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A LOGIC HAZARD COVER ALGORITHM
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Abstract

This paper presents three techniques for obtaining logic hazard cov-
ers. The first technique illustrates the standard Karnaugh map tech-
nique, which is useful for perhaps up to six variables and then be-
comes very time consuming to draw as well as difficult to use. The
second technique shows a different approach using a hand calcula-
tion process for the new logic hazard cover algorithm presented in
this paper. The advantage of the logic hazard cover algorithm over
the Karnaugh map technique is that any number of input variables
can be used, thus allowing Boolean specifications of just a few or
of many input variables. The third technique illustrates the use of
a software implementation of the logic hazard cover algorithm. The
software tool removes the tedium associated with the Karnaugh map
and hand calculation methods by automating the design process,
yielding a fast, efficient, and convenient technique for identifying re-
quired logic hazard covers for the combinational logic circuits that
are primarily used in asynchronous sequential designs.
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1. Introduction

Logic hazards can lead to spurious output signals, called
glitches [1, 2], in combinational logic circuits. These types
of glitches can be eliminated by product terms called logic
hazard covers (LHCs). When these product terms are
added to a minimized SOP (sum of products) Boolean
function, the function becomes a logic-hazard-free func-
tion with a glitch-free SOP form of circuit implementa-
tion. Logic-hazard-free circuits are an essential require-
ment for the design of asynchronous (level mode) sequen-
tial circuits.

A logic hazardous function, that is, a function devoid
of logic hazard covers [3], results in a glitchy SOP form
of circuit implementation. A logic glitch occurs when a
single input variable changes and the output is expected
to remain constant but does not due to a difference in
the delay times of two or more signal paths leading to the
output.

The realization of circuits using logic-hazard-free
functions results in the removal of spurious outputs or
glitches. To demonsirate this, a software schematic cap-
ture and timing simulation tool, B? Logic [4], is used to
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show the implementation and timing simulation of logic
hazardous functions (those without logic hazard covers)
and hazard-free functions (those with logic hazard cov-
ers). The following techniques are used to obtain logic
hazard covers for several Boolean function specifications:
the Karnaugh map approach, a hand calculation approach
using the logic hazard cover algorithm, and a software tool
approach that automates the logic hazard cover algorithm.

The software tool allows up to 50 logical variables for
a minimized SOP Boolean function. By reapplying the
software tool with all logic hazard covers included in the
function, one can verify the removal of all logic hazards.
This tool provides designers with an automated approach
to generating logic-hazard-free functions for large as well
as smaller logic circuits.

2. Generation of Logic Hazard Covers via a
Karnaugh Map

To illustrate the process of obtaining logic hazard covers,
consider the following Boolean specification represented by
equation (1).

F1(A,B,C) =Xm(1,5,6,7) (1)

The three-variable Karnaugh map in fig. 1 illustrates
this plotted specification. Equation (2) shows a minimized
SOP equation for the ones of the function F1.
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Figure 1. Karnaugh map for Boolean specification repre-
sented by (1).




F1=B-C+A-B (2)

A static 1 logic hazard [5] can be detected in the Kar-
naugh map in fig. 1 by observing adjacent ones not cov-
ered in the minimized SOP form of the function, that is,
not linked together. Notice that only one variable changes
from 0 to 1 or from 1 to 0, as in the case of the adjacent
ones in cells 5 and 7. For example, the function in the
Karnaugh map is represented by inputs ABC, and as these
inputs change from 101 to 111 or from 111 to 101 (variable
B changes from 0 to 1 or from 1 to 0), a logic hazard exists
in the circuit; that is, the output F1 of the combinational
logic circuit in SOP form that is used to implement (2)
can change from 1 to 0 then back to 1. Covering (linking)
the adjacent ones in cells 5 and 7 to form the redundant
prime implicant or hazard cover A -C and then logically
adding this product term to (2) effectively eliminates the
static 1 logic hazard between cells 5 and 7.

Fig. 2(a) shows a combinational logic circuit in SOP
form for (2) using the software schematic capture tool, B

Logic. The simulation timing diagram for the circuit is
shown in fig. 2(b). By inspecting the timing diagram in
fig. 2(b), one can see that a logic 0 glitch occurs, that
is, F1 momentarily goes to a 0, when variable B changes
from 1 to 0 because the propagation delay Atl (5ns) is
greater than At2 (2ns). Delays Atl and At2 represent the
propagation delays that exist from the input signal line B
(in this case) to the outputs of gates 1 and 2 respectively.
When variable B changes from 1 to 0, gate 2 tries to make
output F1 go to a 0 and gate 1 tries to make output F1
go to a 1. If gate 2’s output is faster than gate 1’s output,
F1 momentarily goes to a 0. Changing the propagation
delays such that Atl is less than At2, that is, gate 1 is
faster than gate 2, causes a logic 0 glitch to occur when
variable B changes from 0 to 1.

No other logic hazards exist between cells in fig. 1.
Equation (3) has the same functionality as (2), only the
logic hazard cover has been added to make (3) a logic-
hazard-free (LHF) function.
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Figure 2. (a) Schematic for (2) using the software package
B? Logic. (b) Simulation timing diagram showing a logic
0 glitch.
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Flyyp=B-C+A-B+A-C 3)

The logic hazard cover in (3) insures that the output
F1.gr will stay at a value of 1 when a single input variable
changes from 0 to 1 or from 1 to 0, or output Flrgr will
stay at a value of 0 when a single input variable changes
from 0 to 1 or from 1 to 0 [5, 6]. Fig. 3(a) shows the
circuit for the function Flryp in (3).

ating logic hazard covers for minimized SOP functions is
represented by the logic hazard cover algorithm flow chart
illustrated in fig. 4. The logic hazard cover algorithm al-
lows one to identify all logic hazard covers without using
a Karnaugh map. In general, Karnaugh maps are useful
for perhaps up to six variables and then become very time
consuming to draw and difficult to use. The advantage
of using the logic hazard cover algorithm is that it can be
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Figure 3. (a) Schematic for Equation 3 using the software
package B? Logic, (b) Simulation timing diagram showing
removal of the glitch.

The circuit in fig. 3(a) that includes the logic haz-
ard cover has the same propagation delays as the circuit
in fig. 2(a). Notice in the simulation timing diagram
fig. 3(b) that the logic 0 glitch between cells 5 and 7 has
been removed. Further testing also shows that for function
F1pgr all logic 0 and logic 1 glitches resulting from static
1 and static 0 logic hazards have been removed.

3. Generation of Logic Hazard Covers via the Logic
Hazard Cover Algorithm

For large or small functions, a systematic way of gener-

used for any number of variables by either hand calculation
or software synthesis.

Fig. 5(a) shows the hand calculation technique for
computing the logic hazard covers for function F1 (equa-
tion (2)), and figs. 5(b) and (c) show the results of using
the software tool, HAZARD, to calculate the logic hazard
covers for function F1. The software tool is very useful for
obtaining logic hazard covers and easily confirms the re-
sults obtained from either hand calculations or Karnaugh
maps.
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Figure 4. Logic hazard cover algorithm.

HAZARD, can be rerun with all logic hazard covers
included with the minimum SOP part of the function, as
shown in fig. 6(a). The result will indicate that there
are no additional logic hazard covers required verifying the
removal of all logic hazards, as illustrated in fig. 6(b). The
tool can also be used in a ”what if” mode by appending
one or more logic hazard covers to the minimum SOP part
of the function. Logic hazard covers not appended will be
shown in the result.
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Figure 5. (a) Hand calculation technique for computing
logic hazard covers for function F1 (equation (2)). (b)
File generated using a text editor with the extension .LIN
(Logic INput) for function F1. (c) Result of using HAZ-
ARD to calculate the logic hazard covers for function F1.
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Figure 6. (a) File generated using a text editor with the
extension .LIN (Logic INput) for F1 in (3), a logic-hazard-
free function. (b) Result of rerunning HAZARD to verify
the removal of all logic hazards for function F1 in (3).
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Figure 7. Karnaugh map for Boolean specification repre-
sented by (4).

4. Additional Examples

The following examples are used to further illustrate the
methods of obtaining logic hazard covers. In each of the
following functions it will be demonstrated that the most
convenient approach is the software tool called HAZARD.
This tool automates the search process by utilizing the
logic hazard cover algorithm shown in fig. 4. Consider the
following Boolean specification represented by (4):

F2(4,B,C,D) = IM(2,3,5,7,9,11,14,15)  (4)

The four-variable Karnaugh map in fig. 7 illustrates
this plotted specification. Equation (5) shows a minimized
SOP equation for the zeros of the function F2.
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Figure 8. (a) Schematic for (5) using the software package
B? Logic. (b) Simulation timing diagram showing three
logic 1 glitches.

F2=4A.B-C+A-B-D+A-B-C+A-B-D (5)

Four static 0 logic hazards can be detected in the Kar-
naugh map in fig. 7 by observing adjacent zeros not cov-
ered in the minimized SOP form of the function, that is,

(b)
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not linked together. Note that only one variable changes
from O to 1 or from 1 to 0, as in the case of the adjacent
zeros in cells 3 and 7, cells 7 and 15, cells 15 and 11, and
cells 11 and 3, and the function F2 should maintain the
value of 0. Fig. 8 shows a circuit implementation for (5)



in SOP form along with a simulation timing diagram. Ob-
serve that the output F'2 in the simulation timing diagram
contains three logic 1 glitches that are due, in each case, to
different delays in two or more signal paths and a change
of only one input signal.

Logic hazard covers for (5) are obtained by simply
covering the adjacent zeros in the cells that cause the three
static 0 logic hazards in fig. 7 and writing the resulting
product terms as follows:

A.Cc-D B-C-D A-C-D B-C-D.

Because all four of the zeros in the cells that cause the
three static 0 logic hazards are adjacent to each other, only
a single logic hazard cover C - D is required, as observed
in fig. 7. Logically adding this logic hazard cover to (5)
results in the logic-hazard-free function represented by (6).

Forur = A-B-C+4-B-D+A-B-C+A-B-D+C-D (6)
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Figure 9. (a) Schematic for (6) using the software pack-
age B? Logic. (b) Simulation timing diagram showing the
removal of the three logic 1 glitches.
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Figure 10. (a) Hand calculation technique for computing

logic hazard covers for function F2 (equation (5)). (b)
File generated using a text editor with the extension .LIN

The logic hazard cover C - D is a redundant prime
implicant and is not required except to make function F'2
logic hazard free as illustrated in the simulation timing
diagram shown in fig. 9(b). The circuit implementation
for F2 in (6) is shown in fig. 9(a), and the resulting timing
simulation in fig. 9(b) shows the removal of all three logic
1 glitches by the addition of the logic hazard cover term

The hand calculation technique for computing the
logic hazard covers for function F2 (equation (5)) is il-
lustrated in fig. 10(a). Observe that step 4, “Remove
redundancies from the set of logic hazard covers,” in the

(c)
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(Logic INput) for function F2. (c) Result of using HAZ-
ARD to calculate the logic hazard covers for function F2.

logic cover algorithm means to minimize the logic hazard
covers followed by eliminating any remaining logic hazard
covers that are included in the set of product terms of
the minimum SOP form of the function. Applying step 4
provides the single logic hazard cover C - D. Figs. 10(b)
and (c) show the results of using HAZARD to calculate
the logic hazard covers for function F'2. Observe in fig.
10(c) that the logic hazard covers obtained by HAZARD
are the same as those obtained by both the Karnaugh map
and the hand calculation techniques.

Figs. 11 and 12 show plotted Karnaugh maps for four
and five variable functions F'3 and F4 respectively. Each.
map shows a set of product terms for a minimized SOP
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Figure 11. Karnaugh map for four-variable function F3.
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Figure 12. Karnaugh map for five-variable function F4.

equation for the ones of the respective function as well as
the logic hazard covers for the minimized SOP equation.
Four static 1 logic hazards can be detected in fig. 11
by observing adjacent ones in the map not covered in the
minimized SOP form of the function, that is, not linked
together. In each case function F3 should maintain the
value of 1 when a single input changes, but due to unequal
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delays along two or more signal paths in the implementa-
tion of the circuit for F'3, a logic 0 glitch may occur.

Five static 1 logic hazards can be detected in fig. 12
by observing adjacent ones in the map not covered in the
minimized SOP form of the function, that is, not linked
together. A logic 0 glitch may occur as a result of each of
these static 1 logic hazards.



The hand calculation technique for computing the
logic hazard covers for function F3 is illustrated in fig.
13(a). Figs. 13(b) and (c) show the results of using HAZ-
ARD to calculate the logic hazard covers for function F'3.
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Figure 13. (a) Hand calculation technique for computing
logic hazard covers for function ¥3. (b) File generated
using a text editor with the extension .LIN (Logic INput)
for function F3. (¢) Result of using HAZARD to calculate
the logic hazard covers for function F3.
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Figure 14. (a) Hand calculation technique for computing
logic hazard covers for function F4. (b) File generated
using a text editor with the extension .LIN (Logic INput)
for function F4. (c) Result of using HAZARD to calculate
the logic hazard covers for function F4.

Observe in fig. 13(c) that the logic hazard covers obtained
by the software tool are the same as those obtained by
both the Karnaugh map technique in fig. 11 and the hand
calculation technique in fig. 13(a).

As the number of variables in a Boolean representa-
tion increases, obtaining logic hazard covers becomes more
difficult, as one would expect. The hand calculation tech-
nique for computing the logic hazard covers for function
F4 is illustrated in fig. 14(a).

The logic hazard covers for function F'4 are shown
in figs. 14(c) as calculated by HAZARD. In each exam-
ple provided in this paper the same logic hazard covers
were obtained using three different techniques. The advan-
tage of using the software tool for calculating logic hazard
covers should be primarily the time saved. This is espe-
cially true when the software tool is compared to either the
Karnaugh map or hand calculation method for a Boolean
specification such as F'4, which contains a large number of
variables.

Function F3 can be written as a logic-hazard-free
function as represented by (7).

F3 ur=A-B-D+A-C-D+B-C-D+A-C-D

(7)

Equation (8) is one representation of a logic-hazard-
free function for the Boolean specification provided in
fig. 12.

+A-B-D+A-B-.C+A-B-.C+B-C-D

+A.-B-D-E+A-B-C-E+A.C-D-E (8)
Rerunning HAZARD with the logic-hazard-free func-



tion. F4 in (8) verifies that no additional logic hazard cov-
ers are required in the function, as shown in fig. 15(b).
This implies that a circuit implementation for function
F4rgr in SOP form should result in the elimination of all
logic 0 and logic 1 glitches.

It should be noted that the software tool can be used
to generate the logic hazard covers for either the ones for
a Boolean specification, as in the cases of F1, F3, and F4
in this paper, or the zeros for a Boolean specification, as
in the case of F2.

5. Conclusion

This paper has presented three techniques for the iden-
tification of logic hazard covers that are used to obtain
logic-hazard-free functions. The standard Karnaugh map
technique was shown to be very easy to use for perhaps
up to four variables. Both the hand calculation technique
and the software tool technique use the logic hazard cover
algorithm. The hand calculation technique is time con-

suming but generally can be used more easily than the

Karnaugh map technique for Boolean specifications that
contain a larger number of input variables. The software
tool HAZARD provides the most flexibility, is the most
convenient, and utilizes less time for calculating logic haz-
ard covers. The timing simulator (B2Logic) was used to
show the presence of glitches caused by logic hazardous
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Figure 15. (a) File generated using a text editor with the
extension .LIN (Logic INput) for F4 in (8), a logic-hazard-
free function. (b) Result of rerunning HAZARD to verify
the removal of all logic hazards for function F4 in (8).

functions and to verify the removal of glitches for logic-
hazard-free functions. HAZARD was also used as a verifi-
cation tool to show that minimized SOP forms of Boolean
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expressions that contain appropriate hazard covers do not
contain logic hazards.
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