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29.2 Realization
J. W. Steadman and B. M. Wilamowski

After the appropriate low-pass form of a given filter has been synthesized, the designer must address the
realization of the filter using operational amplifiers. If the required filter is not low-pass but high-pass,
bandpass, or bandstop, transformation of the prototype function is also required [Budak, 1974; Van Valkenburg,
1982]. While a detailed treatment of the various transformations is beyond the scope of this work, most of the
filter designs encountered in practice can be accomplished using the techniques given here.

When the desired filter function has been determined, the corresponding electronic circuit must be designed.
Many different circuits can be used to realize any given transfer function. For purposes of this handbook, we
present several of the most popular types of realizations. Much more detailed information on various circuit
realizations and the advantages of each may be found in the literature, in particular Van Valkenburg {1982],
Huelseman and Allen [1980], and Chen [1986). Generally the design trade-offs in making the choice of circuit
to be used for the realization involve considerations of the number of elements required, the sensitivity of the
circuit to changes in component values, and the ease of tuning the circuit to given specifications. Accordingly,
limited information is included about these characteristics of the example circuits in this section.

Each of the circuits described here is commonly used in the realization of active filters. When implemented
as shown and used in the appropriate gain and bandwidth specifications of the amplifiers, they will provide
excellent performance. Computer-aided filter design programs are available which simplify the process of
obtaining proper element values and simulation of the resulting circuits {Krobe et al., 1989; Wilamowski et al., 1992].

Transformation from Low-Pass to Other Filter Types

To obtain a high-pass, bandpass, or bandstop filter function from a low-pass prototype, one of two general
methods can be used. In one of these, the circuit is realized and then individual circuit elements are replaced
by other elements or subcircuits. This method is more useful in passive filter designs and is not discussed
further here. In the other approach, the transfer function of the low-pass prototype is transformed into the
required form for the desired filter. Then a circuit is chosen to realize the new filter function. We give a brief
description of the transformation in this section, then give examples of circuit realizations in the following
sections.

Low-Pass to High-Pass Transformation

Suppose the desired filter is, for example, a high-pass Butterworth. Begin with the low-pass Butterworth transfer
function of the desired order and then transform each pole of the original function using the formula
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which results in one complex pole and one zero at the origin for each pole in the original function. Similarly,
each zero of the original function is transformed using the formula
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which results in one zero on the imaginary axis and one pole at the origin. In both equations, the scaling factors
used are
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where @, is the desired cut-off frequency in radians per second.
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Low-Pass to Bandpass Transformation

Begin with the low-pass prototype function in factored, or pole-zero, form. Then each pole is transformed using
the formula
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resulting in one zero at the origin and two conjugate poles. Each zero is transformed using the formula

S—S — (s =5,)(s —s,)

(29.16)
! Hs
resulting in one pole at origin and two conjugate zeros. In Eqgs. (29.15) and (29.16)
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where @, is the center frequency and B is the bandwidth of the bandpass function.

Low-Pass to Bandstop Transformation

Begin with the low-pass prototype function in factored, or pole-zero, form. Then each pole is transformed
using the formula
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transforming each pole into two zeros on the imaginary axis and into two conjugate poles. Similarly, each zero
is transformed into two poles on the imaginary axis and into two conjugate zeros using the formula
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where
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Once the desired transfer function has been obtained through obtaining the appropriate low-pass prototype
and transformation, if necessary, to the associated high-pass, bandpass or bandstop function, all that remains
is to obtain a circuit and the element values to realize the transfer function.

Circuit Realizations

Various electronic circuits can be found to implement any given transfer function. Cascade filters and ladder
filters are two of the basic approaches for obtaining a practical circuit. Cascade realizations are much easier to
find and to tune, but ladder filters are less sensitive to element variations. In cascade realizations, the transfer
function is simply factored into first- and second-order parts. Circuits are built for the individual parts and
then cascaded to produce the overall filter. For simple to moderately complex filter designs, this is the most
common method, and the remainder of this section is devoted to several examples of the circuits used to obtain
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the first- and second-order filters. For very high-order transfer functions, ladder filters should be considered,
and further information can be obtained by consulting the literature.

In order to simplify the circuit synthesis procedure, very often @, is assumed to be equal to one and then
after a circuit is found, the values of all capacitances in the circuit are divided by @y. In general, the following
magnitude and frequency transformations are allowed:
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where K, and K, are magnitude and frequency scaling factors, respectively.

Cascade filter designs require the transfer function to be expressed as a product of first- and second-order
terms. For each of these terms a practical circuit can be implemented. Examples of these circuits are presented
in Figs. 29.12-29.22. In general the following first- and second-order terms can be distinguished:

(a) First-order low-pass:
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FIGURE 29.12  First-order low-pass filter.

This filter is inverting, i.e., H must be negative, and the scaling factors shown in Eq. (29.21) should be used
to obtain reasonable values for the components.

(b) First-order high-pass:
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FIGURE 29.13  First-order high-pass filter.

This filter is inverting, i.e., H must be negative, and the scaling factors shown in Eq. (29.21) should be used
to obtain reasonable values for the components.

While several passive realizations of first-order filters are possible (low-pass, high-pass, and lead-lag), the
active circuits shown here are inexpensive and avoid any loading of the other filter sections when the individual
circuits are cascaded. Consequently, these circuits are preferred unless there is some reason to avoid the use of
the additional operational amplifier. Note that a second-order filter can be realized using one operational
amplifer as shown in the following paragraphs, so it is common Practice to choose even-order transfer functions,
thus avoiding the use of any first-order filters.
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(c) There are several second-order low-pass circuits:
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FIGURE 29.14 Second-order low-pass Sallen-Key filter.

gain configuration it has very good bandwidth.
Another useful configuration for second-o

rder low-pass filters uses the operational amplifier in its inverting
“infinite gain® mode as shown in Fig. 29.15.
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FIGURE 29.15 Second-order low-pass filter using the inverting circuit.

This circuit has the advantage of relatively low sensitivity of wyand Q to variations in component values, In
this configuration the operational amplifier’s gain-bandwidth product may become a limitation for high-Q and
high-frequency applications (Budak, 1974]. There are several other circuit configurations for low-pass filters.
The references given at the end of the section will guide the designer to alternatives and the advantages of each.

(d) Second-order high-pass filters may be designed usin

g circuits very much like those shown for the low-
pass realizations. For example, the Sallen-Key low-pass filt.

er is shown in Fig. 29.16,
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FIGURE 29.16 A second-order high-pass Sallen-Key filter.
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As in the case of the low-pass Sallen-Key filter, this circuit is noninverting and requires very little gain from
the operational amplifier. For low to moderate values of Q, the sensitivity functions are reasonable and the
circuit performs well.

The inverting infinite gain high-pass circuit is shown in Fig. 29.17 and is similar to the corresponding low-
pass circuit,
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FIGURE 29.17 An inverting second-order high-pass circuit.

This circuit has relatively good sensitivity figures. The principal limitation occurs with high-Q filters since
this requires a wide spread of resistor values.

Both low-pass and high-pass frequency response circuits can be achieved using three operational amplifier
circuits. Such circuits have some sensitivity function and tuning advantages but require far more components.
These circuits are used in the sections describing bandpass and bandstop filters. The designer wanting to use
the three-operational-amplifier realization for low-pass or high-pass filters can easily do this using simple
modifications of the circuits shown in the following sections.

(e) Second-order bandpass circuits may be realized using only one operational amplifier. The Sallen-Key
filter shown in Fig. 29.18 is one such circuit.
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FIGURE 29.18 A Sallen-Key bandpass filter.
This is a noninverting amplifier which works well for low- to moderate-Q filters and is easily tuned [Budak,

1974). For high-Q filters the sensitivity of Q to element values becomes high, and alternative circuits are
recommended. One of these is the bandpass version of the inverting amplifier filter as shown in Fig. 29.19.
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FIGURE 29.19 The invening amplifier bandpass filter.

This circuit has few components and relatively small sensitivity of @, and Q to variations in element values.
For high-Q circuits, the range of resistor values is quite large as r, and r, are much larger than rs.

When ease of tuning and small sensitivities are more important than the circuit complexity, the three-
operational-amplifier circuit of Fig. 29.20 may be used to implement the bandpass transfer function.
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FIGURE 29.20 The three-operational-amplifier bandpass filter.

The filter as shown in Fig. 29.20 is inverting. For a noninverting realization, simply take the output from
the middle amplifier rather than the right one. This same configuration can be used for a three-operational-
amplifier low-pass filter by putting the input into the summing junction of the middle amplifier and taking
the output from the left operational amplifier. Note that Q may be changed in this circuit by varying r, and
that this will not alter e, Similarly, & can be adjusted by varying ¢, or ¢; and this will not change Q. If only
variable resistors are to be used, the filter can be tuned by setting @, using any of the resistors other than r,
and then setting Q using r,.

(f) Second-order bandstop filters are very useful in rejecting unwanted signals such as line noise or carrier
frequencies in instrumentation applications. Such filters are implemented with methods very similar to the
bandpass filters just discussed. In most cases, the frequency of the zeros is to be the same as the frequency of
the poles. For this application, the circuit shown in Fig. 29.21 can be used.
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FIGURE 29.21 A single operational-amplifier bandstop filter.

The primary advantage of this circuit is that it requires a minimum number of components. For applications
where no tuning is required and the Q is low, this circuit works very well. When the bandstop filter must be -
tuned, the three-operational-amplifier circuit is preferable. '
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FIGURE 29.22 A three-operational-amplifier bandstop filter.

The foregoing circuits provide a variety of useful first- and second-order filters, For higher-order filters, these
sections are simply cascaded to realize the overall transfer function desired. Additional detail about these circuits
as well as other circuits used for active filters may be found in the references.

Defining Terms

Active filter: A filter circuit which uses active components, usually operational amplifiers.

Filter: A circuit which is designed to be frequency selective, That is, the circuit will emphasize or “pass” certain
frequencies and attenuate or “stop” others.

Operational amplifier: A very high-gain differential amplifier used in active filter circuits and many other
applications. These monolithic integrated circuits typically have such high gain, high input impedance,
and low output impedance that they can be considered “ideal” when used in active filters.

Passive filter: Afilter circuit which uses only passive components, i.e., resistors, inductors, and capacitors.
These circuits are useful at higher frequencies and as prototypes for ladder filters that are active.
Sensitivity function: A measure of the fractional change in some circuit characteristic, such as center fre-
quency, to variations in a circuit parameter, such as the value of a resistor. The sensitivity function is
normally defined as the partial derivative of the desired circuit characteristic with respect to the element

value and is usually evaluated at the nominal value of all elements,
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Related Topics
10.3 The Ideal Linear-Phase Low-Pass Filter * 27.1 Ideal and Practical Models
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Further Information

The monthly journal IEEETransactions on Circuits and Systems is one of the best sources of information on
new active filter functions and associated circuits.

The British journal Electronics Letters also often publishes articles about active circuits.

The IEEETransactions on Education has carried articles on innovative approaches to active filter synthesis as
well as computer programs for assisting in the design of active filters.

29.3 Generalized Impedance Convertors and Simulated Impedances

James A. Svoboda

The problem of designing a circuit to have a given transfer function

is called filter design. This problem can be solved using passive cir- e
cuits, that is, circuits consisting entirely of resistors, capacitors, and GiC 7

inductors. Further, these passive filter circuits can be designed to have Z(s) > K(s) Z(s)
some attractive properties. In particular, passive filters can be —tn -

designed so that the transfer function is relatively insensitive to vari- —
ations in the values of the resistances, capacitances, and inductances. FIGURE 29.23 The GIC converts the
Unfortunately, passive circuits contain inductors. Inductors are fre-  impedance Z,(s) to the impedance Z,(s).
quently large, heavy, expensive, and nonlinear.

Generalized impedance convertors (GIC) are electronic circuits used to convert one impedance into another
impedance [Bruton, 1981; Van Valkenburg, 1982]. GICs provide a way to get the advantages of passive circuits
without the disadvantages of inductors. Figure 29.23 illustrates the application of a GIC. The GIC converts the
impedance Z,(s) to the impedance Z\(s). The impedances are related by

Z\(s) = K(s)z,(s) (29.22)

The function K(s) is called the conversion function or, more simply, the gain of the GIC.
Figure 29.24 shows two ways to implement a GIC using operational amplifiers (op amps). The GIC shown
in Fig. 29.24a has a gain given by

k(s) = - 24k (29.23)



