
of feedback loops, but this approach can lead to limited
accuracy and stability problems. Also, in the case of the
classical fuzzy system shown in Fig. 21, the information
about the required control surface is encoded in three
places: in the fuzzifier, in the defuzzifier, and in the
prewired connections between MIN and MAX operators.
Although the architecture is relatively simple, it is not
suitable for custom programming.

sum

Fuzzitier

Normalization

Fig. 25, Architecture of VLS] fuzzy controller

The concept of the proposed circuit is shown in Fig. 25.
Fuzzification is done in a traditional manner with
additional normalization which leads to a linear
interpolation of the output between stored points. The
second stage is an array of cluster cells with fuzzy “AND”
operators. Instead of classical defuzzification, simplified
Takagi-Sugeno singleton inference rules [18] with
normalization are used. The output is then normalized and
calculated as a weighted sum of the signals approaching
from all selected areas.

A. Fuzzifier

Various fuzzifier circuits that can be implemented in
bipolar or MOS technology have already been proposed.
Most approaches use two source- or emitter-coupled
differential pairs for a single membership function. The
approach proposed here differs from the previous
techniques in two ways (i) it is simpler - only one
differential pair is required per membership function and
(i) the fuzzy outputs are automatically normalized;

38 S
i 2 Rule T out

- selection =
z cells g weighted

Q

pd

therefore the sum of all the signals representing the fuzzy
variables of a single input is constant,

The fuzzifier circuit is presented in Fig. 26. This design
requires only one differential pair for each membership
function, in contrast to earlier designs where at least two
differential pairs were required. Also the output currents
are¢ automatically normalized because the sum of I,
through I is always equal to Io. Thus the normalization
circuit is integrated within the fuzzifier.

15 L1
e e

®
4

— l—!s@
:—h’ﬂ-ﬁ_ Mel'._‘VREFS
o O T

— L\ ®
»—lnvsa Mu}—vm2

L»——T—«J

®

input voltage

Fuzzyfier circuit

3 DM2

-
(=

Output currents

Nwamm\zmo

pry

Input voktage v]
()

Fig. 26. Fuzzyfier circuit with four differential pairs creating five
membership functions: three Gaussian/trapezoidal-like in the center and two
sigmoidal types at the ends of the input range: (a) circuit diagram and (b)
fuzzyfier characteristics generated by SPICE program .

B. Array of Rule Selection Circuits

Each rule selection circuit is connected to one fuzzy
variable from each fuzzifier. Therefore the number of these
circuits is equal to n,*n,, where n; and n, are numbers of
tuzzy variables for each fuzzifier. The rule selection circuit
cell is activated only if both fuzzy inputs have non-zero

values. Due to the specific shapes of the fuzzifier
membership functions, where only two membership
functions can overlap, a maximum of four cluster cells are
active at a time. Although current mode MIN and MAX
operators are possible, it is much easier to convert currents
from the fuzzifiers into voltages and use the simple rule
selection circuits with the fuzzy conjunction (AND) or
fuzzy MIN operator.

The voltage on the common node of all sources always
follows the highest potential of any of the transistor gates,
so it operates as a MAX/OR circuit. However using the
negative signal convention (lower voltages for higher
signals) this circuit performs the MIN/AND function. This
means that the output signal is low only when all inputs
are low. A cluster is selected when all fuzzy signals are
significantly lower than the positive battery voltage.
Selectivity of the circuit increases with larger W/L ratios.
Transistor M3 would be required only if three fuzzifier
circuits were used with three inputs.

C. Normalization circuit

In order to obtain proper outputs it is essential that
normalization occurs before weights are applied to the
summed currents. The normalization circuit can be
implemented using the same concept as the rule selection
circuit. For the negative signal convention, PMOS
transistors supplied by a common current source are
required. The normalization circuit is shown in Fig. 27.
The voltage on the common node A follows the lowest
input potential. The normalization circuit consists of
transistors M1, M2, ...My connected to a single common
current source. This means that the sum of all drain
currents of transistors M1, M2, ...My is always constant
and equal to Ip. The W/L ratios in current mirrors can
determine the output value for each cluster. Currents from
all cluster cells are summed to form the output current.

output
1o summing node

BT

Fig. 27. Normalization circuit

D. Weight circuit

The weights for different clusters can be assigned by
setting proper W/L ratios for current sources. This task can
be also accomplished by introducing a digitally
programmable current mirrors.

E. VLSI implementation

A universal fuzzy approximator has been designed a
fabricated. In order to make the chip universal, e
fuzzifier consists of seven differential pairs with sew
equally spaced reference voltages. This results in eig
membership functions for each input and 8*8 = 64 clus:
cells. Sixty-four adjustable current mirrors for setl
weights of output signals are programmed with 6 |
accuracy. For an arbitrary two-dimensional function o
6*64=384 bits are required for programming. A test chj
has been implemented in the 2 pm n-well MOSIS proc
using more than 2000 transistors to perform the anay
signal processing. To simplify the test by
implementation, current sources were programmed at
contact mask level. Fig. 28 shows a comparison betwes
the desired and the actually measured control surface fra
the fuzzy chip.

R
LI

Z A

130 ol

\
OOOR
BN
BUASSSS
Y

N
{
2R

Fig. 28. Control surfaces: (a) desired control surface, and (b) example of a control surfae

V. REFERENCES
[1] Andersen, Thomas J, and B.M. Wilamowski, "A

Modified Regression Algorithm for Fast One Layer Neurd
Network Training", World Congress of Neural Networks

vol. 1, pp. 687-690, Washington DC, USA, July 17-21,
1995.

(2] Fahlman, S. E. “Faster-learning variations on
backpropagation: An empirical study.” Proceedings of
the Connectionist Models Summer School, eds. D.
Touretzky, G. Hinton, and T. Sejnowski, San Mateo,
CA: Morgan Kaufmann, 1988.

[3] Hecht-Nielsen, R. "Counterpropagation Networks,"
Appl. Opt., vol. 26(23) pp. 4979-4984, 1987.

(4] Hopfield, J. J. "Neural networks and physical systems
with emergent collective computation abilities.
Proceedings of the National Academy of Science, vol
79, pp. 2554-2558, 1982,

[S] Hopfield, J. J. "Neurons with graded response have
collective computational properties like those of two-
state neurons.” Proceedings of the National Academy
of Science, vol 81, pp. 3088-3092, 1984,

{6] Kohonen, T. "The self-organized map,” Proc. IEEE,
vol 78(9), pp. 1464-1480, 1990

(71 Kosko, B. "Adaptive Bidirectional Associative
Memories,” App. Opt. vol 26, pp 4947-4959, 1987

[8] Kosko, B. "Bidirectional Associative Memories,"

IEEE Transaction on System Man, and Cybernnetics
vol 18, pp. 49-60, 1988.

[9] Nguyen, D. and B. Widrow, "Improving the learning
speed of 2-layer neural networks, by choosing initial
values of the adaptive weights.” Proc. Intl. Join Conf.
on Neural Networks, San Diego Ca, June 1990.

[10} Nilson N. J., (1965) Leamning Machines: Foundations of
Trainable Pattern Classifiers, New York: McGraw Hill.

{11]Ota Y. and B. Wilamowski, (1994) "Input data
transformation for better pattern classification with less
neurons,” Proc. of World Congress on Neural Networks, San
Diego, California, vol. 3, pp 667-672.

[12]0ta Y., B.M.Wilamowski, Analog Hardware
Implementation of a Voltage-Mode Fuzzy Min-Max
Controller, Journal of Circuits, Systems, and
Computers, Vol. 6, No.2, pp. 171-184, 1996,

[13]Pao, Y. H. , Adaptive Pattern Recognition and Neural
Networks, REading, Mass.: Addison-Wesley
Publishing Co., 1989.

{14]Rumelhart, D. E., G. E. Hinton, and R. J. Williams,
"Learning internal representation by error
propagation,” Parallel Distributed Processing, vol 1,
pp. 318-362, Cambrige, MA: MIT Press 1986

[15] Sarajedini A., R. Hecht-Nielsen, (1992) The best of both
worlds: Casasent networks integrate multilayer peroeptrons
and radial basis functions, Intemational Joint Conference on
Neural Networks, T, 905-910.

[16]Specht, D. F. "General regression neural network.”
IEEE Transactions on Neural Networks, vol 2, pp.
568-576, 1992.

[17)Specht, D. F. "Probalistic neural networks”, Neural
Networks, vol. 3, pp. 109-118.

(18] Takagi and M. Sugeno, Derivation of Fuzzy Control
Rules from Human Operator’s Control Action. Proc. of
the IFAC Symp. on Fuzzy Inf Knowledge
Representation and Decision Analysis, pp. 55-60, July
1989.

[19] Tapkan, Baskin 1. and Bogdan M. Wilamowski,
"Trainable Functional Link Neural Network Architecture”,
presented at ANNIEYS - Artificial Neural Networks in

[20] Wilamowski B. M. and R. C. Jaeger, "Neuro-Fuzzy
Architecture for CMOS Implementation” accepted for
IEEE Transaction on Industrial Electronics

[21] Wilamowski B. M., " Modified EBP Algorithm with
Instant Training of the Hidden Layer", Proceedings of
Industrial Electronic Conference (IECON9Y7), New
Orleans, November 9-14, 1997, pp. 1097-1101.

[22] Wilamowski, B. M. and Richard C. Jaeger, "VLSI
Implementation of a Universal Fuzzy Controiler,"
ANNIEY6 - Artificial Neural Networks in Engineering,
St. Louis, Missouri, USA, November 11-14, 1996,

[23] Wilamowski, B. M., "Neural Networks and Fuzzy
Systems” chapters 124.1 to 124.8 in The Electronic
Handbook. CRC Press 1996, pp. 1893-1914.

[24]) Wilamowski, B.M. and L. Torvik, "Modification of
Gradient Computation in the Back-Propagation
Algorithm", presented at ANNIE’93 - Artificial Neural
Networks in Engineering, St. Louis, Missouri,
November 14-17, 1993;

[25]Zadeh, L. A. "Fuzzy sets."Information and Control,
vol 8, 338-353, 1965.

[26]Zurada, J. Introduction to Artificial Neural Systems,
West Publishing 1992.

Analog VLSI hardware for fuzzy systems

Bogdan M. Wilamowski
University of Wyoming
Department of Electrical Engineering
Laramie, WY 82071, USA
wilam@uwyo.edu

Abstract - Our world has an analog nature and it is natural
to process signals in an analog way. Analog signal processing
can be much faster than digital ones and AD or DA
conversion is not required. The main obstacle is to develop
adequate circuits for nonlinear signal processing. In the
presentation several new circuits are proposed. These
circuits use nonlinear characteristics of MOS transistors for
nonlinear signal processing. The fuzzy signal processing is
used as an example. The proposed fuzzyfier circuits are
relatively simple while almost arbitrary shapes of
membership functions can be obtained. The proposed
current mode MAX and MIN operators exhibit accuracy
superior to other circuits. The defuzzyfier circuit uses the
concept of signal normalization and weighted sum. New
normalization circuit, operating in the subthreshold
conduction mode, exhibits almost ideal characteristics. The
described new building blocks were used to design the entire
analog fuzzy VLSI chip.

L. INTRODUCTION

Numerous applications of industrial electronics use
intelligent control systems. For example many motor
control systems require sophisticated computation. The
intelligence is also involved in smart sensors that are able
to measure flux and other electrical parameters just by
analyzing currents and voltages on the supply terminals.
Hardware implementation of intelligent systems use
computers or microcomputers for the computation. The
digital approach has many advantages. Primarily it is
flexible and easy to be reprogrammed. At the same time
those digital systems are rather complex and they require
analog to digital conversion at the front of the system and
digital to analog conversion at its end. Our world has an
analog nature and it would be wise to perform all
computation in analog fashion.

Analog signal processing is usually much faster than
the digital one. Several computation processes can be done
simultaneously, and AD and DA conversion is not
required. Analog integration or differentiation have been
used for many years already. Also, analog summation and
multiplication are quite common. For intelligence
computation more sophisticated nonlinear functions are
required such as WTA (Winner Takes All), fuzzy
membership functions [1][3][6][91{141{16], normalization
circuits [5][10][11]{14], MIN and MAX operators
[2]13117118]{12] division circuits, analog memory , neural
circuits, and others. This presentation is focused on the
VLSI implementation of fuzzy systems. Nonlinear signal
processing is taking advantage of nonlinear characteristics
of MOS devices. All building blocks operate in current

mode, which means that the current not voltage carries i
information. ,

5] ,
XE o 2 g

3 " 2 e o |

L. 9 Nt =

L | o) b NBE

o Q > N

] o] o -E

) o |/
B 2 al

S = p=

8

Fig. 1 Classical Zadeh-type fuzzy controller

The block diagram of the classical Zadeh-type [I]
fuzzy system is shown in Fig. 1. The system consists g
fuzzyfiers, a main processing unit with MIN and M4}
operators, and a defuzzyfier. Several VI
implementations of fuzzy system were already present
[10]{15]). The approach in [15] uses voltage mo
computation and Tagagi-Sugeno defuzzyfication [1j]
which leads to simple programming, but requires may
transistors for implementation. In the presented approad,
several new circuit analog signal processing circuits a
described. Those circuits are often simpler and have bety
characteristics.

II. FUZZYFIERS

The fuzzyfier block must convert crisp analog valuy
into several fuzzy variables. The conversion takes pla
based on the dedicated membership functions ¢
triangular, trapezoidal or Gaussian type shapes. Sever
different circuits have been already proposed. Ahmadi ety
[1] used PWL approximations using current sourcs
Yamagawa [16] used bipolar technology. Ota ay
Wilamowski [9] used a similar approach, but M0}
transistors were used. In both cases, for a singk
membership function, two differential pairs were require(
Also those differential pairs had to be supplied by sever
identical current sources. In the proposed approach onjy
one differential pair is required per membership functio
and one current source per fuzzyfier.

S
e
f
1
1

AV WA v

input voltage
C]
o

Fuzzyfier circuit

fuA]

DM2

-
(=)

Output currents
N W e N ©

Input voltage V]
(b)

Fig. 2 Fuzzyfier circuit with four differential pairs creating five membership
functions: three Gaussian/trapezoidal-like in the center and two sigmoidal
types at the ends of the input range: (a) circuit diagram and (b) fuzzyfier

characteristics generated by SPICE program .

The circuit diagram of the fuzzyfier is shown in Fig. 2(a),
while the fuzzyfier characteristics are shown in Fig. 2(b).
In the example shown in Fig. 2(b) wransistors M1, M2,
M7, and M8 have W/L. =10um/2um, while others have
W/L=4um/4um. Transistor models of typical 2um n-well
MOSIS process were used in the simulation. The reference
voltages were set to 1.0V, 2.0V, 3.2V, and 4.5V. Note that
several different shapes of the membership function can be
obtained such as: triangular, trapezoidal, and Gaussian.
Reference voltages control the width of membership
functions, while slopes depend on the W/L ratio of
coterminous differential pairs.

III. MIN AND MAX OPERATORS

The voltage mode MIN and MAX operations are very
simple to implement [14][15][16]. All that it is required to
have several voltage followers circuits with all
emitters/sources shorted together. Those simple voltage
mode MIN and MAX operator have limited accuracy and
can operate only in relatively low signal ranges. Current
mode MIN/MAX operators operate correctly over several
orders of magnitude of signal change. Baturone et al [4]
proposed a very clever current mode MAX operator with
relatively high accuracy (Fig. 3). The presented here MAX
operator is equally simple, but even higher accuracy can be
obtained (Fig 4). Its performance is illustrated in Fig. 5.
Each MAX circuit can be easily converted into a MIN
circuit by introducing additional biasing currents as it is
shown in Fig. 6.

|1¢ ® |2¢ ®|MAX¢ ®
Il M5 ;M7

-

(b)
Fig. 3. Baturone MAX operator circuit for two inputs (a) concept diagram
and (b) actual implementation.

o

z
E-N

BE
T

t_3

Cli,, (@,

Me
I ;
® ﬁ 0) ﬁ VBIAS
Mill [w2l [M3l @

(b)
Fig. 4. Proposed MAX operator (a) concept diagram and (b) actual
implementation.

Comparison of MAX circuits

[uA]

10.8
106}
104
10.2¢

Currents
© v o
S n o o

©
[

©

0 05 1 15 2 25 a3 35 4
TIME is]

Fig. 5. Accuracy comparison ofBaturone MAX1 and new proposed MAX2
circuits

il

MIN circuit
1

[uA]

10.8
10.6
10.4¢
10.2}

10

Currents

9.8¢

9.6}
9.4
9.2

0 05 1 15 2 25 3 35 4
TIME Is]
(b)

Fig. 6. SPICE simulation results for MAX and MIN circuits (2) acey
comparison of Baturone et al and new proposed MAX circuits and il
Results of proposed MIN circuit.

V1. DEFUZZYFIER CIRCUIT
The simplest defuzzyfication circuit should perform
following computation:

oUT = At WX+t W, x,

X tx,++x,
The required division is very difficult to implement ij
VLSI. Several attempts were have already been mad
substitute division by another technique. When negaiy
the feedback approach [7][11] is used, only the effec;
dominant inputs (inputs with large signals) is calculay
correctly. A similar problem exists, when normalizaig
techniques as described in [10] are used. In order to avj
the defuzzyfication Takagi-Sugeno [13] was used in 1
VLSI implementation [15]. Fig. 7 shows m
normalization circuit which uses MOS transis
operating in subthreshold conduction mode. Ty
normalization concept requires a gain control on all inpy
signal paths so each signal is attenuated the same way ay
that the sum of the reduced signals is always constay
X +x,+--+x, =const. Such normalized signals x

then summed with weights to complete the defuzzyfi
circuit.

[uA]

Currents

Fi

Wh
subt
idea
curr
inve
requ
of 1

latte
solu

and

desi
desi
appl
shar
ratic
also
Inpu
rules
outp

(1]

(2]

(3]

e h P R Eem ey A

accuracy

and (b)

m the

it in
de to
ative
Ct of
ated
tion
void
the
ew
tors
[he
put
nd
int
re

er

Normalization Circuit

p N

BN
PN

0.05 01 0.15 02
n [ua]
(b)

Fig. 7. Normalization circuit with almost ideal characteristics (a) circuit
diagram and (b) characteristics

When all transistors of the circuit in Fig. 75. operate in the
subthreshold conduction mode the circuit exhibits almost
ideal characteristic. This can be also proven analytically. If
currents are larger and transistors operate in the strong
inversion mode, results are only an approximation of that
required. Fig. 7 shows simulation results. Note that sum
of normalized currents is always constant and that the
same current ratios are preserved after normalization. The
latter feature is very difficult to accomplish in other
solutions of normalized circuits.

V. CONCLUSION

The presented building blocks such as fuzzyfier, MIN
and MAX operators, and defuzzyfier were used in the
design of the entire fuzzy VLSI chip. At this point, the
designed chip has to be individually designed for each
application. The number of membership functions and its
shape require proper reference voltages and proper W/L
ratios in fuzzyfier circuits. Weights of the defuzzyfier are
also adjusted by adequate W/L ratios of current mirrors.
Inputs of MIN operators have fixed connections. Fuzzy
rules are implemented by proper connections between
outputs of MIN operators and inputs of MAX operators.

VI. REFERENCES

[1] Abmadi S, L. Sellami, and R. W. Newcomb, A CMOS
PWL Fuzzy Membership Function, /EEE Intemational
Symposium on Circuits and Systems, Seattle WA, vol. 3, pp.
2321-2324, April 30-May 3 1995.

[2] Angulo J. R. and R. P. Loera, “Low Voltage Current-
Mode and Voltage-Mode Min and Max Circuit
Building Blocks for Analog CMOS Fuzzy
Processors,” Proceedings: 3rd Int. Conf. on Fuzzy
Logic, Neural Networks and Soft Computing, lizuka,
Japan, 1994.

{3] Angulo JR, (1995) A BiCMOS Universal
Membership Function Circuit with Fully Independent,

Adjustable Parameters, Proc. IEEE International
Symposium on Circuits and Systems. pp. 275-278.

[4] Baturone I., A, Barriga, and J. L. Huertas, “Multi-
input Voltage and Current-Mode Min/Max Circuits,”
Proceedings: 3rd Int. Conf. on Fuzzy Logic, Neural
Networks and Soft Computing, lizuka, Japan, 1994,

[5] Baturonel, S.S. Solano, and J. L. Huertas, “Current-
Mode Singleton Fuzzy Controller,” Proceedings: 3rd
Int. Conf. on Fuzzy Logic, Neural Networks and Soft
Computing, lizuka, Japan, 1994.

[6} Choi J., B. J. Sheu, and J. C.-F. Chang, “A Gaussian
Synapse Circuit for Analog VLSI Neural Networks,”
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 2, no. 1, pp. 129-133, March 1994.

{71 Oa Y. and B. Wilamowski, Current-Mode CMOS
Implementation of a Fuzzy Min-Max Network, World
Congress on Neural Nerworks vol. 11, pp. 480483, 1995.

(8] Ota Y., B.M.Wilamowski, Analog Hardware
Implementation of a Voltage-Mode Fuzzy Min-Max
Controller, Journal of Circuits, Systems, and
Computers, Vol. 6, No.2, pp. 171-184, 1996,

[9]1 Ramirez-Angulo J, A BiCMOS Universal Membership
Function Circuit with Fully independent, Adjustable
Parameters, IEEE Intemational Symposium on Circuits and
Systems, Seattle WA, vol. 1, pp. 275-278, April 30-May 3
1995,

[10] Rodriguez-Vazquez A. and F. Vidal-Verdu, Learning in
Neuro/Fuzzy Analog Chips, IEEE International Symposium
on Circuits and Systems, Seattle WA, vol. 3, pp. 2325-2328,
April 30-May 3 1995.

[11] Sasaki M., N. Ishikawa, F. Ueno, and T. Inoue,
“Current Mode Analog Fuzzy Hardware with Voltage
Input Interface and Normalization Locked Loop,”
IEICE Trans. Fundamentals, vol. E57-A (6), pp. 650-
654, June 1992,

[12] Simpson P. K., “Fuzzy Min-Max Neural Networks -
Part 2: Clustering,” IEEE Trans. on Fuzzy Systems,
vol. 1, no. 1, pp. 32-45, Feb. 1993,

{13] Takagi T. and M. Sugeno, Derivation of Fuzzy Control
Rules from Human Operator's Control Action. Proc. of the
{FAC Symp. on Fuzzy Inf Knowledge Representation and
Decision Analysis, pp. 55-60, July 1989.

[14] Wilamowski B. M. and R. C. Jaeger, "Neuro-Fuzzy
Architecture for CMOS Implementation” accepted for I[EEE
Transaction on Industrial Electronics

[15] Wilamowski, B. M. and Richard C. Jaeger, "VLSI
Implementation of a Universal Fuzzy Controtler,” ANNIE'Y6
- Antficial Neural Networks in Engineering, St. Louis,
Missouri, USA, November 11-14, 1996,

{16] Yamakawa T., “A Fuzzy Inference Engine in
Nonlinear Analog Mode and its Application to a
Fuzzy Logic Control,” IEEE Trans. on Neural
Networks, vol. 4, no. 3, pp. 496-522, May 1993,

[17] Zadeh L. A, Fuzzy sets. Information and Control, New
York, Academic Press vol 8, pp. 338-353, 1965.

Analog VLSI hardware for fuzzy systems

Bogdan M. Wilamowski
University of Wyoming
Department of Electrical Engineering
Laramie, WY 82071, USA
wilam@uwyo.edu

Abstract - Our world has an analog nature and it is natural
to process signals in an analog way. Analog signal processing
can be much faster than digital ones and AD or DA
conversion is not required. The main obstacle is to develop
adequate circuits for nonlinear signal processing. In the
presentation several new circuits are proposed. These
circuits use nonlinear characteristics of MOS transistors for
nonlinear signal processing. The fuzzy signal processing is
used as an example. The proposed fuzzyfier circuits are
relatively simple while almost arbitrary shapes of
membership functions can be obtained. The proposed
current mode MAX and MIN operators exhibit accuracy
superior to other circuits. The defuzzyfier circuit uses the
concept of signal normalization and weighted sum. New
normalization circuit, operating in the subthreshold
conduction mode, exhibits almost ideal characteristics. The
described new building blocks were used to design the entire
analog fuzzy VLSI chip.

I. INTRODUCTION

Numerous applications of industrial electronics use
intelligent control systems. For example many motor
control systems require sophisticated computation. The
intelligence is also involved in smart sensors that are able
to measure flux and other electrical parameters just by
analyzing currents and voltages on the supply terminals.
Hardware implementation of intelligent systems use
computers or microcomputers for the computation. The
digital approach has many advantages. Primarily it is
flexible and easy to be reprogrammed. At the same time
those digital systems are rather complex and they require
analog to digital conversion at the front of the system and
digital to analog conversion at its end. Our world has an
analog nature and it would be wise to perform all
computation in analog fashion.

Analog signal processing is usually much faster than
the digital one. Several computation processes can be done
simultaneously, and AD and DA conversion is not
required. Analog integration or differentiation have been
used for many years already. Also, analog summation and
multiplication are quite common. For intelligence
computation more sophisticated nonlinear functions are
required such as WTA (Winner Takes All), fuzzy
membership functions [1][3}{6][91{14]{16], normalization
circuits [S](10](11](14], MIN and MAX operators
[21E3]17]18](12] division circuits, analog memory , neural
circuits, and others. This presentation is focused on the
VLSI implementation of fuzzy systems. Nonlinear signal
processing is taking advantage of nonlinear characteristics
of MOS devices. All building blocks operate in current

mode, which means that the current not voltage carries t
information.

—
o)
= (2
x.E ,g 2 "
—
e © E =
_—) o N | of
- a Q N
N o © 2
) Q
B~ o < = QO
S = =
T >

Fig. 1 Classical Zadeh-type fuzzy controller

The block diagram of the classical Zadeh-type (1]
fuzzy system is shown in Fig. 1. The system consists o
fuzzyfiers, a main processing unit with MIN and MA}
operators, and a defuzzyfier. Several VI§
implementations of fuzzy system were already presenty
[10][15]. The approach in [15] uses voltage mog
computation and Tagagi-Sugeno defuzzyfication [l3]
which leads to simple programming, but requires ma
transistors for implementation. In the presented approac,
several new circuit analog signal processing circuits ag
described. Those circuits are often simpler and have betiy
characteristics.

II. FUZZYFIERS
The fuzzyfier block must convert crisp analog valu
mto several fuzzy variables. The conversion takes plax

based on the dedicated membership functions g
triangular, trapezoidal or Gaussian type shapes. Severd,
different circuits have been already proposed. Ahmadi etan
[1] used PWL approximations using current source’
Yamagawa [16] used bipolar technology. Ota anf
Wilamowski [9] used a similar approach, but MO§
transistors were used. In both cases, for a singk
membership function, two differential pairs were requireq
Also those differential pairs had to be supplied by severd
identical current sources. In the proposed approach only
one differential pair is required per membership function
and one current source per fuzzyfier.

(uA)

Output currents

Fig. 2
func
Ly

The
whils
In ¢
M7,

MO
volta
seve
obta
Refe
func
cote

Fig. 4. Proposed MAX operator (a) concept diagram and (b) actual

[uA]

Currents

Fig.

@ﬁ Q) ﬁl VBIAS
Ml [M2l (M3l o

J‘J IBIAS
=+

(b)

implementation.

Comparison of MAX circuits

10.8}
106}
104}

102}

05 1 15 2 25 3 35 4
TIME Is]

5. Accuracy comparison ofBaturone MAX1 and new proposed MAX2

circuits

BIAS

vi'-

(a)

MIN circuit
11 v

[uA]

10.8}
10.6}
104+
10.2}

10

Currents

9.8
9.6

9.4

9.2

Fig. 6. SPICE simulation results for MAX and MIN circuits (a) accum
comparison of Baturone et al and new proposed MAX circuits and (h\z
Results of proposed MIN circuit.

VI DEFUZZYFIER CIRCUIT
The simplest defuzzyfication circuit should performme
following computation: {

OUT = WX, +w,x, e+ wx,
X tx,++x,
The required division is very difficult to implement if m
VLSI. Several attempts were have already been made j!
substitute division by another technique. When negatiy
the feedback approach [7][11] is used, only the effectot%
dominant inputs (inputs with large signals) is calculated‘
correctly. A similar problem exists, when normalizaiq
techniques as described in [10] are used. In order to avoif

the defuzzyfication Takagi-Sugeno [13] was used in g
VLSI implementation [15]. Fig. 7 shows gy

normalization circuit which uses MOS transistos’

operating in subthreshold conduction mode. Ty
normalization concept requires a gain control on all i inpu

signal paths so each signal is attenuated the same way ani:
that the sum of the reduced signals is always constay:
X+ X, +---+x, =const. Such normalized signals g

then summed with weights to complete the defuzzyfiy

circuit.
TR TE
© ® J
M1 | Lh:2 M3 | Lh:4 M5 | | M6
L>|
B 0
REF BIAS

N e ol

—

