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Abstract

A compact architecture for analog CMOS VLSI
implementation of voltage-mode pulse-coupled neural
network (PCNN) is presented. The main feature of the
proposed neuron circuit is that the structure is compact,
yet exhibiting all the basic properties of natural
biological neurons. Another unique feature of the
proposed neuron cell is that one node serves as both
input and output, mimicking a natural biological neuron,
and the neuron cell uses frequency modulated
bidirectional pulse-streams. Functionality of the
proposed PCNN circuit is verified with SPICE
simulations.

1. Introduction

Natural biological neurons employ rapid pulses,
called action potentials, for long distance transmission
of signals without attenuation. An action potential is
fired when the internal potential of the axon hillock
exceeds a threshold potential. Because incoming pulses
are summed with time, the neuron generates a pulse train
with a higher frequency for higher positive excitation.
Each neuron is characterized by non-excitability for a
certain time after the firing pulse, which is referred to as
the refractory period. The refractory period sets an
upper limit on the frequency of the output pulse train or
how rapidly the excitable tissue can discharge. The idea
of the neuristor line is to abstract the five key axon
properties of (i) threshold of excitation, (ii) refractory
period, (iii) constant pulse-propagation velocity, (iv)
pulse-shaping action during its propagation through the
neuristor line, and (v) annihilation of pulses in case of
their collision [1]-[4].

The analog hardware implementation method
shows inherent fault tolerance specialties and high
speed, which is usually more than an order over the
software counterpart. Thus, in order to obtain the full
benefit of neural network algorithms, special purpose
hardware must be designed and built. Other advantages
of using a pulse-coupled technique are that it is immune
to noise and less susceptible to process variations
between devices. Furthermore, because of their
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capabilities with regard to image processing
applications, PCNN is gaining attention and becoming
more popular [5]-[8].

2. CMOS Model of Pulse-Coupled Neuron

Inspired by biological models and the advantages of
PCNN, a simple integrated circuit structure for a neuron
with synaptic weight multiplication and summation is
described in this section. The circuit schematic of the
voltage-mode neuron cell shown in Fig. 1 is an
electronic analogy of a biological soma; i.e., it initiates
reactions, with a given external stimulus, by generating a
stream of electrical pulse waves. The circuit structure is
based on the current-driven simple neuron cells [9]-[12].
Synaptic weights in these current-mode neuron cells are
controlled by current mirrors at the output of the neuron
cell with proper W/L ratios. However, the synaptic
weights controlled by this scheme are relatively sensitive
to noise, and thus accuracy of current (synaptic weight)
multiplication becomes relatively low.

The proposed voltage-mode neuron cell in Fig.
1 functions as follows. First, notice that both input and
output nodes occupy the same node, which is also
observed in biological neurons. The circuit has two
capacitors, C1 and C2. The stored charge on capacitor
C1 corresponds to the charge of sodium ions (Na*), and
the charge stored on C2 corresponds to the potassium
ions (K*) [12]. The potential due to sodium ions
changes at a faster rate than the potential due to
potassium ions. Therefore, the time constant of the Cl
circuit is made smaller than that of the C2 circuit. In a
steady state, all the MOS transistors (M1-M3) are cut
off. As the potential on C1 increases in time domain, the
potential on C1 exceeds the potential on C2 by the
threshold value of transistor M1 at some point, then
transistor M1 change its state into active region of
operation and further activates transistors M2 and M3
which form a current mirror. This leads to the rapid
increase of the potential on both capacitors from the
supply voltage, Vpp causing an integrate-and-fire
action. This positive feedback through transistors M1,
M2 and M3 is quickly terminated once capacitor C2 is



fully charged, and all the transistors become turned off.
During the recovery process, known as refractory
period, capacitor C2 is slowly discharged by resistor R2,
and the neuron cell does not respond to any incoming
excitations until the potential on Cl exceeds the
potential on C2 by the threshold value of M1,
Transistors M4 and M5 operate in linear mode and act as
resistors. The transient response of the circuit of Fig. 1
for a shifted sinusoidal input excitation is illustrated in
Fig. 2. Notice from Fig. 2 that the frequency of output
pulses is proportional to the input excitation level;
however, the maximum frequency of output oscillation
is limited by this refractory period. One can observe this
effect with an almost constant frequency for high input
excitation level, which illustrates the basic characteristic
of a nonlinear sigmoidal function seen in both biological
and artificial neural networks.

The operation of synaptic weight multiplication
in the proposed design can be easily achieved by
employing Ohm’s law. By adjusting the resistance of
the coupling resistors as shown in Fig. 3(a), the current
which flows through the axon is controlled, yielding a
corresponding rate of pumping charges into the input
capacitor C1. In silicon implementation, these coupling
resistors are replaced with MOS active resistors as
shown in Fig.3(b). The W/L ratio in each active resistor
as a coupling resistor is adjusted accordingly for
synaptic weight multiplication.
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Fig. 1. Circuit schematic of the voltage-mode pulse-coupled

neuron and the symbolized neuron with two input nodes.

In order to control both excitatory and inhibitory
synaptic weights, the proposed circuit design has two
input nodes in the neuron cell; i.e., one node at capacitor
ClI for an excitatory (positive) synaptic input, and the
other at capacitor C2 for an inhibitory (negative)
synaptic input. The block diagram representation of this
concept is illustrated in Fig. 3. While the incoming
voltage inputs summed at the excitatory node pump up
capacitor Cl, yielding a positive effect on triggering
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transistor M1 at its threshold value, the voltage inputs
summed at the inhibitory node pump up capacitor C2
and has a negative effect on triggering transistor M1 by
increasing its threshold value. In this scheme both
excitatory and inhibitory synaptic weights are controlled,
as in natural biological neural networks.
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Fig. 2. SPICE simulated transient response of the circuit of
Fig. 1 excited with a shifted sinusoidal input. The top graph
shows the response on capacitor C1, and the bottom graph
shows the response on C2. Notice that the discharge time on
C2 is much slower than the discharge time on C1.
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Fig. 3. Concept diagram of synaptic weight multiplication
and summation. Notice that there are two input nodes - one for
excitatory (+) synaptic inputs, and the other for inhibitory (-)
synaptic inputs. (a) Synaptic weights are controlled by the
resistance of the coupling resistors. (b) CMOS implementation
of the resistors in (a) for synapses. Synaptic weights are
adjusted with W/L ratios of the MOS transistors.



3. Neuromorphic Pulse Delay Lines and
Properties of Axons

While neural cells in nervous systems are small, their
axons for transmitting pulse trains may be very long.
Those axons may be coated with myelin sheath, which
takes the form of a series of nodes. Every few
millimeters on a myelinated axon, a bare patch of axon
is exposed at what are called nodes of Ranvier. Those
nodes of Ranvier create a segmented effect, allowing
passage of sodium ions and potassium ions. The inputs
of series of neural cells can be connected in a chain by
simple coupling resistors to form an axon as shown in
Fig. 4. In this section, the following basic properties of
axons are emphasized and demonstrated:

1. threshold point of a pulse firing action

2. pulse shaping action during its propagation
through an axon (delay line)

3. refractory period

4. constant pulse-propagation velocity

5. annihilation of pulses in case of their
collision

6. Dbidirectional form pulse propagation
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Fig. 4. Neuron cells connected in a chain to form an axon.

Several researchers have developed a
neuromorphic delay lines [11-[31,[121,[14]
demonstrating some of the above properties. Some of
these existing designs are compact and attractive, yet
some utilize bipolar transistors [1],[2], which consume
more power than CMOS counterparts, and an extra
synaptic weight control unit is necessary to form a
complete neural network [1]-[3]. Another interesting
design uses a number of CMOS inverters (9 stages) [14]
in a single neuron cell to accomplish these properties.
The biggest merit of the presented design here is the
significantly reduced number of CMOS transistors,
allowing less power consumption and reduced silicon
area. The area of a single neuron cell, using the standard
MOSIS  2um,  single-polysilicon,  double-metal
technology, is approximately 60um x 120um. These six
axon properties with the proposed circuit design are
discussed in detail here.
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1. Threshold Point:

The first property, threshold point of a pulse
firing action, was already demonstrated in Fig. 2 in the
previous section. Recall that a pulse is fired when the
potential on C1 exceeds the potential on C2 by the
threshold value of transistor M1.

2. Pulse Shaping Action:

Without a pulse shaping action, traveling pulses
could be seriously attenuated and dispersed throughout
the transmission. Therefore, axons which have similar
membrane structures should be able to regenerate the
shape of transmitting pulses. Incoming pulses are
regenerated and shaped as they transmit along the axon.
Fig. 5 illustrates the pulse shaping action for a square
input pulse. If an input pulse is too narrow, it will be
annihilated. The shaping of the propagated pulse
through the axon depends on the time constant of the
output capacitor circuit.

3. Refractory Period:

When the axon circuit is excited with a series of
incoming pulses, those pulses can be transmitted through
the axon if the incoming pulses are widely separated, as
shown in Fig. 6(a). On the other hand, some incoming
pulses are skipped and not transmitted when the time
interval between the incoming pulses is small, as shown
in Fig. 6(b). The refractory period of the delay line is
caused by the existence of the cut-off threshold voltage
at the transistor M1 after passing of a pulse through each
section of the delay line.

4. Constant Pulse-Propagation Velocity:

Fig. 5 also demonstrates the property of
constant pulse-propagation velocity. Neuron Cell 1 of
Fig. 4 is initially stimulated with a voltage input in this.
simulation. One can observe that the resulting output
pulse from Neuron Cell 1 activates Neuron Cell 2 and is
seen to propagate at a constant velocity from left to right
toward Neuron Cell 5. The extended refractory period
of the excited pulses prevents the output pulses of
neighboring units from reactivating a previous neural
cell and insures that a single pulse is propagated.

5. v Annihilation of Pulses:

Annihilation of pulses in case of their collision
when pulses are propagating from opposite directions is



a consequence of the existence of the refractory period,
which causes a pulse attenuation. By simultaneously
stimulating Neuron Cell 1 and Neuron Cell 5 in Fig. 4,
two analog pulses will collide at Neuron Cell 3 and
annihilate each other since both Neuron Cell 2 and
Neuron Cell 4 will both be in refractory period when
Neuron Cell 3 fires a pulse. This important property is
demonstrated in Fig. 7.
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Fig. 5. SPICE simulated transient response to demonstrate
the pulse shaping action and constant pulse-propagation
velocity from Neuron Cell 1 to Neuron Cell 5 in the axon with a
square input voltage.
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Fig. 6. SPICE simulated transient response to demonstrate
the refractory period. (a) With a large time interval between
input excitations, all excitations are transmitted through the
axon. (b) With a small time interval between input excitations,
some excitations are not transmitted due to the existence of the
refractory period.
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6. Bidirectional Form Pulse Propagation:

Notice also from Fig. 7 that with this proposed
neuron cell, excited pulses are capable of propagating in
bidirectional form, as opposed to the existing
conventional neuron circuits in which excited pulses
transmit only in one direction.

50 —

ol N

o T
x| f AN
ol = —
DN
. ;_'\( \\\g Neuron Cell 4
AN

0 — .

(' 2

Neuron Cell 1

_..NeuonCeltz |

Pulse Excitation [V]

NeuonCells

Neuron Celt 5
[} B B [1]

Time [usec]

Fig. 7. SPICE simulated transient response to demonstrate
the annihilation of pulses in case of their collision. Note that two
pulses are propagating from opposite directions, demonstrating
bidirectional pulse transmission capability. Inputs are excited at
Neuron Cell 1 and Neuron Cell 5 simultaneously, and the pulses
collide at Neuron Cell 3. After the collision, the pulses are
annihilated as a consequence of the existence of the refractory
period in the neighboring neuron cells. (Note that in order to
illustrate the individual pulse action, pulses on Neuron Cells 1,
2, 3, and 4 are shifted at the post-processing stage. in other
words, all the pulse excitations are within a 10-volt range.)

4. Conclusion

A CMOS hardware design to realize a pulse-coupled
neural network is developed. The proposed neuron
circuit has all the basic properties of natural biological
neurons: (i) threshold point firing, (ii) pulse shaping
action during its propagation through an axon, (iii)
refractory period (i.e., showing a nonlinear sigmoidal
characteristic), (iv) constant pulse-propagation velocity,
(v) annihilation of pulses in case of their collision, and
(vi) bidirectional pulse propagation. Another important
feature of the proposed design is that the circuitry is
robust to additive noise. Excitatory and inhibitory
synaptic inputs are applied to the two capacitors (two
input nodes), C1 and C2, respectively, and synaptic
weights are adjusted and multiplied by proper W/L ratios
of MOS active resistors in axons. The neuron cell
circuitry which has been developed here exhibits
functional similarities to natural biological neurons. One
improvement that can be made for future is to extend the
original circuit for programmable (adjustable) synaptic
weights using either analog memory or digital memory.
A digital memory approach is straightforward using



SRAM or shift registers or PAL. An 8-bit digital
programmable weight multiplication circuit [16] can be
used for an accurate and easy weight adjustment.
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