Modified EBP algorithm with instant training of the hidden layer

Bogdan M. Wilamowski
Department of Electrical Engineering
University of Wyoming
Laramie, WY 82071 USA

Abstract — Several algorithms for training feedforward neural
networks including such as the steepest decent EBP and
Lavenberg-Marquardt are compared. Various techniques to
improve convergence of the EBP are aiso reviewed. A very fast
training algorithm, with instant training of the hidden layer is
introduced. For easy problems it has a similar convergence rate
as the Lavenberg-Marquardt (LM) method. The algorithm
sustain the fast convergence rate also for the cases when the LM
algorithm fails and the EBP algorithm has practically
unacceptable slow convergence rate.

[. INTRODUCTION

Although the error backpropagation algorithm (EBP)
[13][14][24] was a significant breakthrough in neural
network research, it is known as an algorithm with a very
poor convergence rate. Many attempts have been made to
speed up the EBP algorithm. Commonly known heuristics
approaches [4][16][18][19][21] such as momentum [10],
variable learning rate [7], or stochastic learning [15], lead
only to a slight improvement. Better results were obtained
with the artificial enlarging of errors for neurons operating in
saturation region [2][8][12][20][25]. More significant
improvement was possible by using various second order
approaches such as Newton, conjugate gradient, or the
Levenberg-Marquardt (LM) method [6]. The LM algorithm
is now considered as the most efficient one [6]. It combines
the speed of the Newton algorithm with the stability of the
steepest decent method. The LM algorithm uses the
following formula to calculate weights in subsequent
iterations:

W, =W, —(J:Jk +;11)_IJZE ¢))

where E is the cumulative (for all patterns) error vector I is
identity unit matrix, 4 is a learning parameter and J is
Jacobian of m output errors with respect to n weights of
neural network. For # = 0 it becomes the Gauss-Newton
method. For very large x4 the LM algorithm becomes the

steepest decent or the EBP algorithm. The u parameter is
automatically adjusted at each iteration in order to secure
convergence. The LM algorithm requires computation of the

0-7803-3932-0

1097

Jacobian J matrix at each iteration step and the inversion of
J'J square matrix. The Jacobian matrix is defined as:

OE, OF, OE, OE,
aw1 awZ awB . awn
0E, OE, &F, OE,
ow, ow, ow, ow,
J=0E, OE, @E, OF,)
ow, ow, Ow, ow,
oE, OE, OE, OF,
ow, ow, Ow, ow,

where E; are cumulative errors for all patterns on i-th output
wj are neural network weights, / = 1 to number of outputs,
and j = 1 to number of weights. Unfortunately the
Levenberg-Marquardt algorithm often fails when the error
surface is unfavorable and initial weights are far from the
solution.

out

Fig. 1. Simple neural network architecture for “XOR” problem.

The classical “XOR” case shown in Fig. 1 was used for
comparison. Depend on initial weights various convergence
rates are obtained. Figure 2 shows typical convergence rates
for EBP algorithm without momentum and with close to
optimum learning rate. The initial weights were chosen using
the Nguyen-Widrow weight initialization scheme [11]. Note
that the sum of squared errors is relatively large even after
10,000 iterations.

Results of the LM algorithm are shown in Fig.3. Even
initial weights were chosen using the Nguyen-Widrow

weight initialization scheme the Levenberg-Marquardt
algorithm fails in 15% to 25% cases, but when converges it
usually reach solution in less than 20 steps. Note that the
EBP algorithm requires 100 to 1000 times more iteration than
the LM algorithm. On other hand the LM algorithm is more
computationally intensive at each iteration step.

Error Back Propagation

global error

=
o-

107}

10"
10

10’ 10° 10° 10
number of iterations

o

Fig. 2. Sum of squared errors as a function of number of iterations for the
“XOR” problem using EBP algoritm with Nguyen-Widrow weight
initialization

Levenberg-Marquardt

global error

10° 10' 10
number of iterations

Fig. 3. Sum of squared errors as a function of number of iterations Sfor
the "XOR" problem using LM algorithm with Nguyen-Widrow weight
initialization. Algorithm failed in 15% to 25% cases

In order to set unfavorable initial weights, very far from
the solution, the network was trained for the opposite to
desired solution at first then the resulted weights were used as
the initial weights for the actual training procedure. When
initial weight were chosen purposely very far from the
solution the LM algorithm failed in 100% cases and the EBP
algorithm converges very slowly as Fig. 4 shows. After

100,000 iterations the error is still not acceptable. A
conclusion from this experiment is that with EBP and LM
algorithms we can secure the convergence only with a skillful
weight initialization.

10

10 % ;

10}

107}

10°¢

10° A . . -

10° 10' 10° 10° 10

10°

Fig. 4. Sum of squared errors as a function of number of iterations for
the“XOR” problem using EBP algorithm with unfavorable weight
initialization

A poor convergence, shown in Fig. 4, is not due to local
mimima but because of plateaus on the error surface. This
problem is also known as “flat spot” problem
[2]18](12][20][25]. The prime reason for the plateau
formations is a characteristic shape of the sigmoidal
activation functions shown in Fig. 5. Note that in the Figure
the actual output a significantly differs from the desired
output d and the error ER = d-a is very large. At the same
time the derivative of the activation function f* at the actual
output a is very small, therefore the back propagating error
equal to ER*f is also very small, and the network cannot
learn.

ﬂl out
ﬂk
modified gradient /',
net
ER < —>
a gradient [’

Fig. 5. Activation function with actual and effective gradient. Points a
and d represents actual and desired outputs

1098

II. THE ALGORITHM

The success of the proposed algorithm comes from two
improvements. In the output layer a modified gradient is used
instead of an actual gradient in a similar way as described in
[20][25] and weights in the hidden layer are updated using a
modified regression algorithm [1].

In the EBP algorithm the back propagating error is
proportional to the derivative of the activation function. In
the case when this derivative is small, as shown in Fig. 5, the
maximally large errors cannot back propagate through the
network. This problem can be corrected by introducing an
modified gradient instead of the actual one. There are many
ways to do this [20][25]. It is important that for small or close
to zero error fp;r must be equal fo /. In this paper the
following simple formula was chosen:

feﬂz(l—-a)f +a 3)
where:

a=(0.01~0.1)|ER| @

For small errors o is small and the algorithm behaves as
the EBP algorithm, while for large errors the derivatives of
the activation function are modified so the error can easily
back propagate. Using the modified gradient method as
described above, the vector of cumulative errors E, (for all
patterns) can be found on hidden nodes.

When the modified gradient approach is used the back
propagating errors may get very large values and this may
lead to an instability of the solution. In order to eliminate
this undesired effect the back propagating error is bonded to
*1 using tangent hyperbolic function

AE, = tanh(E,))

where Epp is the actual back propagating error from the
output layer to the hidden layer and AEp, is the error used in
the computation. Note that for small errors x=tanh(x) and

ALy = £y ©)

Learning process for the first layer can be significantly
speed up using the modified regression approach. The error

function on a hidden neuron with n weights and a given input
pattern p is a function of the first layer weights.

E,, :f(zwlpp] +twWp,, +---+w,pp,)—Dp @

where D, is the desired output. The error increment AEp, can
then be approximated by the first two terms of the linear
approximation around a given point:

_dE, dE, dE, ®
AE, aw Aw, +—*dw2 Aw, e . Aw,
From (7)
dE. dE df .
p_""p = ‘
i aw JoDyi ©®

by inserting (9) into (8)

AE, =—f,;(pp1Aw, +D,,Aw, +...+p,mAw,) (10)

therefore, using matrix notation, for all input patterns:

[4E,]
Fp” P2 Pn 0 Py] Ajé'
Py Pn DPx Py Aw, -
w Pno P SRR
Wai_| an
ppl ppZ pp} e ppl . AE:p
: : : : Aw, f/
LPrr Pp2 Pps " Dp | AE,,
| S

The input matrix P [/+P] in (8) is rectangular. Where / is
the number of inputs and P is the number of training patterns.
When 7 is lager than P the problem is trivial and has an
infinite number of solutions. In the case when / is smaller
than P the pseudo inverse of the matrix is found in least mean
square sense:

P+ — (PTP)—IPT (]2)

Since P is the array of input patterns and it is constant
during the learning procedure, therefore pseudo inversion of
input patterns P must be done only once. At each iteration

1099

step only new values for AE and f’efr must be computed. The
weights change Aw is calculated as

Aw=P* AE—
Jor (13)

where P is constant during all training procedure. When this
approach is used for one layer neural network the solution is
usually reached in three to six iterations. In the case of two
layer networks considered herein the modified EBP
algorithm is used in the output layer, therefore, more
iterations are required. Usually a satisfactory solution is
reached in less than 20 iterations.

Modified EBP Algorithm

global error

° 10' 10°

number of iterations
Fig. 6. Sum of squared errors as a function of number of iterations for
the“XOR” problem using modified EBP algorithm with Nguyen-Widrow
weight initialization

Modified EBP Algorithm

global error

10° 10’ 10°
number of iterations

Fig. 7. Sum of squared errors as a function of number of iterations for

the“XOR” problem using modified EBP algorithm with unfavorable weight

initialization

I11. EXAMPLES

The proposed algorithm was verified on several examples
with different sizes and different roughness of the error
surfaces. Several bench mark problems XOR, parity 4, parity
8 and bottleneck problems, were used. Some practical
problems as speaker identification [22] (with twenty inputs)
or recognition of noisy letters [9] (with 56 inputs) were also
used for algorithm verification. In smooth and easy cases the
results are similar to those obtained with the LM algorithm.
In difficult cases, with far from solution initial weights,
where the LM algorithm always fails and the EBP converges
very slowly, the presented algorithm converged rapidly to the
solution. Figures 6 and 7 show results of the algorithm for the
same “XOR” case as it was shown in Figures 2, 3, and 4.

IV. CONCLUSION

A very efficient algorithm for training two layer
neural networks was presented and verified with several
examples. The algorithm is advantageous to other commonly
used algorithms. It converges very rapidly for the cases when
the EBP and LM algorithms fail. Convergence rate is almost
independent on the choice of initial weights.

In contrary to the LM algorithm the matrix inversion must
be done only once and also much smaller matrix must be
inverted. The size of the matrix corresponds to the number of
inputs, while in the LM algorithm the size of the matrix
corresponds to the number of weights in the neural network.
The large size of this matrix is a significant drawback of the
Levenberg-Marquardt algorithm is that, due to memory
limitation it can be only used for relative small neural
network [6]. The proposed algorithm does not have this
limitation since the matrix is equal only to the number of
inputs and the matrix inversion must be done only once.

V. REFERENCES

[1] Andersen, Thomas J. and B.M. Wilamowski, “A.
Modified Regression Algorithm for Fast One Layer
Neural Network Training”, World Congress of Neural
Networks, vol. 1, pp. 687-690, Washington DC, USA,
July 17-21, 1995.

[2] Balakrishnan, K. & Honavar, V. (1992). Improving
convergence of back propagation by handling flat-spots in
the output layer. Proceedings of Second International
Conference on Artificial Neural Networks, Brighton, UK.
Barmann F. & Biegler-Konig, F. (1992). On class of
efficient learning algorithms for neural networks. Neural
Networks, 5, 139-144.

1100

(3] Battiti R., “First- and second-order methods for learning:
between steepest descent and Newton’s method, Neural
Computation, vol. 4, no. 2, pp. 141-166, 1992,

Bello, M. G. (1992). Enhanced training algorithms, and

integrated training/architecture selection for multilayer

perceptron networks. IEEE Trans. on Neural Networks, 3,

864-875.

Charalambous C., “Conjugate gradient algorithm for

efficient training of artificial neural networks,” IEE

Proceedings, vol. 139, no. 3, pp. 301-310, 1992.

Hagan M. T. and M. Menhaj, “Training feedforward

networks with the Marquardt algorithm,” IEEE

Transactions on Neural Networks, vol. 5, no. 6, pp. 989-

993, 1994,

Jacobs R. A., “Increased rates of convergence through

learning rate adaptation,” Neural Networks, vol. 1, no.4,

pp. 295-308, 1988.

Krogh, A., Thorbergsson, G. 1. & Hertz, . A. (1989). A

cost function for internal representations. In D. Touretzky

(Eds.), Advances in neural information processing systems

H (pp. 733-740). San Mateo, Ca.

Mclnroy John E. and Bogdan M. Wilamowski “Bipolar

Pattern Association Using A Recurrent Winner Take All

Network™ International Conference on Neural Networks

- ICNN 1997 vol. 2, pp. 1231-1234.

[10] Miniani, A. A. & Williams, R. D. (1990). Acceleration of
back-propagation through leaming rate and momentum
adaptation. Proceedings of International Joint Conference
on Neural Networks, San Diego, CA, 1, 676-679.

[11] Nguyen D., B. Widrow, “Improving the learning speed of
2-layer neural networks by choosing initial values of
adaptive weights,” in Proc. IICNN, vol. 3, pp. 21-26, July
1990.

[12] Parekh, R., Balakrishnan, K. & Honavar, V. (1992). An
empirical comparison of flat-spot elimination techniques
in back-propagation networks. Proceedings of Third
Workshop on Neural Networks - WNN'92, Aubumn, pp.
55-60. :

[13] Rumelhart D. E., G. E. Hinton, R. J. Williams, Learning
internal representations by error propagation. In Parallel
Distributed Processing, vol 1, pp. 318-362. Cambridge,
MA: MIT Press.

(14] Rumenhart D. E.,, G. E. Hinton and R. J. Wiliams,
“Learning representations by back-propagating errors”
Nature, vol. 323, pp. 533-536, 1986

[15] Salvetti A., B. Wilamowski, "Introducing Stochastic
Process within the Backpropagation Algorithm for
Improved Convergence” presented at ANNIE'94 -

(4]

[5]

(6]

[7]

(9]

1101

Artificial Neural Networks in Engineering, St. Louis,
Missouri, USA, November 13-16, 1994; also in Intelligent
Engineering Systems Through Artificial Neural Networks
vol 4, pp. 205-209, ed. C. H. Dagli, B. R. Fernandez, J.
Gosh, R.T. S. Kumara, ASME PRESS, New York 1994.

[16] Samad, T. (1990). Back-propagation improvements based
on heuristic arguments. Proceedings of International Joint
Conference on Neural Networks, Washington, 1, 565-568.

[17] Shah, S. & Palmieri, F. (1990). MEKA - A fast, local
algorithm for training feedforward neural networks.
Proceedings of International Joint Conference on Neural
Networks, San Diego, CA, 3, 41-46.

[18] Solla, S. A., Levin, E. & Fleisher, M. (1988). Accelerated
learning in layered neural networks. Complex Systems, 2,
625-639.

[19] Sperduti, A. & Starita, A. (1993). Speed up learning and
network optimization with extended back-propagation.
Neural Networks, 6,365-383.

[20] Torvik, L. and B. M. Wilamowski, “Modification of the
Backpropagation Algorithm for Faster Convergence”,
presented at /993 International Simulation Technology
Multiconference November 7-10, San Francisco; also in
proceedings of Workshop on Neural Networks WNN93
pp. 191-194, 1993

[21] Van Ooten A. & Nienhuis B. (1992). Improving the
convergence of the back-propagation algorithm. Newural
Networks, 5,465-471.

[22] Vieira Karina, Bogdan M. Wilamowski, and Robert
Speaker Identification Based on a Modified Kohonen
Network” International Conference on Neural Networks
- ICNN 1997 vol. 4, pp. 2103-2106.

[23] Wartous, R. L. (1987). Learning algorithms for
connectionist networks: applied gradient methods of non-
linear optimization. Proceedings of Conference on Neural
Networks, San Diego, CA, 2, 619-627.

[24] Werbos, P. J. (1988). Back-propagation: Past and future.
Proceeding of International Conference on Neural
Networks, San Diego, CA, 1, 343-354.

[25] Wilamowski, B.M. and L. Torvik, “Modification of
Gradient Computation in the Back-Propagation
Algorithm”, presented at ANNIE'93 - Artificial Neural
Networks in Engineering, St. Louis, Missouri, November
14-17, 1993; also in Intelligent Engineering Systems
Through Artificial Neural Networks vol. 3, pp. 175-180,
ed. C. H. Dagli, L. 1. Burke, B. R. Fernandez, J. Gosh,
R.T., ASME PRESS, New York 1993.

d InternatiPnal C
Industrial Elect

