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Abstract

A neural network for heteroassociative (or autoas-
sociative) pattern recognition of input bipolar binary
vectors is proposed. By combining the advantages of
feedforward and recurrent techniques for heteroassocia-
tion, a simple network with guaranteed error correction
ts found. The heart of the network is based on a new,
recurrent method of performing the Winner Take All
function. The analysis of this network leads to design
rules which guarantee its performance. The network is
tested on a character recognition problem utilizing the
entire IBM CGA character set.

1 Introduction

This paper presents a recurrent neural network for
implementing the Winner Take All (WTA) function.
By incorporating this network into a previously pro-
posed neural network for bipolar pattern association
[1], error correcting pattern associations can be per-
formed easily and quickly. The resulting heteroasso-
ciative memory combines the recurrent concepts of the
Hopfield network with feedforward strategies for bipo-
lar heteroassociation. The final network is fast, re-
quires no supervision, and is simple to implement even
for a large number of stored patterns.

The heteroassociate problem treated is similar to
that examined by Hao, Tan, and Vandewalle [1]. In
fact, many of their elegant and useful techniques are
incorporated into the design. To summarize, the prob-
lem is the following: Let an arbitrary set of well-defined
associations be given by (u; — z), i = 1,...,m, where
u; is a bipolar vector of dimension k, and z; is a vec-
tor (not necessarily bipolar) of dimension [. Since the
input vectors are bipolar, and therefore have entries
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Figure 1. The neural network topology.

consisting only of 41, these are binary associations.
For many applications, the input vector may be cor-
rupted with noise. In the worst case, this may produce
bit errors, although the proposed network will tolerate
both analog and digital (bit error) noise sources. This
paper will develop methods of designing the network
such that the output vector will always be that asso-
ciation which corresponds to the minimum Hamming
distance from the input vector. This error correcting
ability, in particular, is extended greatly beyond that
possible with Hao, Tan, and Vandewalle’s network.

2 The Network Topology

The network, which consists of three parts, is de-
picted in Figure 1. The first layer, which is motivated
by the concepts originally proposed by Kohonen [2],
performs the task of roughly identifying which stored
input pattern is closest (in the binary, Hamming dis-
tance sense) to the k-dimensional input vector, u. This
is accomplished by configuring the input weights (W;)
so that, if the i*® stored pattern is the closest to the
input, then the i*? element of the m-dimensional vector
n is the maximum element of n. Since both the input
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Figure 2. The neural network topology, with hard
logic neurons added to eliminate possible noise.
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and the stored patterns are binary, the inner product
uf u equals k — 2H D,;, where H D,; is the Hamming
distance (or number of bit errors) between the input
and the i** stored input pattern. Consequently, if the
j** stored pattern is closest (in the Hamming distance
sense) to the input, then the the inner product u]u
will be maximized when ¢ = j. For this reason, if n is
a vector of containing the inner products between the
input and all stored input patterns, i.e.

n=[ujuuzu .. )
then the i** element of n will be maximum when the i*?
stored input pattern is the closest to the input pattern.
The relationship (1) can be realized by forming the
weighting matrix

T

T T T
(w1 u3

Um]",

Wi = (2)

Note that this has two extremely useful properties: (1)
since the patterns are bipolar, so is W;, thus storage
of the weighting matrix is simpler than in the case of
Hopfield networks; and (2) the weighting matrix does
not need to be calculated, as it follows directly from
the stored input patterns.

To facilitate the description of the second layer’s op-
eration, an easier to understand version will first be
considered. This network (Figure 2) contains an ex-
tra layer of unipolar, hard logic neurons. They are
used strictly to convert the vector o to a purely bi-
nary output vector, oy;. By using a large gain, a,
and a steep slope on unipolar neuron’s activation func-
tion, the “winner” can be made very close to one and
the “losers” can be made very close to zero. Conse-
quently, the hard logic neurons will not be necessary
for many applications. However, the network will be
analyzed using the configuration shown in Figure 2 to
avoid asymptotic arguments which may obscure the
main points of the paper.

The WTA function inputs a vector, and then out-
puts which element of that vector is maximum. In a
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neural network, the output neuron corresponding to
the maximum elemeant of the input vector fires. In
other words, if a vector n € £™X! is presented to the
network, then the unipolar, hard logic output vector
of the network, on; € R™*!, will contain a single one
which corresponds to the maximum element of n. All
the other elements of oy; will be zero. The nonlinear
function, fhi(-), which implements the hard logic neu-
rons has the following characteristic:

0,z<0

me@={ P75, ®

If the input to the i** neuron is £ = n; — t,, where n;
is the i** element of n, and t; is a threshold, then the
i** hard logic neuron’s output, o, is

First consider the case where the first layer of unipo-
lar neurons is not present, but connections are made di-
rectly from n to the hard logic neurons. Then the WTA
function can be implemented by increasing the neuron
threshold, ¢z, until only a single hard logic neuron fires.
While this is effective, it requires “supervision” in the
sense that some mechanism must be used to increase
the threshold, while the output vector (os;) is moni-
tored. When op; has only a single one, then t; is held
constant. If a new input pattern is presented, then ¢
must be reset to a low value, and then the process is
repeated. In essence, a search procedure which finds
the value of ¢5 corresponding to a single neuron fired
must be implemented.

Rather than using a supervised search procedure,
the same function will be performed by adding the
first layer of unipolar neurons, along with the feedback
(shown in Figure 2) which modifies the first layer’s
threshold, #;. By using the results from the next
section, the recurrent WTA network will automati-
cally perform the search in a highly parallelized man-
ner which is simple to implement with circuit technol-
ogy. Consequently, the recurrent WTA network can
be viewed as a fast and efficient method of finding the
maximum of an m-dimensional vector. If m increases,
the the only modification required is the addition of
another unipolar neuron. Since the network grows so
slowly with increases in m, this means that it is prac-
tical for performing parallelized, large scale searches-a
functionality which is important for pattern association
and many other applications.

The final layer is termed a Grossberg layer due to
its similarity to the networks typically trained using
Grossberg’s outstar learning rule [3]. The input to the

0, n; <1y
1: n; 2t2

(4)



layer, op;, will be an m-dimensional vector consisting
of all zeros, except for a single element equal to 1. That
element will be the i*® element if the i*? stored input
pattern is the closest match to the network input, u.
As a result, the /-dimensional network output vector,
z, will equal the i*? column of W,. If

(5)

then the correct pattern association (i.e. u; — z;) will
be performed. Again, note that the output weights,
W,, can be analog, bipolar binary, unipolar binary,
etc. Consequently, considerable freedom is available to
choose a format suited to a particular implementation.
Furthermore, W, is derived directly from the output
stored patterns by using (5). Finally, note that if error
correcting autoassociation is desired, then W, = W7T.
This can be used to further reduce the weight storage
requirements, when an autoassociative network is de-
sired.

W, = [z1 22+ 2m]

3 Design of the Recurrent WTA Net-
work

The previous section delineated a method whereby
error correcting bipolar heteroassociation can be ele-
gantly performed. Most of this network was originally
developed in [1], with the notable exception of the re-
current WTA network. Since [1] does not use recur-
rence in its WTA network, its error correcting ability
is diminished. This section will show that, by correctly
designing the recurrent WTA network, the correct as-
sociation will always be made.

Only the recurrent WTA portion of the network,
will be considered in this section since it alone remains
to be designed. Due to space limitations, only brief
sketchs of the proofs are presented. The proofs appear
in [4).

Theorem 1 The hard logic neuron output vector, op,
will have exactly one neuron on if the following condi-
tions hold:

1. The marimum element of the vector n is at least
€ greater than the next highest response.

2. The unipolar neuron activation function, fi(z) has
a slope such that, if for some z1 < 2, fi(z;) =
%(1 + k/a) and 3 = z1 — ¢, then fi(z2) < €,

where )
<—[1-k%
S g kel
An appropria/te activation function is depicted in
Figure 3.
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z
Figure 3. In order to gharantee performance, the
unipolar neuron activation function must have
the form shown above.

3. £1(0)=1/2.

4. Any input pattern, u, has at least one stored pat-
tern match with more than one-half of the bits
matching.

5. The threshold of the hard logic neurons, to, equals
ty = 2(1+ k/a) where & > 0.

Corollary 2 The recurrent WTA network will imple-
ment the WTA function if it is designed to satisfy the
conditions tmposed by Theorem 1.

Discussion:

The preceding theorems provide rules which will en-
sure that the recurrent WTA network will perform
properly. Although these design rules impose several
conditions, the conditions are rather mild and can eas-
ily be implemented. For example, most of the con-
ditions are concerned with the design of the unipolar
layer’s activation function. In short, these rules guar-
antee that its slope in the transition region is suffi-
ciently steep to preclude the possibility that multiple
neurons will be activated.

The feedback gain, «, depends greatly on the man-
ner in which the network is implemented. A larger
value of o will cause a faster rate of convergence, so
ideally o should be large. Often, a may be determined
by the properties of the neurons themselves.

The minimum separation between responses, ¢, is
€ = 2 if no input vector (u) is expected to match more
than one of the stored input patterns equally. However,
since u is often noisy, the only way guarantee this is to
put constraints on the allowable noise levels and/or the
allowable stored input patterns. While these kinds of
constraints can be employed with this neural network,
another approach can also be used when the stored
input patterns are close together and/or there are high
levels of input noise. If more than one stored input
pattern matches the input (u) with an identical number
of matching bits, then it is impossible to tell which of
the identical matches to output. If noise is present on



the vector n, then one of the matching patterns can be

randomly selected by choosing a value of € which is less

than the separation between elements of n caused by
that noise. In this case, ¢ will be much smaller than 2.

The hard logic layer of unipolar neurons is com-
pletely determined, as the threshold is the only de-
sign parameter, and it is given by the formula ¢, =
(1 +k/a).

4 Experimental Results

In order to test the neural network, it has been ap-
plied to a simple character recognition problem. IBM’s
CGA graphic representation of the ASCII character set
consists of 256 characters. Each of these characters is
represented in an 8 by 7 pixel array. Consequently, a
total of k = 56 bits are used to represent each char-
acter’s graphic pattern. All m = 256 members of the
CGA ASCII set are stored in the matrix W;,so W; isa
256 x 56 bipolar binary matrix. Three output matrices,
W,, may be useful. First, a W, which outputs an error
corrected version of the input image can be found by
letting W, = W7. In this case, the network is used
for autoassociation. Note that, since W, contains the
same information as W;, some implementations of the
network may be able to use the same memory locations
to store both W, and W;. Second, a single analog out-
put (I = 1) can represent the 256 levels in a highly
concise, analog form.

During the simulation, a random character from the
ASCII set is chosen. Next, many of its 56 bits are ran-
domly determined to introduce noise. A large feedback
gain (a = 1000) has been used. Uniformly distributed
noise between +0.5 has been added to the vector n in
order to separate identical responses. Since Theorem
1 gives constraints on the minimum slope needed for
f1(*), an activation function with a sharper slope has

been used, with gain = 30: fi(z) = m—_,lu—,.—;-;

4.1 Autoassociative Experiments

Figure 4 demonstrates some of the results found for
autoassociation. In each Figure, the ASCII character
originally chosen is depicted in the first column. The
second column depicts that character after the random
bits are added to it. This noisy image forms the input,
u, to the neural network. The third column shows the
neural network’s output after convergence. In all cases,
the network converges to the ASCII character with the
smallest Hamming distance from the noisy input char-
acter.
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Figure 4. Three ASCII characters recognized by
the neural network. The top row has 11 bit errors.
The middle row also has 11 bit errors, but the
next best match has only one more bit error. The
bottom row contains 13 bit errors.

5 Conclusion

A new, recurrent neural network has been proposed
which allows for very simple storage of patterns, and
the memory capacity is large. The input weights have
only binary values, in contrast to many traditional as-
sociative memories, where integer values are required.
Consequently, the network is simple and cost effective
to implement.

By designing the recurrent WTA portion of the net-
work according to the rules developed herein, it will be
guaranteed to produce an output which is closest (in
the Hamming distance sense) to the input pattern.
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