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ABSTRACT: 
 It is shown that by introducing special transformations to input patterns, it is 
possible to separate patterns in the input space by circles, spheres, or 
hyperspheres.  Two basic transformations are discussed.  In the first 
transformation, the dimensionality of patterns increases by one.  Since the 
computation of an additional input variable is rather complicated, this 
transformation is useful for off-line data preparation.  The second 
transformation doubles the input pattern dimensions, but the required 
computation is relatively simple, so it can easily be implemented into hardware. 
The proposed approach is visualized with a simple two-dimensional example.  
It is also shown that the usually difficult problem of the separation of two 
spirals can be easily solved with the suggested approach. 

 
INTRODUCTION 
 
A single neuron is capable of separating input patterns into two categories, and this separation is 
linear.  To separate one cluster in two dimensional space, at least three neurons in the input 
layer are required.  To separate a cluster in three dimensional space, at least four planes 
(neurons) should be used.  In general, to select just one region in n-dimensional input space, 
more than n+1 neurons in the input layer should be used.  If more input clusters should be 
selected, then the number of neurons in the first hidden layer should be properly multiplied.  
When radial basis functions - RBF "neurons" [Moody, 89][Hartman, 90][Girosi, 91] are used, 
the cluster separation problem can be significantly simplified.  The RBF "neuron" is able to 
calculate a distance between the input pattern and the stored vector.  The output signal has a 
maximum equal to1 when these two patterns are identical: 
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where x is the input pattern, t is the stored pattern, and σ is the "radius" of the cluster.  
Therefore, RBF "neurons" are able to separate patterns in the input space by circle, sphere and 
hypersphere.  This feature makes the RBF network very simple and powerful in pattern 
recognition.   Unfortunately, RBF "neurons" behave differently than biological neurons.  Actual 
neurons cannot compute a distance between an input and the stored pattern, and neural 
networks with sigmoidal type activation functions require many neurons to do such clustering. 
 The purpose of this paper is to develop a neural network structure with typical 
sigmoidal neurons which are able to separate input patterns by circles, spheres or hyperspheres.  
This can be done by a transformation of input patterns, such that one sigmoidal type neuron is 
able to separate a cluster in the transformed input space. This task can be accomplished by 
transforming the input space on the hypersphere where each cluster can be cut out by a plane, in 



a similar manner as any fragment of an apple’s surface can be easily separated with a single 
straight cut.  A similar concept of using a sphere for easy pattern separation was introduced by 
Kohonen [Kohonen, 87].  In this approach, input patterns are transformed into a sphere by 
normalizing the length of the input vectors to unity.  Unfortunately, the important information 
about the input vector magnitude is lost and not used for pattern recognition.  In order to 
preserve information about input patterns, the dimensionality of the input space must be 
increased by one, at least.  As it was pointed out in the early work of Cover [Cover, 65], the 
nonlinear problem is more likely to be linearly separable if the size of the dimensions increase.  
This idea was first demonstrated by Nilson [Nilson, 65], and then implemented in the 
"functional link" networks by Pao [Pao, 89]. 
 Wilensky and Manukian proposed and patented the Projection Neural Network 
[Wilensky, 92] where two different transformations from an N-dimensional input to the N+1 
dimensional transformed input space were introduced.  Both transformations use rational, 
square and square root functions and all dimensions have to be recalculated.  Different 
trigonometric transformations for the same purpose were also presented [Wilamowski, 94][Ota, 
94].  A slightly different approach is used in the Casasent Networks [Casasent, 92][Sarajedini, 
92].  The Casasent networks increase the input dimensionally by introducing an additional 
variable xn+1 equal to the square of the magnitude of the input pattern 
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Sarajedini and Hecht-Nilsen presented excellent theoretical proof that a RBF network with a 
single hidden layer can be replaced by a Casasent network with two hidden layers [Sarajedini, 
92].  In Casasent networks, the input pattern is projected on a cylindrical hyperparabola, and a 
cluster on the top of this cylindrical parabola can be easily separated by a linear cut of a 
sigmoidal neuron.  
 It will be shown, that by a simple increase of the problem’s dimensions by one, patterns 
in the input space can be separated by a circle, sphere or hypersphere. The proposed approach is 
similar to the Casasent network, but the input space is transformed to a hypershpere, not a 
cylindrical hyperparabola.  Furthermore, if dimensions are doubled, then the required input 
transformation can be realized with neurons having typical sigmoidal activation functions.  
 
INPUT DATA TRANSFORMATION TO N+1 DIMENTIONAL SPACE 
 
The input pattern transformations using trigonometric functions [Wilamowski, 94] [Ota, 94] 
require each input variable to be transformed.  Another possible approach is to leave all input 
variables untouched, and introduce only one additional variable using the following 
transformation: 
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where x is the n dimensional pattern in the input of the Cartesian space, z is the n+1 
dimensional pattern transformed onto a hypersphere, and  r is the radius of the hypersphere.  To 



avoid a negative value under the root in equation (2), it is satisfactory that radius r is larger than 
n  max{xi}.   
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Fig. 1.  Networks diagram (a) RBF network, (b) sigmoidal feedforward neural network 

 
 The patterns of the transformed z space have the same magnitudes and lie on the n+1 
hypersphere.  Each cluster can now be cut out by a single hyperplane in the n+1 dimensional 
space.  The separation hyperplanes should be normal to the vectors specified by the the clusters' 
centers of gravity zck.  Equations for the separation plane of the k-th cluster can be easily found 
using the point and normal vector formula: 
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where zck is the center of gravity of the vector and zek is a point transformed from the edge of 
the cluster.  To visualize the problem let us consider a simple two dimensional example with 
three clusters shown in Fig. 2.    Centers of gravities xck ([5, 6] [3, -5] [-2.4, 3.8]) and points on 
the cluster edges xek ([3, 6] [5, -5] [-0.2, 3.8]) are also shown in this figure. Corresponding zck 
and zek vectors in transformed z space can be found using transformation (3). 
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Fig. 2.  Separation of three clusters (a) input space  where centers of clusters and cluster edges 
are marked, (b) input-output mapping 

 
 Note that once the hyperplane equation is known, weights in the input layer are given 
by 
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 The functional link network structure for separating the three clusters in Fig. 1 is shown 
in Fig. 2(b).  The weights for the first layer, assuming the radius of hypersphere to be r = 13, are 
calculated using equations (3) and (5).   Input-output mapping for this network, with neuron 
gains λ = 1, is shown in Fig. 2(b).    
 Instead of the analytical approach, the weights can also be found using the training 
process. The learning process can be significantly accelerated if it is assumed that the second 
layer performs only logical OR operations [McCulloch, 43], and only the first layer is trained.  
Also, an analytical solution can be treated as initial conditions for the final tuning with the error 
backpropagation or other training algorithm. 
 
TRANSFORMATIONS TO 2 N DIMENSIONS 
 
The approach described above requires an off line computation of an additional input variable. 
It is also possible to simplify the required computations if transformations to higher dimensions 
are introduced:  
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where rj are radii of the transformation circles.  For each input signal, the additional input is 
generated using a circle as a transformation function.  In general for each component of the 
input vector, a different radius rj may be used, but all values of rj can be the same as well.  
Various radii should be used when components of the input vector significantly differ in 
magnitudes.  In this case, clusters in the input space x can be separated by hyper ellipsoids.   
 Note that for transformation (6), it doesn't matter if the same or different radii are used, 
because the following equation always holds: 
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and all vectors in the transformed z space have the same magnitude and they lie on the 
hypersphere. Weights for the input layer can be calculated using equations (6) and (5).   
 The nonlinear operators required in the transformation layer 
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can also be approximated using neurons with sigmoidal type of activation functions.  From the 
view point view of pattern separation it is not important that this is an ideal circle.  As it is 
shown in Fig. 3, a quarter of the circle can be approximated by an inverted sigmoidal function.  
Instead of transformation (6), the following transformation can be used: 
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and sigmoidal type of neurons can be used for the transformation.  The weights for the hidden 
layer can be calculated using (8) and (5).   
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Fig 3.  Function approximation (a) function comparison, (b) network to 

implementation- output weights and the sum operator can be incorporate into 
weights of the second layer. 

 
 One very difficult problem for the conventional multilayer neural network is to separate 
patterns laying on two neighboring spirals.  With the proposed approach, the two spiral problem 
is relatively easy to solve.  Fig. 4(a) shows the sigmoidal feedforward neural network for the 
two spiral problem. Fig. 4(b) is the resulting input-output mapping. 
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Fig. 4.  Spiral problem solved with sigmoidal type neurons  (a) network diagram, 

(b) input-output mapping. 
CONCLUSION 
 
 Although the two-dimensional case was chosen for the examples, so that the input-
output mapping could be easily visualized, the proposed approach will work well for 
multidimensional problems.  For cases when input data can be transformed off line, the size of 
the network has to increase by one.  When all processes must be implemented in hardware, it is 
more practical to double the dimensionality of the input patterns and use sigmoidal neurons in 
the transformation layer. 
 Weights can be found analytically or by a training process. In many practical cases, 
when a number of clusters and their locations are known, only one layer has to be trained.  This 
can significantly speed up the training procedure. The key issue is to find the size and cluster 

(b)



location.  Unsupervised clustering methods such as SOM [Kohonen, 90], ART [Carpenter, 91] 
with its derivatives, and mountain clustering [Yager, 94] can be used to find the cluster 
locations.  Unfortunately unsupervised algorithms can perform well only when all clusters are 
clearly defined and separated. The supervised clustering method [Wilamowski, 95] is an 
attractive alternative and usually leads to better results. 
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