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Abstract -- This paper investigates automatic speaker
recognition systems, which can be used for security
purposes. The speech signal is compressed using linear
prediction analysis and recognized by neural networks.
This neural network technique is presented for the task of
speech recognition and speaker verification. This
technique first uses pattern recognition to identify the
speech, then it is used to distinguish each user from all
other speakers (impostors). With this method, unknown
speech can be accurately classified as user or impostor
speech. The approach used is based on the following steps:
extraction of spectral features; training of an initial neural
network to identify the speech; extraction of LPC-
reflection coefficients for each user, training of a secondary
neural-network to identify the user; and classification of
unknown speech as either user or impostor.

I. INTRODUCTION

Neural Networks NN have been used for speech
recognition for many years. Early experiments were devoted
1o isolated word recognition on small vocabulary and extensive
comparisons with classical systems have been performed [1],
[2]. More recently bhybrid systems combining NN and
dynamic speech alignment techniques have been developed
either for isolated word recognition [3], [4], [S), [6], [7] or for
continuous speech recognition [8], [9], [10].

While the area of speech recognition is concerned with
extracting the linguistic message underlying a spoken
utterance, speaker recognition is concerned with extracting the
identity of the person speaking the utterance. Applications of
speaker recognition are wide ranging, including facility or
computer access control [11], telephone voice authentication
for long-distance calling or banking access [12], intelligent
answering machines with personalized caller greetings [13],
and automatic speaker labeling of recorded meetings for
speaker-dependent audio indexing (speech-skimming) [14].
The proposed system can make tree types of decisions: speech
recognition (identifying the message), speaker identification
(identifying 1 out of N talkers), speaker verification (accept or
reject a claimed identity) for continuous speech recognition.

In a previous paper [15], we presented a robust speaker
identification system based on a modified Kohonen algorithm.
This-algorithm has several advantages for classification tasks,
including better performance and reduced training time. The
accuracy of the ” training network for a single word “hello was

0-7803-3932-0

1102

98-99%,. This is not sufficient for security lock which
typically require error rates of 107 or less. In order to solve
this problem, we have used a continuous-speech text-
dependent system. In a text-dependent system, the speech
used to train and test the system is constrained to be the same
word or phrase.

In this paper the following approach is used. First, the
system recognizes if the correct password was spoken. This is
accomplished using RMS instantaneous power and zero-
crossing frequencies. Once the correct password is identified,
the system recognizes the speaker using reflection coefficients.

II. SPEECH DATA

The data files presented to the network were made by
recording the voice in a robust environment (i.e., a moderate
level of background noise was present) with a 16-bit digitizer
sampling at 11,025 Hz.
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Fig. 1. Raw data of the sentence “I am the student of the University of Wyoming”

Figure 1 shows the raw recording data for the sentence: “I am
the student of the University of Wyoming”. The power
spectrum as a function of time and frequency is shown in Fig.
2. In both cases the size of the speech data is enormously
large. The data size can be reduced by using only the RMS
values of the speech, as shown in Fig. 3. Another way of
speech data reduction is to display only average zero-crossing
rate as function of time shown in Fig. 4. The waveform of Fig.
4 can be further processed using the FFT. Magnitudes of
Fourier coefficients instead of the waveform are shown in Fig.
5.
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Fig. 6. Autocorrelation coefficients of the sentence
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Fig. 3. Instantaneous RMS power of the sentence “I am the student of the University of Wyoming”
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Fig. 7. Reflection coefficients of the sentence
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Other possible approaches are to use the autocorrelation
coefficients (Fig. 6) or reflection coefficients (Fig. 7). Various
data representations have their advantages and disadvantages.
For example, instantaneous RMS power (Fig. 3) and zero-
crossing frequencies (Fig. 4) depend more on the content of
the speech, while the reflection coefficients in Fig. 7 are more
sensitive to the speaker. When speech is used for identification
of an authorized person, both the speech content and the
speaker must be recognized.

111. RECOGNITION OF THE SPEECH CONTENT

Input data to any recognizer consists of a mix of relevant
and irrelevant information. Feature selection is the process of
jettisoning as much irrelevant information as possible and
representing relevant data in compact and meaningful form.
We have observed that any utterance carries at least two types
of information: the message itself and the identity of the
talker. In a speech-recognition system we wish to select the
first type of feature and ignore the second; in a speaker-
recognition system we wish to do just the opposite.

Figures 8 through 11 show various representation of the 20
samples of the word “February”. Figures 12 through 15 show
the similar representations for the word “March”. Note that
are instantaneous RMS power and zero-crossing frequencies
appear to be most sensitive to the content.
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Fig. 8. Instantaneous RMS power of the 20 samples of the word “February” from
the same talker.
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Fig. 9. Zero-crossing frequencies of the 20 samples of the word “February”

Fig. 10. Fourier coefficients for data shown in Fig. 9
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Fig. 11. Reflection coefficients of the 20 samples of the word “February’ ’
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Fig. 12. Instantaneous RMS power of the 20 samples of the word “March”
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Fig. 13. Zero crossing frequencies of the 20 samples of the word “March”
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Fig. 15. Reflection coefficients of the 20 samples of the word “March”

IV. LINEAR PREDICTION AND AUTOCORRELATION
METHOD

Fant developed a linear model of speech production
in the late 1950's [20] where the giottal pulse, vocal tract, and
radiation are individually modeled as linear filters. The goal of
determining speaker identity from recorded speech motivates
using features that are sensitive to individual vocal tract V1)
characteristics. The vocal tract is usually modeled as a
concatenation of non-uniform lossless tubes of varying cross-
sectional area that begins at the vocal cords and ends at the
lips [19]. The simplest VT approximation model consists of D
rigid tubes connected in series and excited at one end by a
glottal signal, E(z), to produce the output speech, S(z). The
source is either a quasi-periodic impulse sequence for the
voiced sounds or a random noise sequence for unvoiced sounds
with a gain factor G set to control the intensity of the
excitation,

In order to perform the LP analysis of a speech
segment consisting of N samples, the following p order all-
pole filter H(z) is assumed:

H(z) = S(@) _ G

E@ 1+ iap(z’)z"

i=]
The gain G is usually ignored to allow the parameterization to
be independent of the signal intensity. With this transfer
function, the difference equation for synthesizing the speech
samples s(n) is obtained as

s(n) = —ﬁ a,s(n—i)+Gu(n)
i=1
It can be noted that s(n) is predicted as a linear
combination of the previous p samples. Therefore, the speech
production model is often called the linear prediction (LP)
model, or the autoregressive model 25]. Autoregressive
analysis (AR), is a set of techniques that assume that the signal




spectrum can be represented by the all-pole transfer function.

The linear prediction (LP) analysis technique
provides a procedure for separating the excitation-source and
the linear-system components of the speech production model.
However, to achieve this, it assumes an all-pole model for the
linear system. The all-pole filter coefficients also called linear
prediction coefficients are computed from the speech signal on
the basis of a least-squares fit between the observed-signal
values and the values linearly predicted from the preceding
samples. The autocorrelation method and the covariance
method are two standard methods of solving for the predictor
coefficients [18][22]. When the speech signal is applied to
this filter as its input, its outputs the LP error signal whose n-
th order sample is given by:

e(n) = s(n)+iap (Ds(n-1)
i=1

In the LP analysis, the LP coefficients are determined by
minimizing the total-squared value of the estimation error,

n2
E= 2 e,

n=n
Where the summation range depends on which of the two
methods, the autocorrelation or the covariance methods, is
used for LP analysis. In the autocorrelation method, the
summation ranges from — oo to + oo which means that the
speech signal is available for all time. This can be achieved by
windowing the speech signal and assuming the samples
outside this window to be zero. The methods differ with
respect to the details of implementation. The autocorrelation
method is computationally simpler than the covariance
approach and, unlike its covariance counterpart, assures that
all the poles of H(z) lie within the unit circle. Thus, the
autocorrelation method guarantees the stability of the
estimated all-pole filter.

Since speech is time-varying in that the vocal tract
configuration changes over time, an accurate set of predictor
coefficients is adaptively determined over short intervals
(typically 10 ms to 30 ms) called frames, during which time-
invariance is assumed. Related to the a,(i) coefficients are the
reflection coefficients, k,(i), which indicate VT reflectivity at
the i-th tube boundary. Both sets of coefficients can be
calculated from the speech data using the Levinson-recursion
algorithm [24], and both have been used successfully for
speaker recognition tasks [23]. The relation between ay(i) and
kg(i) is:
ki(p)= ay(p), and  ay(i)= @p.1(i) + ky(i) Gp.s(p-i)

V. NEURAL NETWORK ARCHITECTURE

In this study a Multi Layer Perceptron (MLP) [16] network
architecture and a Modified Regression Algorithm (MRA)
[17] for metwork training were used for both the content

identification and for speaker recognition. Three neural
networks having the same architecture are used. The first
neural network identifies correctmess of the content using
instantaneous RMS power. The second neural network
identifies correctmess of the content using zero-crossing
frequencies. Once both neural networks recognize the correct
password, the third neural network is used to identify a
speaker. The neural network architecture, as shown in Fig. 16,
has 15 inputs, and number of hidden neurons is equal to
number of authorized speech patterns. The output neuron
performs the OR operation. The input layer the augmented by
two inputs. One additional input equal to +1 is used for
biasing, and the second additional input is computed using
formula:

_ [.2 2 2 2 2
x17—\[r =X T Xy T X3 T X
This way all input patterns are transformed onto

bypersphere with the radius r so they can be clustered much
easier.

Fig. 16. Neural network architecture

The speech sample is first normalized so the average
magnitude is zero and the standard deviation is one, then the
sample is normalized with time. In the case of instantaneous
RMS power, the normalized speech sample is divided into
divided into 20 equal intervals and average power of each
interval is used an input to the neural network.

In the case of zero crossing frequencies the speech sample
is also divided into 20 equal intervals and zero crossings are
counted for each interval. In the case of the reflection
coefficients 20 reflection coefficients are calculated using
Levinson algorithm [24]. For each speech pattern 20 recording
are made.

The basic problem of speaker verification is to decide
whether or not the individual whose identity was claimed
spoke an unknown speech sample. The problem is similar to
that of speech recognition in which the problem is to
normalize out, in some sense, the individual speaker and
extract the message content of the speech. Here, the problem
is to normalize out, in some sense, the message content and
extract information about the individual speaker. Because of
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the similarities of these two problems, the processing for
speaker verification is similar to that of speech recognition.

A speaker verification system can make two types of
errors: it can reject a true customer (Type 1 error) or it can
accept an imposter (Type II error). The goal of most
verification systems is to try to bound Type 1 errors while
minimizing Type II errors,

VI. CONCLUSION

The basic techniques used in [15] for training the were
implemented in this system, however, the following
improvements were introduced:

1. Several words was used instead of a single word so
chances of misclassification of an intruder as the
authorized person was significantly reduced.

2. Synchronization of the speech signal was introduced. Trye
comparisons of the speech samples can be done, only
when the starting times are synchronized. This way
segments of the speech signal will always fall in the same
portions of the sentences when reflection coefficients are
calculated.

3. Password system was used. For each person a different
sentence was used to improve the security level.

4. During the training procedure the distant samples were
rejected so the radiuses of clusters can be kept smaller.

The neural network method with a noise-robust speaker
verification system has been described. It is very clear from
the graphs above that the algorithm generates more accurate
results since more information is provided. In previous studies
[15], we were able to obtain 98-99.9% accuracy by only using
speaker information since the word spoken was the same for
all the speakers in the set. In this case, information about the
sentence spoken is also provided, thus providing higher level
of security for the system. It is important to note that even
though the proposed algorithm was able to generate 100%
accuracy for the sample data used, the results were just an
estimation since it is difficult to verify using actual number of
impostors.
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